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Abstract. Permutation-based modes have been established for lightweight authen-
ticated encryption (AE). While encryption can be performed in an on-line manner,
authenticated decryption assumes that the resulting plaintext is buffered and never
released if the corresponding tag is incorrect. Since lightweight devices may lack
resources, additional robustness guarantees, such as integrity under release of un-
verified plaintexts (Int-RUP), are desirable. The Int-RUP security of previous
permutation-based AE schemes is limited by O(qpqd/2c), where qd and qp are the
limits for decryption and primitive queries, respectively, which motivates novel ap-
proaches.
Oribatida is a permutation-based duplex-like AE scheme that derives s-bit masks
from previous permutation outputs to mask ciphertext blocks. As a result, Oribatida

can provide an AE security of O(rσ2/2c+s), which allows smaller permutations and
can therefore save area for the same level of security. In the Int-RUP setting, it
provides a security level dominated by O(σ2

d/2c), which eliminates the dependency
on primitive queries. We show that our Int-RUP bound for Oribatida is tight and
show general attacks on previous constructions.
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1 Introduction

Permutation-based Modes, such as the Sponge [9] or duplex [8] modes, transform an
internal n-bit state iteratively with a public permutation. In both modes, an n-bit permu-
tation absorbs the data in r-bit chunks, where r < n is called the rate. The hidden inner
state of c = n−r bits is called the capacity; where r and c represent the trade-off between
performance and security. Keyed Sponge Modes [9] can be categorized into inner-keyed,
outer-keyed, and full-keyed variants, cf. [21]. Recently, Dobraunig and Mennink added
the suffix-keyed sponge [17].

Numerous Works have studied the security of the sponge and duplex in the past. The
resources of a distinguisher A are usually quantified by qe encryption queries, qv verifica-
tion queries, qp construction queries, and σ blocks over all construction queries. Bertoni
et al. [7] showed that the sponge is indifferentiable from a random oracle [20] for up to
O(2c/2) calls to the permutation. [10] improved the bounds for the unkeyed sponge to
O(

qpσ
2c + qc

2k ) if σ ≪ 2c/2.
Permutation-based modes for AE started with the Duplex construction and SpongeWrap
[8], as well as with MonkeyDuplex [11]. For SpongeWrap, Bertoni et al. [8] had shown a



privacy bound of O( q
2k + σ2

2c ) and an authenticity bound of O( q
2k + σ2

2c + q
2τ ). Jovanovic et al.

[19] considered general integrity bounds, showing asymptotic security of O(max(σ2

2n , σ
2c ,

q
2k )). Though, their result limited the number of decryption queries to σ ≪ 2c/2. For more

decryption queries, their bound reduced to O(max(σ2

2c , q
2k )). Many further works studied

the security of permutation-based schemes over time, e.g., [4, 15, 18, 22, 23]. Mennink [21]
summarized many previous works by showing that keyed sponges achieve PRF security

of about O(
q2

c +qcqp

2c ) + Advkp

Π , where the latter term is the key-prediction security, that
is, e.g., in O(

qp

2k ) for full-keyed sponges if k < n. Improvements to those general bounds
appear unlikely, which has motivated the search for novel construction approaches. For
instance, the duplex-based scheme Beetle [12] added a transform to the output so that the
input block that is added to the rate part and the block added to the ciphertext output

block differed; Beetle offered a bound of O(
rqp+rσ

2c +
qv+qp

2r +
σ2+q2

p

2n ).

While Sponges and Duplex-based AE Schemes encrypt in an on-line fashion, authen-
ticated decryption usually demands the entire plaintext to be buffered until the tag has
been verified successfully. Though, such a behavior can exceed the available memory and
induce unacceptable latency. Andreeva et al. [3] introduced security notions when un-
verified plaintext (RUP) material is released. While it is hard to impossible for on-line
schemes to protect the privacy when unverified plaintexts are released, they can ensure
integrity (Int-RUP), which is a valuable level of robustness.
While Beetle improved the security for nonce-based AE, there exists an attack with advan-
tage O(

qpqv

2c ) in the Int-RUP setting, as we will describe. The question arises whether
higher Int-RUP security is achievable. This is motivated by practical relevance: in
resource-constrained environments, buffering long decryption results may be infeasible
and Int-RUP security advantageous. The ongoing NIST lightweight competition [24] re-
quests 112-bit integrity security for AE schemes and support of at least 250− 1 encrypted
bytes of data. So, the known bounds seem to imply permutations over ≥ 224 bits plus a
plausible rate. Higher Int-RUP security could therefore lead to smaller permutations.

