
Security Proof of Beetle and SpoC

Bishwajit Chakraborty and Ashwin Jha and Mridul Nandi

Indian Statistical Institute Kolkata, India
{bishu.math.ynwa,ashwin.jha1991,mridul.nandi}@gmail.com

Abstract. In this paper, we generalize the duplexing interface of the du-
plex mode, which encompasses Beetle as well as a new sponge-like mode
SpoC (round 1 submission to NIST LwC). We call this wide class of
constructions, Transform-then-Permute. We show a tight security bound
for Transform-then-Permute, which reduces to finding an exact estima-
tion of the expected number of multi-chains (introduced in this paper).
Further, we give an exact estimation of the expected number of multi-
chains in case of Beetle and SpoC, which leads to an improved security
bound. For both the constructions, we show that the dominating term
is rT/2c + DT/2r+c, where D and T denote the data and time com-
plexity, respectively, and r, c, and b denote the rate and capacity bits,
respectively. In the context of NIST LwC requirement, SpoC based on
192-bit permutation achieves the desired security with as large as 64-bit
rate, which is not achieved by either duplex or Beetle (as per the state-
of-the-art bounds). As an extreme choice, our results imply that Beetle
or SpoC mode with 160-bit permutation and 32-bit rate can also satisfy
the NIST LwC requirements.

Keywords: Sponge, duplex, Beetle, SpoC, lightweight, AE, tight bound

1 Introduction

Sponge based authenticated encryption is mostly done via the duplex construc-
tion [3]. The duplex mode is a stateful construction that consists of an initial-
ization interface and a duplexing interface. Initialization creates an initial state
using the underlying permutation π, and each duplexing call to π absorbs and
squeezes r bits of data.

One of the dominating terms present in all of the existing analysis of duplex
authenticated encryption is

DT/2c.

A recent variant of duplex mode, called the Beetle mode of operation [4], mod-
ifies the duplexing phase by introducing a combined feedback based absorp-
tion/squeezing, similar to the feedback paradigm of CoFB [5]. In [4], Chakraborti
et al. showed that feedback based duplexing actually helps in improving the secu-
rity bound, mainly to get rid of the term DT/2c. They showed privacy security
up to DT � 2b, D � 2b/2, T � 2c, and integrity security up to DT � 2b,
D � min{2b/2, 2c−log2 r, 2r}, T � min{2c−log2 r, 2r, 2b/2}, with an assumption
that κ = c and τ = r. This means that for c = r = b/2, the beetle mode achieves
close to (c− log2 r)-bit security.

mailto:bishu.math.ynwa@gmail.com,ashwin.jha1991@gmail.com,mridul.nandi@gmail.com

Security of Sponge-based AE in Light of NIST LwC Requirement: In
NIST’s LwC call for submissions, it is mentioned that the primary AE version
should have at least 128-bit key, at least 96-bit nonce, at least 64-bit tag, data
complexity 250 − 1 bytes, and time complexity 2112. In order to satisfy these
requirements, a traditional duplex-based scheme must have a capacity size of at
least 160-bit. All sponge based submission to NIST LwC standardization process
uses 192-bit capacity, except CLX for which no security proof is available.

On the other hand, the known bound for Beetle imposes certain limitations
on the state size and rate. Specifically, Beetle-based schemes requires close to
120-bit capacity and 120-bit rate to achieve NIST LwC requirements. In light of
the ongoing NIST LwC standardization, it would be interesting to see whether
we can get rid of the limitations in Beetle.

1.1 Our Contributions

In this paper, inspired by the NIST LwC requirements, we extend a long line
of research on the security of Sponge-based AE schemes. Our contributions are
threefold.
– First, we study Sponge-based AE construction with a generalization of the

feedback function used in the duplexing interface, that encompasses the feed-
back used in duplex, Beetle, SpoC etc. We show that the AE security of this
generalized construction is bounded by adversary’s ability of constructing
a special data structure, called the multi-chains. We also show a matching
attack exploiting the multi-chains.

– Second, we show that for a class of feedback function, containing the Beetle
and SpoC modes, optimal AE security is achieved.

– Third, as a byproduct of the previous point, we give improved and tight
bound for Beetle, and a security proof validating the security claims of SpoC
[1]. Notably, we show that both Beetle and SpoC achieve NIST LwC require-
ments with just 128-bit capacity and ≥ 32-bit rate. In other words, they
achieve NIST LwC requirements with just 160-bit state, which to the best
of our knowledge is the smallest possible state size.

2 Preliminaries

Notational Setup: For n ∈ N, [n] denotes the set {1, 2, . . . , n} and (n] de-
notes the set {0} ∪ [n], {0, 1}n denotes the set of bit strings of length n, and
Perm(n) denotes the set of all permutations over {0, 1}n. For any bit string x
with |x| ≥ n, dxen (res. bxcn) denote the most (res. least) significant n bits of x.
For n, k ∈ N, such that n ≥ k, we define the falling factorial (n)k := n!/(n−k)! =
n(n− 1) · · · (n− k + 1). Note that (n)k ≤ nk.

For q ∈ N, xq denotes the q-tuple (x1, x2, . . . , xq). For q ∈ N, for any set X ,
(X)q denotes the set of all q-tuples with distinct elements from X . Two distinct
strings a = a1 . . . am and b = b1 . . . bm′ , are said to have a common prefix of
length n ≤ min{m,m′}, if ai = bi for all i ∈ [n], and an+1 6= bn+1. For a finite
set X , X←$X denotes the uniform and random sampling of X from X .

2

2.1 Authenticated Encryption: Definition and Security Model

Authentication Encryption with Associated Data: An authenticated
encryption scheme with associated data functionality, or AEAD in short, is a
tuple of algorithms AE = (E,D), defined over the key space K, nonce space N ,
associated data space A, message space M, ciphertext space C, and tag space T ,
where:

E : K ×N ×A×M→ C × T and D : K ×N ×A× C × T →M∪ {⊥}.

Here, E and D are called the encryption and decryption algorithms, respec-
tively, of AE. Further, it is required that D(K,N,A,E(K,N,A,M)) = M for
any (K,N,A,M) ∈ K × N × A × M. For all key K ∈ K, we write EK(·)
and DK(·) to denote E(K, ·) and D(K, ·), respectively. In this paper, we have
K,N ,A,M, T ⊆ {0, 1}+ and C =M, so we useM instead of C wherever neces-
sary. AEAD Security in the Random Permutation Model: For b ∈ N,
let Perm(b) denote the set of all permutations over {0, 1}b, and Π←$ Perm(b). Let
Func denote the set of all functions from N ×A×M toM×T , and Γ←$ Func.
Let ⊥ denote the degenerate function from (N ,A,M, T) to {⊥}. For brevity,
we denote the oracle corresponding to a function (like E, Π etc.) by that function
itself. A bidirectional access to Π is denoted by the superscript ±.

Definition 2.1. Let AEΠ be an AEAD scheme, based on the random permuta-
tion Π, defined over (K,N ,A,M, T). The AEAD advantage of an adversary A
against AEΠ is defined as,

Advaead
AEΠ

(A) :=

∣∣∣∣∣∣ Pr
K←$K

Π±

[
A EK,DK,Π

±
= 1
]
− Pr

Γ,Π±

[
A Γ,⊥,Π± = 1

]∣∣∣∣∣∣ . (1)

Here A EK,DK,Π
±

denotes A ’s response after its interaction with EK, DK, and Π±,
respectively. Similarly, A Γ,⊥,Π± denotes A ’s response after its interaction with
Γ, ⊥, and Π±.

In this paper, we assume that the adversary is non-trivial, i.e. it never makes
a duplicate query, and it never makes a query for which the response is already
known due to some previous query. We use the following notations to parametrize
the adversary’s resources:
– qe and qd denote the number of queries to EK and DK, respectively. σe and
σd denote the sum of input (associated data and message) lengths across
all encryption and decryption, respectively, queries. We sometime also write
qc = qe + qd and σc = σe + σd to denote the combined construction query
resources.

– q+ and q− denote the number of queries to Π+ and Π−, respectively. We
sometime also use qp = q+ + q−, to denote the combined primitive query
resources.

We remark here that qc and σc correspond to the online or data complexity,
and qp corresponds to the offline or time complexity of the adversary. Any ad-
versary that adheres to the above mentioned resource constraints is called an
(qp, qe, qd, σe, σd)-adversary.

3

2.2 H-coefficient Technique

Consider a computationally unbounded and deterministic adversary A that tries
to distinguish the real oracle, say O1, from the ideal oracle, say O0. We denote
the query-response tuple of A ’s interaction with its oracle by a transcript ω.
Sometimes, this may also include any additional information that the oracle
chooses to reveal to the distinguisher at the end of the query-response phase
of the game. We will consider this extended definition of transcript. We denote
by Θ1 (res. Θ0) the random transcript variable when A interacts with O1 (res.
O0). The probability of realizing a given transcript ω in the security game with
an oracle O is known as the interpolation probability of ω with respect to O.
Since A is deterministic, this probability depends only on the oracle O and
the transcript ω. A transcript ω is said to be attainable if Pr [Θ0 = ω] > 0. In
this paper, O1 = (EK,DK,Π

±), O0 = (Γ,⊥,Π±), and the adversary is trying to
distinguish O1 from O0 in AEAD sense. Now we state a simple yet powerful
tool due to Patarin [7], known as the H-coefficient technique (or simply the
H-technique).

Theorem 2.1 (H-coefficient technique [8]). Let Ω be the set of all realizable
transcripts. For some εbad, εratio > 0, suppose there is a set Ωbad ⊆ Ω satisfying
the following:
– Pr [Θ0 ∈ Ωbad] ≤ εbad;
– For any ω /∈ Ωbad,

Pr [Θ1 = ω]

Pr [Θ0 = ω]
≥ 1− εratio.

Then for any adversary A , we have the following bound on its AEAD distin-
guishing advantage:

Advaead
O1

(A) ≤ εbad + εratio.

A proof of this theorem is available in multiple papers including [8].

3 Transform-then-Permute Construction

In this section we describe Transform-then-Permute (or TtP in short), which gen-
eralizes dupleing method used in sponge AEAD. We first start of with a simple
version of Transform-then-Permute. In particular, we make the following set of
assumptions:
1. There is no associated data (so now it is AE rather than AEAD). Moreover,

the message space M⊂ ({0, 1}r)+ where r is called rate of Transform-then-
Permute.

2. The key size κ is strictly less than b (input size of the underlying ideal
permutation Π) and the nonce size is b − κ. We denote the tag size as τ
which is also less than the block size b.

We make these assumptions to describe the general idea of our proof approach in
a more simplified way. Towards the end of the section, we relax these assumptions
to come up with a fairly generalized sponge construction.

4

3.1 Description of Basic Structure of Transform-then-Permute

ΠXi−1

⊕ Mi

Ci

Le ⊕

Mi

δi

Π Yi

−r

−c

|
b Xi

Fig. 3.1: Illustration of the feedback process for the i-th block of an m-block message
M = (M1, . . . ,Mm), where each Mi ∈ {0, 1}r. Here δi = 1 if i = m, and 0 otherwise.
Note that X0 is defined as N‖K. See algorithm 3.1 for further details.

We define the Transform-then-Permute construction on top of the ideal per-
mutation Π←$ Perm. To encrypt a message, we require two linear functions Le :
{0, 1}b → {0, 1}b (an invertible linear function) and encode : {0, 1}r → {0, 1}b.
For simplicity we write x to denote encode(x). Mostly we choose zero padding as
the encoding, i.e. x := x‖0c where c := b−r (called capacity of the construction).

The main steps are summarized in algorithm 3.1, and the i-th message block
processing is illustrated in figure 3.1.

Algorithm 3.1 Encryption/Decryption algorithms for the Transform-then-
Permute mode

1: function Enc(N,K,M)

2: (M1, . . . ,Mm)
r←M

3: X0 ← N‖K, Y0 ← Π(X0)

4: for i = 1 to m do

5: Ci ←Mi ⊕ dYi−1er
6: if i < m then

7: Xi = Le(Yi−1)⊕Mi

8: else

9: Xi = Le(Yi−1)⊕Mi ⊕ 1

10: Yi ← Π(Xi)

11: T ← dYmeτ .

12: return (C := C1‖ . . . ‖Cm, T)

1: function Dec(N,K,C, T)

2: (C1, . . . , Cm)
r← C

3: X0 ← N‖K, Y0 ← Π(X0)

4: for i = 1 to m do

5: Mi ← Ci ⊕ dYi−1er
6: if i < m then

7: Xi = Ld(Yi−1)⊕ Ci
8: else

9: Xi = Ld(Yi−1)⊕ Ci ⊕ 1

10: Yi ← Π(Xi)

11: T ′ ← dYmeτ
12: if T ′ 6= T then

13: return M := ⊥
14: else

15: return M := M1‖ . . . ‖Mm

5

For decryption, we use Ld(x) to denote the linear function Le(x) ⊕ dxer. It
is easy to see why the decryption works correctly. During decryption Xi, for
i < m, should be defined as Le(Yi−1) ⊕Mi where Mi = dYi−1er ⊕ Ci. Hence,
Xi = Le(Yi−1)⊕ dYi−1er ⊕ Ci.