Contributions. This work contains two main contributions. First, it answers the research
question above in the affirmative by showing that Oribatida achieves a security bound of
O(

qp

2k + qd

2τ +
qpσ
2c+s ). From the NIST requirements, c + s ≥ 192 should hold. Moreover, we

prove that the Int-RUP advantage is upper bounded by O(q2
d/2c), which depends only

on the number of on-line queries, which contrasts the bound O(qdqp/2c) that holds for
the generic duplex and previous constructions. While the difference may appear small,
eliminating the dependency of off-line (i.e., primitive) queries by the adversary is a valuable
gain. Second, we show attacks on previous permutation-based AE schemes, as well as a
matching attack that shows that the Int-RUP bound of Oribatida is tight and also applies
to other masked duplex-based designs.

Outline. After a brief recall of the necessary preliminaries, Section 3 briefly recaps Ori-

batida. We analyze the security on Oribatida for the standard nonce-based AE setting in
Section 4 and in the Int-RUP setting in Section 5. Section 6 describes an Int-RUP

attack on unmasked schemes for the Duplex, and an Int-RUP attack on Oribatida that
matches our bound. The appendix provides various further Int-RUP attacks.

2 Preliminaries

General Notations. Uppercase letters (e.g., X , Y ) denote functions and variables, lower-
case letters (e.g., x, y) indices and lengths, and calligraphic uppercase letters (e.g., X ,Y)
sets and spaces. F2 denotes the field of characteristic 2 and F

n
2 vectors over F2. |X |
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Figure 1: Schematic illustration of the authentication of an a-block associated data A and the
encryption of an m-block plaintext M with Oribatida, for m > 1. P and P ′ are permutations, K
the secret key, N the nonce, C the resulting ciphertext, and T the resulting authentication tag.

denotes the number of bits of X . Given X ∈ F
n
2 , X [i] is the i-th (least significant) bit

of X , and the bit order is X = (X [n − 1] ‖ . . . ‖X [1] ‖X [0]); ε means the empty string.
We denote by X [x..y] the range of X [x], . . . , X [y] for non-zero integers x and y. Given
binary strings X and Y , we denote their concatenation by X ‖ Y and their bitwise XOR
by X⊕Y when |X | = |Y |. For positive integers x and y and bit strings of different lengths
X ∈ F

x
2 and Y ∈ F

y
2 with x ≥ y, we define X ⊕y Y =def X ⊕ (0x−y ‖ Y ).

We write X և X for X being chosen uniformly at random and independent from other
variables from a set X . We consider Func(X ,Y) to be the set of all mappings F : X → Y,
and Perm(X ) to be the set of all permutations over X . We denote the invalid symbol by

⊥. Moreover, we denote by (n)k =def
∏k−1

i=0 (n− i) the falling factorial.

For X ∈ F
∗
2, (X1, X2, . . . , Xx)

n
←− X denotes the splitting of X into n-bit strings X1, . . . ,

Xx−1, and |Xx| ≤ n, in form of X1 ‖ . . . ‖Xx = X . Moreover, for Y ∈ Fx, we write

(X1, X2, . . . , Xm)
x1,x2,...,xm
←−−−−−−− Y to denote the splitting of Y into X1 = Y [x − 1..x − x1],

X2 = Y [x − x1 − 1..x− x1 − x2], . . . , Xm = Y [xm − 1..0], where x = x1 + x2 + . . . + xm.
For a set X and non-negative integer x, X≤x denotes the union set ∪x

i=0X
i. Given a non-

negative integer x < 2n, 〈x〉n denotes its conversion into an n-bit binary string with the
most significant bit left, e.g., 〈135〉8 = (10000111). We omit n if clear from the context.

Definitions of Nonce-based Authenticated Encryption. For the sake of space limita-
tions, the definitions and notions for nonce-based authenticated encryption (nAE), in-
tegrity under release of unverified plaintexts (Int-RUP), and the H-coefficient technique
that will be employed in our security analysis are in Appendix A. Our analyses consider
information-theoretic distinguishers A and idealized primitives, where A’s resources are
bounded only by the maximal numbers of queries and blocks they can ask to their avail-
able oracles. One can derive the computation-theoretic counterparts easily by adding a
parameter of the distinguishers’ maximal computational resources.
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3 Brief Specification of Oribatida

Let P, P ′ ∈ Perm(Fn
2 ) be permutations over F

n
2 . In Oribatida, P ′ will only be used to

process non-final associated-data blocks since no output will be released for them; P will
be used at all other locations where a call to a primitive is needed. Thus, good differential
bounds for P ′ are sufficient in practice, whereas P should be indistinguishable from a
random permutation.