3.2 Multi-chain Security Game

In this section we consider a new security game which we call multi-chain security
game. In this game, adversary A interacts with a random permutation and its
inverse. It’s goal is to construct multiple walks having same labels defined in
some manner. We first need to describe some notations which would be required
to define the security game.
Labeled Walk: Let L = ((u1, v1), . . . , (ut, vt)) be a list of pairs of b-bit ele-
ments such that u1, . . . ut are distinct and v1, . . . , vt are distinct. For any such
list of pairs, we write domain(L) = {u1, . . . , ut} and range(L) = {v1, . . . , vt}.

Let L be a linear function over b bits. Given such a list we define a labeled
directed graph GL over the set of vertices range(L) ⊆ {0, 1}b as follows: A directed

edge vi → vj with label x (also denoted as vi
x→ vj) is in the graph if L(vi)⊕x =

uj . We can similarly extend this to a label walk W from a node w0 to wk as

W : w0
x1→ w1

x2→ w2 · · ·
xk→ wk.

We simply denote it as w0
x−→ wk where x = (x1, . . . , xk). Here k is the length

of the walk.

The Multi-Chain Structure

Definition 3.1. Let r, τ ≤ b be some parameters. We say that a set of labeled
walks {W1, . . . ,Wp} forms a multi-chain with a label x := (x1, . . . , xk) in the

graph GL if for all 1 ≤ i ≤ p, Wi : vi0
x−→ vik and du10er = · · · = dup0er and

dv1keτ = · · · = dvpkeτ . We also call the multi-chain of length k.

The maximum size of the set of multi-chain of length k (with some label x)
is denoted as Wk (which is induced by L).

Now consider an adversary A interacting at most t times with Π±. Let
(xi, diri) denote ith query where xi ∈ {0, 1}b and diri is either + or − (repre-
senting forward or inverse query). If diri = +, it gets response yi as Π(xi), else
the response yi is set as Π−1(xi). After t many interactions, we define a list
L of pairs (ui, vi)i where (ui, vi) = (xi, yi) if diri = +, and (ui, vi) = (yi, xi)
otherwise. So we have Π(ui) = vi for all i. We call the tuple of triples θ :=
((u1, v1, dir1), . . . , (ut, vt, dirt)) the transcript of the adversary A interacting with
Π±. We also write θ′ = ((u1, v1), . . . , (ut, vt)) which only stores the information
about the random permutation. We write

µk,A := Ex [Wk].

6

Here Wk is defined for the labeled graph induced by the list θ′ as defined above
and expectation is defined over the randomness of the random permutation Π
and the random coin of the adversary A . Finally, we define µk,t = maxA µk,A
where maximum is taken over all adversaries making at most t queries.

3.3 Security Analysis of Transform-then-Permute

We prove the following result on the AE security of Transform-then-Permute.

Theorem 3.1. Let us assume that σ := σe+σd ≤ qp. For any (qp, qe, qd, σe, σd)-
adversary A , we have

Advaead
TtP (A) ≤ qp

2κ
+

2qd
2τ

+
5σqp

2b
+

3qpmcoll(σe, 2
r)

2c
+
∑
i∈D

µm∗i ,qp
2c

+
qpσdmcoll(σe, 2

r)

22c

where D denote the set of query indices for decryption queries.
By applying suitable bound for mcoll(σe, 2

r) we have the following bounds.
When r ≥ 16 and σe ≥ r2r (which is reasonable when r is small like 16), we can
simplify the above bound as

Advaead
TtP (A) ≤ qp

2κ
+

2qd
2τ

+
8σqp

2b
+
∑
i∈D

µqp,m∗i
2c

+
qpσ

2

2b+c
.

In all other cases, we have

Advaead
TtP (A) ≤ qp

2κ
+

2qd
2τ

+
5σqp

2b
+
rqp
2c

+
∑
i∈D

µqp,m∗i
2c

+
rqpσ

22c
.

Proof. The proof employs H-technique tool of Theorem 2.1. To apply this method
we need to first describe the ideal world (the real world behaves same as the con-
struction and would be described later).
Ideal World: The ideal world responds three oracles, namely encryption
queries, decryption queries and primitive queries.

Primitive: The ideal world simulates Π± query honestly and maintains
a list ωp of the query-responses of Π as a partial injective function. More
precisely,

ωp = ((U1,V1, dir1), (U2,V2, dir2), . . .)

where diri is either 1 or −1 depending on forward or backward queries.
ωp represents forward only transcript and so Π(Ui) = Vi for all i. ω′p :=
((U1,V1), (U2,V2), . . .) represents the transcript after removing the direction
information.
Encryption: When the ith query is an encryption query (Ni,Mi) with

(Mi,1, . . . ,Mi,mi)
r← Mi, it first samples Yi,0, . . . ,Yi,mi ←$ {0, 1}b and then

returns
Ci,j = dYi,j−1er ⊕Mi,j , j ∈ [mi], Ti ← dYi,mieτ .

For all i, we define intermediate inputs (X-values) as follows

7

Xi,j =

Ni‖K if j = 0

Le(Yi,j−1)⊕Mi,j if 1 ≤ j < mi

Le(Yi,j−1)⊕Mi,j ⊕ 1 if j = mi.

Decryption: When the ith query is a decryption query (N∗i ,C
∗
i ,T
∗
i), it

always returns abort symbol M∗i := ⊥. We write (C∗i,1, . . . ,C
∗
i,m∗i

)
r← C∗i . The

decryption transcript ωd := (M∗i)i∈D where M∗i is always ⊥ in ideal world.

Offline: Let E and D denote the set of all query indices corresponding to
encryption and decryption queries respectively.
After completion of oracle interaction (the above three types of queries
possibly in an interleaved manner), the ideal oracle returns all X-values
(as computed above) and Y-values. So we define the encryption transcript
ωe = (Xi,jYi,j)i∈E,j∈(mi]. So, the transcript of the adversary consists of
ω := (ωp, ωe, ωd).

Internal Values for Decryption Queries: For each decryption query
(N∗i ,C

∗
i ,T
∗
i), (i.e. i ∈ D), we define pi as −1 if for all j ∈ E , Nj 6= N∗i . In other

words, the i-th decryption query has been queried with a fresh nonce. Otherwise,
there exists a unique i′ ∈ E such that Ni′ = N∗i (as we consider nonce-respecting
adversary only). Let `i denote the length of the longest common prefix of Ci′
and C∗i . We define pi as `i neither C∗i not Ci′ is a prefix to other. Otherwise, we
define pi as `i − 1. For every i ∈ D with pi ≥ 0, we define
1. Y∗i,0..pi = Yi′,0..pi ,
2. X∗i,0..pi = Xi′,0..pi , and

3. X∗i,pi+1 = Ld(Yi′,pi) ⊕ C∗pi+1 ⊕ χ(pi + 1 =? mi).
By definition of longest common-prefix, we have X∗i,pi+1 6= Xi′,pi+1. Now, we
further extend X∗-values and Y∗-values whenever possible based on the primitive
transcript ωp. Fix i ∈ D with pi ≥ 0. For the notational simplicity, let xi,j denote
C∗i,j ⊕ χ(j =? mi) where χ(P) is 1 if the statement P is true, otherwise it sets
zero. If there is a labeled walk (in the labeled directed graph induced by ωp as
described in section 3.2) from Y∗i,pi with label (xi,pi+1, . . . , xi,j) then we denote
the end node as Y∗i,j . In notation we have

Y∗i,pi
(xi,pi+1,...,xi,j)−→ Y∗i,j .

For each i ∈ D let p′i denote the muximum possible value of j such that Y∗i,j
has been defined as described above. We define X∗i,j+1 := Ld(Y∗i,j)⊕ xj+1 for all
i ∈ D and pi + 1 ≤ j ≤ p′i.

Bad Transcript : We say that an ideal world transcript ω = (ωp, ωe, ωd) is
bad if any one of the following conditions holds:

Bad events due to encryption and primitive transcript:
B1: For some (U,V) ∈ ωp, K = bUcκ.
B2: For some i ∈ E , j ∈ (mi], Yi,j ∈ range(ωp), (in other words, range(ωe) ∩

range(ωp) 6= ∅)
B3: For some i ∈ E , j ∈ (mi], Xi,j ∈ domain(Lp), (in other words, domain(ωe) ∩

domain(ωp) 6= ∅)

8

B4: For some (i ∈ E , j ∈ (mi]) 6= (i′ ∈ E , j′ ∈ (mi′]), Yi,j = Yi′,j′ ,
B5: For some (i ∈ E , j ∈ (mi]) 6= (i′ ∈ E , j′ ∈ (mi′]), Xi,j = Xi′,j′ ,

Bad events due to decryption transcript:
B6: For some i ∈ D, (i′ ∈ E , j′ ∈ (mi′]), X∗i,pi+1 = Xi′,j′ ,
B7: For some i ∈ D with pi ≥ 0, p′i = mi and dY∗i,mieτ = T∗i ,
B8: For some i ∈ D with pi ≥ 0 and for some j, Y∗i,j ∈ range(ωe) or X∗i,j ∈

domain(ωe).
We write BAD to denote the event that the ideal world transcript Θ0 is bad.
Then, with a slight abuse of notations, we have

BAD =

8⋃
i=1

Bi. (2)

Lemma 3.1.

Pr[BAD] ≤ qp
2κ

+
5σeqp

2b
+

3qpmcoll(σe, 2
r)

2c
+
∑
i∈D

µm∗i ,qp
2c

+
qpσdmcoll(σe, 2

r)

22c
.

We postpone the proof of lemma 3.1, i.e. the upper bound on the probability of
realizing a bad transcript in the ideal world, to Appendix C.
Real World: The real world has the oracle Π±. The AE encryption and
decryption queries and direct primitive queries are faithfully responded based
on Π±. Like the ideal, after completion of interaction, the ideal oracle returns all
Y -values corresponding to the encryption queries only. Note that a decryption
query may return Mi which is not ⊥.

The motivation for all the bad events would be clear from the understanding
of a good transcript (i.e., not a bad transcript). Let ω = (ωp, ωe, ωd) be a good
transcript. Suppose for all 1 ≤ j ≤ p′i, Y∗i,j (provided pi ≥ 0) and X∗i,j+1 has
been defined from the transcript as described above. Then, we have the following
observations:
1. The tuples ωe is permutation compatible and disjoint from ωp. So union of

tuples ωe ∪ ωp is also permutation compatible.
2. For all i ∈ D, either p′i = mi with dY∗i,mieτ 6= T∗i (type-1 decryption query)

or p′i < mi but X∗i,p′i+1 6∈ domain(ωe ∪ωp) (type-2 decryption query). Type-1

decryption queries would be straightaway rejected. Type-2 decryption query
can be computed based on ωe∪ωp until X∗i,p′i+1, which is fresh. So Π(X∗i,p′i+1)

is random over a large set. This would ensure with high probability we reject
those decryption query also.

These two information would be used for good transcript analysis.
Good Transcript Analysis: Now fix a good transcript ω. Let Θ0 and Θ1

denote the transcript random variable obtained in the ideal world and real world
respectively. As noted before, all the input-output pairs for the underlying per-
mutation are compatible. In the ideal world, all the Y values are sampled uni-
form at random; the list ωp is just the partial representation of Π; and all the
decryption queries are degenerately aborted; whence we get

Pr[Θ0 = ω] =
1

2bσe(2b)qp
.

9

Here σe denotes the total number of blocks present in all encryption queries
including nonce. In notation σe = qe+

∑
imi. In the real world, for ω we denote

the encryption query, decryption query, and primitive query tuples by ωe, ωd
and ωp, respectively. Then, we have

Pr[Θ1 = ω] = Pr[Θ1 = (ωe, ωp, ωd)]

= Pr[ωe, ωp] · Pr[ωd | ωe, ωp]
= Pr[ωe, ωp] · (1− Pr[¬ωd | ωe, ωp])

≤ Pr[ωe, ωp] ·

(
1−

∑
i∈D

Pr[¬ωd,i | ωe, ωp]

)
(3)

Here we have slightly abused the notation to use ¬ωd,i to denote the event
that the i-th decryption query successfully decrypts and and ¬ωd is the union
∪i∈D¬ωd,i (i.e. at least one decryption query successfully decrypts). The encryp-
tion and primitive queries are mutually permutation compatible, so we have

Pr
Θ1

(ωe, ωp) = 1/(2b)σe+qp ≥ Pr
Θ0

(ωe, ωp).

Now we show an upper bound PrΘ1(¬ωd,i | ωe, ωp) ≤
mi(σe+qp)
2b−σe−qp + 1

2τ for every

type-2 decryption query. Recall that X∗i,p′i+1 is fresh. If X∗i,j is the last input block

then Π(X∗i,j) = T∗i with probability at most 2/2τ (provided σe+qp ≤ 2b−1 which
can be assumed, since otherwise our bound is trivially true). Suppose X∗i,j is
not the last block, then the next input block may collide with some encryption
or primitive input block with probability at most

σe+qp
2b

. Applying this same
argument for all the successive blocks till the last one, we get the probability at

most
mi(σe+qp)
2b−σe−qp , the last block input would be fresh. Hence the probability that

the tag matches with at most 2/2τ . Now, by union bound we have

Pr[¬ωd | ωe, ωp] ≤
∑
i∈D

mi(σe + qp)

2b − σe − qp
+

2

2τ

≤ 2σd(σe + qp)

2b
+

2qd
2τ

≤ 4σdqp
2b

+
2qd
2τ

.

The result follows from H-technique theorem 2.1, combined with lemma 3.1 and
Eq. (3). ut

3.4 Extending the Analysis to Transform-then-Permute AEAD

Due to constrain of space we move this section to Appendix D.

4 Transform-then-Permute with Invertible Ld Function

In this section, we give concrete bounds for Transform-then-Permute under a
special assumption that the underlying feedback function is invertible.

10

Theorem 4.1. If the feedback function L is invertible, then we have

µt,k ≤ mcoll(t, 2τ) + mcoll(t, 2r) + k ·mcoll′(t2, 2b).

Proof. Due to constrain of space the proof is moved to Appendix E.

It is easy to see that the decryption feedback function in Beetle [4] and SpoC [1]
are invertible, whereas this is not the case for duplex. In the following subsections,
we apply Eq. (9) and theorem 4.1 to give improved bounds for Beetle and SpoC.

4.1 Security of Beetle

In Beetle [4], the linear function Le is defined as Le(x, y) 7→ (x2, x2⊕x1, y), where
(x1, x2, y) ∈ {0, 1}r/2 × {0, 1}r/2 × {0, 1}c. The linear function Ld is defined by
the mapping Ld(x, y) 7→ (x2⊕x1, x1, y), where (x1, x2, y) ∈ {0, 1}r/2×{0, 1}r/2×
{0, 1}c. Clearly the Le and Ld functions are invertible. Further, they have full
rank. Thus, from Eq. (9), theorem 4.1, Eq. (5), and Eq. (8), we have

Corollary 4.1. For r, τ, b ≥ 16 and any (qp, qe, qd, σe, σd)-adversary A , we have

Advaead
Beetle(A) ≤ qp

2κ
+

2qd
2τ

+
5σqp

2b
+
rqp
2c

+
rqpσ

22c
+
rqpqd

2b
+
τqpqd
2c+τ

+
2bq2pσd

2b+c
.

Further by assuming r ≤ τ , we get

Advaead
Beetle(A) ≤ qp

2κ
+

2qd
2τ

+
5σqp

2b
+
rqp
2c

+
rqpσ

22c
+

2τqpqd
2b

+
2bq2pσd

2b+c
.

4.2 Security of SpoC

In SpoC [1], the linear function Le is identity, and the linear function Ld is
defined by the mapping L(x, y) 7→ (x, x‖0c⊕ y), where (x, y) ∈ {0, 1}r ×{0, 1}c.
Clearly the Le and Ld functions are involutions, and hence invertible. Further,
it is easy to check that they have full rank. Thus, from Eq. (9), theorem 4.1, Eq.
(5), and Eq. (8), we have

Corollary 4.2. For r, τ, b ≥ 16 and any (qp, qe, qd, σe, σd)-adversary A , we have

Advaead
SpoC(A) ≤ qp

2κ
+

2qd
2τ

+
5σqp

2b
+
rqp
2c

+
rqpσ

22c
+
rqpqd

2b
+
τqpqd
2c+τ

+
2bq2pσd

2b+c
.

Further by assuming r ≤ τ , we get

Advaead
SpoC(A) ≤ qp

2κ
+

2qd
2τ

+
5σqp

2b
+
rqp
2c

+
rqpσ

22c
+

2τqpqd
2b

+
2bq2pσd

2b+c
.

Note that in the above corollaries we have utilized the crude bounds of Eq. (5)
and (8) on mcoll(qp, 2

τ), mcoll(qp, 2
r) and mcoll′(q2p, 2

b). One can get an even
tighter estimates depending upon the relationship between qp and τ , r, and b.

11

5 Conclusion

In this paper we have proved improved bound for Beetle and provided similar
bound for newly proposed mode SpoC. Our bound resolves all limitations known
for Beetle and Sponge duplex. Although we obtain tight expression for AE ad-
vantage, the variable qdµqp,m∗/2

c (present in our upper bound assuming that
all decryption queries are of length m∗) needs to be tightly estimated. We are
able to provide tight estimation of µ when the feedback function for decryption
is linear. This is the case for Beetle and SpoC, but not for Sponge duplex.

References

1. Riham AlTawy, Guang Gong, Morgan He, Ashwin Jha, Kalikinkar Mandal, Mridul
Nandi, and Raghvendra Rohit. Spoc. Submission to NIST LwC Standardization
Process (Round 1), 2019.

2. Ricardo A. Baeza-Yates and Gaston H. Gonnet. Handbook of Algorithms and Data
Structures in Pascal and C. Addison-Wesley, 1991.

3. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplexing
the sponge: Single-pass authenticated encryption and other applications. In Se-
lected Areas in Cryptography - 18th International Workshop, SAC 2011. Revised
Selected Papers, pages 320–337, 2011.

4. Avik Chakraborti, Nilanjan Datta, Mridul Nandi, and Kan Yasuda. Beetle family
of lightweight and secure authenticated encryption ciphers. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2018(2):218–241, 2018.

5. Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, and Mridul Nandi.
Blockcipher-based authenticated encryption: How small can we go? In Crypto-
graphic Hardware and Embedded Systems - CHES 2017. Proceedings, pages 277–
298, 2017.

6. Gaston H. Gonnet. Expected length of the longest probe sequence in hash code
searching. J. ACM, 28(2):289–304, 1981.

7. Jacques Patarin. Etude des Générateurs de Permutations Pseudo-aléatoires Basés
sur le Schéma du DES. PhD thesis, Université de Paris, 1991.

8. Jacques Patarin. The ”coefficients H“ technique. In Selected Areas in Cryptography
- SAC 2008. Revised Selected Papers, pages 328–345, 2008.

9. Martin Raab and Angelika Steger. ”balls into bins” - A simple and tight analysis.
In Randomization and Approximation Techniques in Computer Science, Second
International Workshop, RANDOM’98. Proceedings, pages 159–170, 1998.

10. Robert Sedgewick and Philippe Flajolet. An introduction to the analysis of algo-
rithms. Addison-Wesley-Longman, 1996.

A Some Results on Multicollision

In this section we briefly revisit some useful results on the expected value of max-
imum multicollision in a random sample. This problem has seen a lot of interest
(see for instance [6,2,10,9]) in context of the complexity of hash table1 probing.

1 A popular data structure used for efficient searching applications.

12

However, most of the results available in the literature are given in asymptotic
forms. We state some relevant results in a more concrete form, following similar
proof strategies as before. Moreover, we also extend these results for samples
which, although are not uniform, have high entropy almost close to uniform.

A.1 Expected Maximum Multicollision in a Uniform Random
Sample

Let X1, . . . ,Xq ←$D where |D| = N . For notational simplicity, we write log2N
as n. We denote the maximum multicollision random variable for the sample as
mcq,N . More precisely, mcq,N = maxa |{i : Xi = a}|. For any integer ρ ≥ 2,

Pr[mcq,N ≥ ρ] ≤
∑
a∈D

Pr[|{i : Xi = a}| ≥ ρ]

≤ N ·
(
q
ρ

)
Nρ

≤ N · qρ

Nρρ!

≤ N ·
(
qe

ρN

)ρ
We justify the inequalities in the following way: The first inequality is due to
the union bound. If there are at least ρ indices for which Xi takes value a, we
can choose the first ρ indices in

(
q
ρ

)
ways. This justifies the second inequality.

The last inequality follows from the simple observation that eρ ≥ ρρ/ρ!. Thus,
we have

Pr[mcq,N ≥ ρ] ≤ N ·
(
qe

ρN

)ρ
. (4)

For any positive integer valued random variable Y bounded by N :

Ex [Y] ≤ (ρ− 1) +N · Pr[Y ≥ ρ].

Using Eq. (4), and the above relation we can prove the following results for
the expected value of maximum multicollision. We write mcoll(q,N) to denote
Ex [mcq,N].

Proposition A.1. mcoll(q,N) ≤

4n

logn if q = N,n ≥ 16

4n if q = nN

4nd q
nN e if q ≥ nN

4 log q if q < N

Proof. When q = N we have, Pr[mcN,N ≥ ρ] ≤ N ·
(
e
ρ

)ρ
. So, we can write

Ex [mcN,N] ≤ ρ − 1 + N2 ·
(
e
ρ

)ρ
. Let us take ρ = 4n/ log n. It can be easily

13

shown after simplification that
(
e
ρ

)ρ
≤ N−2 (take logarithm on both sides and

simplify) assuming n ≥ 16. Thus, for all n ≥ 16 we have

Ex [mcN,N] ≤ 4n/ log n.

Similarly, for q = Nn, we choose ρ = 4n. After simplification, we once again
have Ex [mcnN,N] ≤ 4n − 1 + N2 × (e

4n)4n. Note that (4/e)4 > 4 and hence for
all positive n, N2 × (e

4n)4n < 1.

When q ≥ nN , we can group them into dq/nNe samples each of size exactly
nN (we can add more samples if required). This would prove the result when
q ≥ nN .

Finally, when q < N , we can simply bound Ex [mcq,N] ≤ 4 log q. ut

When n ≥ 16, for all q, we can write the bounds into one single form:

mcoll(q,N) ≤ nq/N (5)

B Expected Maximum Multicollision in a Non-uniform
Random Sample

Now we bound expectation of maximum multicollision in a sample X1, . . . ,Xq
(can be arbitrarily dependent) which is not completely uniform random. How-
ever, it satisfies the following property for all distinct i1, . . . , iρ for any integer
ρ ≥ 2:

Pr(Xi1 = a, · · ·Xiρ = a) ≤ 1

N ′r
(6)

Then, we can actually perform the same analysis as before. For any integer ρ ≥ 2,
it can be shown that

Pr[mcq,N ≥ ρ] ≤ N ·
(
qe

ρN ′

)ρ
(7)

Using it, we can prove the following results for expected value of maximum
multicollision.

Proposition B.1. Ex [mcq,N] ≤

4 log q if q < N ′

4n
logn if N ′ ≤ q < N ′n
4q
N ′ if q ≥ N ′n

In the non-random case, we denote Ex [mcq,N] by mcoll′(q,N) As before, when
n ≥ 16, we have

mcoll′(q,N) ≤ nq/N ′ (8)

14

B.1 Some Examples of Non-uniform Random Samples

In this paper apart from the uniform random sample over {0, 1}b, we also con-
sider the following non-uniform random samples:

1. We sample X1, . . . ,Xq
wor← {0, 1}b and then we define Yi = dXier for some r <

b. In this case, we have Pr(Yi1 = a, · · ·Yiρ = a) ≤ (2(b−r))ρ
(2b)ρ

. This can be easily

justified as we have to choose the remaining b− r bits distinct (as X1, . . . ,Xq

must be distinct). Now,
(2(b−r))ρ

(2b)ρ
≤ 1

2rρ . So, Ex [mcq,N] ≤ mcoll(q,N) (same

bound as random sample), where N = 2r.

2. Let x1, . . . xq be distinct and y1, . . . , yq be distinct b bits. Let Π denote the
random permutation over b bits. We define Zi,j = Π(xi)⊕ Π−1(yj). Now, it
is easy to see that for any (i1, j1), . . . (iρ, jρ),

Pr(Zi1,j1 = a, · · ·Ziρ,jρ = a) ≤ 1

(N − 2ρ)ρ
.

So Proposition B.1 can be applied with N ′ = N − 2ρ.

C Proof of Lemma 3.1 (Bad Transcript Analysis)

Proof. From equation 2, we have

Pr[BAD] = Pr

[
8⋃
i=1

Bi

]
≤

8∑
i=1

Pr[Bi].

It is sufficient to upper bound the probabilities of Bi. We bound the probabilities
of these events in the following:

Bounding Pr[B1]: This is basically the key recovery event, i.e., the event that
the adversary recovers the master key K by direct queries to the internal random
permutation. For a fixed entry (U,V) ∈ ωp, the probability that K = bUcκ is
bounded by at most 2−κ, as K is chosen uniform at random from {0, 1}κ. Thus,
we have

Pr[B1] ≤ qp
2κ
.

Bounding Pr[B2] : This event can be analyzed in several cases as below:

Case 1: ∃i, j, a, Yi,j = Va, encryption after primitive: This case can be bounded

by probability at most 1/2b. We have at most σe many (i, j) pairs and qp many
a indices. Thus this can be bounded by at most σeqp/2

b.

Case 2: ∃i, j, a, Yi,j = Va, dira = +, encryption before primitive: This case can

be bounded by probability at most 1/(2b−a+1). We have at most σe many (i, j)
pairs and qf many a indices. Thus this can be bounded by at most σeqf/(2

b −
a+ 1).

15

Case 3: ∃i, j, a, Yi,j = Va, dira = −, encryption before primitive: Here the adver-

sary has access to dYi,jer, as this value has already been released. Let Φout denote
the number of multicollisions on dYi,jer. Now, we have

Pr[Case 3] =
∑
Φout

Pr[Case 3 ∧ Φout]

=
∑
Φout

Pr[Case 3 | Φout] · Pr[Φout]

≤
∑
Φout

Φout × qb
2c

· Pr[Φout]

≤ qp
2c

∑
Φout

Φout Pr[Φout]

≤ Ex [Φout]
qp
2c

=
qpmcoll(σe, 2

r)

2c
.

Since the three cases are mutually exclusive, we have

Pr[B2] ≤ 2σeqp
2b

+
qpmcoll(σe, 2

r)

2c
.

Bounding Pr[B3|¬B1] : We can have the following cases:
Case 1: ∃i, j, a, Xi,j = Ua, encryption after primitive: This case can be bounded

by probability at most 1/2b, as Yi,j−1 is chosen uniform at random and Le has
full rank. We have at most σe many (i, j) pairs and qp many a indices. Thus this
can be bounded by at most σeqp/2

b.
Case 2: ∃i, j, a, Xi,j = Ua, dira = −, encryption before primitive: This case can

be bounded by probability at most 1/(2b − a + 1). We have at most σe many
(i, j) pairs and qb many a indices. Thus this can be bounded by at most σeqb/(2

b−
a+ 1).
Case 3: ∃i, j, a, Xi,j = Ua, dira = +, encryption before primitive: Let Φin denote

the number of multicollisions on dXi,jer. With a similar analysis on the multi-
collision of output values, we have Pr[Case 3] ≤ Ex [Φin] qb2c . Since the three cases
are mutually exclusive, we have

Pr[B3] ≤ 2σeqp
2b

+
qpmcoll(σe, 2

r)

2c
.

Bounding Pr[B4]: The probability of this event can be bounded in a straight-
forward manner by at most σe(σe − 1)/2b+1.
Bounding Pr[B5]: This event is similar to B4, and the probability is bounded
by at most σe(σe − 1)/2b+1.
Bounding Pr[B6]: Similar to B3, Pr[B6] bounded by at most mcoll(σe, 2

r)qp/2
c.

Bounding Pr[B7]: Let Wk(ω′p) denote the k-length multi-chain for the graph
induced by ωp. Suppose the event holds for the ith decryption query and N∗i =
Ni′ . So, Yi′,pi must be the one of the starting node of the multi-chain. As bYi′,picc
is chosen at random (and independent of ωp), the probability to hold B7 for ith

16

decryption query is at most Wm∗i
/2c given the transcript ωp. So by union bound,

the conditional probability Pr[B7 | ωp] ≤
∑
i∈D

Wm∗
i

2c . Hence,

Pr[B7] ≤
∑
i∈D

µm∗i ,qp
2c

.

Bounding Pr[B8|¬(B2∨B3∨B6∨B7)]: This conditional event corresponds to the
case when the first non-trivial decryption query matches with a primitive query,
and follows a partial chain and then matches with some encryption query block.
The probability that this happens for ith decryption is at most qp/2

c×m∗iΦin/2
c.

Summing over all i ∈ D, the conditional probability is at most
qpσdΦin

22c . By taking
expectation we obtain the following:

Pr[B8] ≤ qpσdmcoll(σe, 2
r)

22c
.

By adding all these probabilities we prove our result. ut

D Extending the Analysis to Transform-then-Permute
AEAD

We now describe Transform-then-Permute, which generalizes duplexing method
used in sponge AEAD. The details of the algorithm is given in Algorithm D.1.
The security of the general construction is almost same as the simplified version.
Here we need to consider more inputs X-values and outputs Y -values while
processing associated data which was not present in the previous analysis. We
define same set of bad events and use the same multi-chain argument. A notable
change is the introduction of DS : N × N →

(
{0, 1}b

)∗
function, which maps

(x, y) ∈ N × N to a sequence of binary strings (δ1, . . . , δx+y) ∈
(
{0, 1}b

)x+y
.

The DS function, in combination with the encode function, acts as the domain
separator.

The DS and encode functions must be such that for any (A,M) 6= (A′,M ′),
(A1 . . . , Aa,M1, . . . ,Mm) is not a prefix of (A′1 . . . , A′a′ ,M ′1, . . . ,M ′m′). We
note that this prefix-free property is required to bound the modified B5. We
need X∗i,pi+1 6= Xi′,pi+1 which can be argued from the prefix-free property of the
combined DS and encode function. Now with simple extensions of the notations
σe and σd to cover all the data blocks, i.e. nonce, associated data and message, in
encryption and decryption, respectively, we get exactly the same security bound
as before. Particularly, we use the crude bound form of theorem 3.1 to get the
following AEAD security bound for Transform-then-Permute with associated data

Advaead
TtP (A) ≤ qp

2κ
+

2qd
2τ

+
5σqp

2b
+
rqp
2c

+
∑
i∈D

µm∗i ,qp
2c

+
rqpσ

22c
. (9)

Decoding the Security Bound: The only variable in the security bound
given in theorem 3.1 or Eq. (9) is the multi-chain term µt,k. In section 4, we

17

Algorithm D.1 A complete Encryption/Decryption Algorithm for Transform-
then-Permute mode with Associated data.

1: function Enc(N,K,A,M)

2: (A1, . . . , Aa)
r← A

3: (M1, . . . ,Mm)
r←M

4: (δ1, . . . , δa+m)← DS(|A|, |M |)
5: Y0 ← Π(N‖K)

6: for i = 1 to a do

7: Ai ← encode(Ai)⊕ δi
8: Xi ← Le(Yi−1)⊕Ai
9: Yi ← Π(Xi)

10: for i = 1 to m− 1 do

11: Ci ←Mi ⊕ dYa+i−1er
12: M i ← encode(Mi)⊕ δa+i
13: Xa+i ← Le(Ya+i−1)⊕M i

14: Ya+i ← Π(Xa+i)

15: Cm ←Mm ⊕ dYa+m−1e|Mm|
16: Mm ← encode(Mm)⊕ δa+m
17: Xa+m ← Le(Ya+m−1)⊕Mm

18: Ya+m ← Π(Xa+m)

19: T ← dYa+meτ
20: return (C1‖ . . . ‖Cm, T)

21: function Ld(Y, i)

22: return Le(Y)⊕ encode(dY ei)

1: function Dec(N,K,A,C, T)

2: (A1, . . . , Aa)
r← A

3: (C1, . . . , Cm)
r← C

4: (δ1, . . . , δa+m)← DS(|A|, |C|)
5: Y0 ← Π(N‖K)

6: for i = 1 to a do

7: Ai ← encode(Ai)⊕ δi
8: Xi ← Le(Yi−1)⊕Ai
9: Yi ← Π(Xi)

10: for i = 1 to m− 1 do

11: Mi ← Ci ⊕ dYa+i−1er
12: Ci ← encode(Ci)⊕ δa+i
13: Xa+i ← Ld(Ya+i−1, r)⊕ Ci
14: Ya+i ← Π(Xa+i)

15: Mm ← Cm ⊕ dYa+m−1e|Cm|
16: Cm ← encode(Cm)⊕ δa+m
17: Xa+m ← Ld(Ya+m−1, |Cm|)⊕Cm
18: Ya+m ← Π(Xa+m)

19: T ′ ← dYa+meτ
20: if T ′ 6= T then

21: return M := ⊥
22: else

23: return M := M1‖ . . . ‖Mm

show that for invertible feedback functions Ld of decryption function the value
is roughly bounded by mcoll(qp, 2

τ) + mcoll(qp, 2
r) + k ·mcoll′(q2p, 2

b). Using this
simple fact, we derive improved bounds for Beetle and SpoC. The feedback func-
tion in duplex is not invertible, so we do not get any improvement in that case.
But, in the following subsection we show that a tight bound on the multi-chain
term will indeed give a tight security bound for duplex.

D.1 Matching Attack on Transform-then-Permute

Now we see some matching attacks for the bound. We explain the attacks for
the simplified version (by considering empty associated data).

18

1. Clearly guessing the key K through primitive query would lead a key-
recovery and hence all other attacks. The correct guess of the key can be
easily detected by making some more queries for each guess to compute an
encryption query. This attack requires qp = O(2κ). Similarly random forging
gives success probability of forging about O(qd/2

τ).

2. Similar attack strategy can be adapted to achieve σeqp/2
b bound. We look

for a collision among X-values and primitive-query inputs. This can be again
detected by adding one or two queries to each guess. The same attack works
with success probability qp/2

c if we make primitive queries after making all
encryption queries.

3. Suppose
∑
i∈D

µt,mi
2c maximizes for some adversary B interacting with Π.

Now, the AE algorithm A will run the algorithm B to get the primitive
transcript ωp. We first make qd many encryption queries with single block
messages with distinct nonces N1, . . . , Nqd and hence for all 1 ≤ i ≤ qd,
dYi,0er and dYi,1eτ values are known.
Suppose for length mi, the multi-chain for the graph induced by ωp start
from the nodes (whose r most significant bits is ui) to the nodes (whose τ
most significant bits is Ti) and with label xi. Now we choose the appropriate
ciphertext C∗i such that Y ∗i,1 = ui. Moreover, we choose C∗i,j such that C∗i,j
is same as xi,j (here we assume that B makes queries so that the labels are
compatible with encoding function).
Now, we make decryption queries (Ni, C

∗
i , Ti). With probability Wmi/2

c, the
ith forgery attempt would be successful. By taking expectation, we achieve
the desired success probability.

E Proof of Theorem 4.1

Fix an invertible linear function L. Now, one can easily draw the following ob-
servations:

Observation 1: If vi
x→ vk and vj

x→ vk then vi = vj .

More Notations: We now describe some more notations related to multi-
chain Wk defined on the interactive transcript of AΠ. Let θ be the transcript
and θ′ be the list containing input-output information (as described above).

Let Wfwd,a denote the size of the set {i : diri = +, dvieτ = a} and maxa Wfwd,a

is denoted as Wfwd. This denotes the maximum multi-collision among τ most
significant bits of forward query responses. Similarly, we define the multi-collision
for backward query responses as follows: Let Wbck,a denote the size of the set
{i : diri = −, dvier = a} and maxa Wbck,a is denoted as Wbck.

In addition to the multicollisions in forward only and backward only queries,
we consider multicollisions due to both forward and backward queries. Let Wmitm,a

denote size of the set {(i, j) : diri = +, dirj = −, vi⊕uj = a} and maxa Wmitm,a

is denoted as Wmitm. Note that Wmitm,a denotes the number of forward and
backward query tuples that meet in the middle for a fixed value a, whence the
notation.

19

Before proving theorem 4.1, we give an intermediate result in lemma E.1 which
in combination with the multicollision result of proposition B.1 gives the proof
of theorem 4.1.

Lemma E.1. For any transcript, we have

Wk ≤Wfwd + Wbck + k ·Wmitm.

Proof. We can divide the set of multi-chains into three sets:
Forward-only chains: Each chain is constructed by Π queries only. By defi-
nition, the size of such multi-chain is at most Wfwd.
Backward-only chains: Each chain is constructed by Π− queries only. By
definition, the size of such multi-chain is at most Wbck.
Forward-backward chains: The multi-chain consists of at least one chain that
uses both Π and Π− queries. Let us denote the size of such multi-chain by
Wfwd-bck
k .

Then, we must have

Wk ≤Wfwd + Wbck + Wfwd-bck
k .

Now, we claim that Wfwd-bck
k ≤ k · Wmitm. Suppose Wfwd-bck

k = n. Then, it is
sufficient to show that there exist an index j ∈ [k], such that the size of the
set {i : (dirij−1, dirij) ∈ {(+,−), (−,+)}, vij−1 ⊕ uij = xj} ≥ dn/ke. This can be
easily argued by pigeonhole principle, given Observation 1. The argument works
as follows:

For each of the individual chain Wi, we have at least one index j ∈ [k] such
that (dirij−1, dirij) ∈ {(+,−), (−,+)}. We put the i-th chain in a bucket labeled

j, if (dirij−1, dirij) ∈ {(+,−), (−,+)}. Note that, it is possible that the i-th chain
can co-exist in multiple buckets. But more importantly, it will exist in at least
one bucket. As there are k many buckets and n many chains, by pigeonhole
principle, we must have one bucket j ∈ [k], such that it holds at least dn/ke
many chain indices. ut

Observe that Wfwd and Wbck are the random variables corresponding to the
maximum multicollision in a truncated random permutation sample of size t,
i.e., distribution 1 of sub section B.1. Further, Wmitm is the random variable
corresponding to the maximum multicollision in a sum of random permutation
sample of size t, i.e., distribution 2 of sub section B.1. Now, using linearity of
expectation, we have

µt,k ≤ Ex
[
Wfwd

]
+ Ex

[
Wbck

]
+ k · Ex

[
Wmitm

]
≤ mcoll(t, 2τ) + mcoll(t, 2r) + k ·mcoll′(t2, 2b).

20

	Security Proof of Beetle and SpoC