General Definitions. Let n denote the state size, k the key size, r the rate, c the capacity,
s the mask size, ν the nonce size, d a domain size, and τ a tag size in bits, all of which
are non-negative integers. We define:

• The key space K = F
k
2 , with k ≤ n.

• We denote by r the rate and by c the capacity of the Oribatida mode, where r+c = n
bits.

• The nonce space N = F
ν
2 , with ν ≤ r. Oribatida requires ν + k = n.

• A finite set of domains F
d
2 for d = 4 bits.

• The associated-data space A = F
≤amax

2 .

• Message and ciphertext spacesM = C = F
≤mmax

2 .

• Moreover, we define the space of authentication tags T = F
τ
2 with τ ≤ r.

We define s ≤ c for the mask size in bits. We denote the state after the i-th call to the
permutations by Si = (Ui ‖Vi), and the state after XORing the subsequent associated-
data block Ai or message block Mi−a to it by (Xi ‖ Yi), where a denotes the number of
associated-data blocks after padding. We say that A is integral if its length is a multiple
of r bits, and say that it is partial otherwise. Similarly, we say that M (or C) is integral
if its length is a multiple of r bits, and call it partial otherwise.

The Core Idea. Oribatida is a variant of the monkey-wrap design [11], as used before, e.g.,
in Ascon [16] or NORX [5]. Oribatida extends previous designs by a ciphertext-block mask-
ing that increases the resilience against release of unverified plaintext material. Unlike
the usual sponge, an s-bit part of the capacity is used to mask the subsequent ciphertext
block. The definition is given in Algorithm 1. In the following, explanations and details
are presented.

Domain Separation. For the purpose of domain separation, Oribatida defines a set of
domain constants dN , dA and dE . Note that d = 4 bits suffice in practice. The domains
are XORed with the least significant byte of the state at three stages. Domains are
encoded as bit strings, e.g., 〈12〉d = (1100)2. The value depends on the presence of A and
M and whether their final blocks are absent, partial, or integral. This ensures that there
exist no trivial collisions of inputs to P among blocks of A and M .
The constants are determined by the four control bits (t3, t2, t1, t0) that reflect inputs in
the hardware API, similar to, e.g., [12]. The rationale behind them is the following:

• EOI: t3 is the end-of-input control bit. This bit is set to 1 iff the current data
block is the final block of the input. For all other cases, t3 is set to 0.

• EOT: t2 is the end-of-type control bit. This bit is set to 1 iff the current data block
is the final block of the same type, i.e., it is the last block of the message/associated
data. Note that, if the associated data is empty, the nonce is treated as the final
block of the associated data. So, t2 is set to 1. For all other cases, t2 is set to 0.
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Algorithm 1 Specification of Oribatida.

101: function EN,A

K
(M)

102: ℓA ← |A|
103: ℓE ← |M|
104: dN ← GetDomainForN(ℓA, ℓE)
105: dA ← GetDomainForA(ℓA, ℓE)
106: dE ← GetDomainForE(ℓE)
107: A← padr(A)
108: M ← padr(M)
109: (S1, Vf )← Init(K, N, dN , ℓA)
110: Sa+1 ← ProcessAD(S1, A, dA)
111: (C, T )← Encrypt(Sa+1, M, Vf , dE, ℓE)
112: return (C, T )

121: function GetDomainForN(ℓA, ℓE)
122: if ℓA = 0 ∧ ℓE = 0 then return 〈9〉n

123: return 〈5〉n

131: function GetDomainForA(ℓA, ℓE)
132: if ℓA = 0 then return 〈4〉n

133: if ℓE > 0 ∧ ℓA mod r = 0 then return 〈4〉n

134: if ℓE > 0 ∧ ℓA mod r 6= 0 then return 〈6〉n

135: if ℓE = 0∧ ℓA mod r = 0 then return 〈12〉n

136: if ℓE = 0∧ ℓA mod r 6= 0 then return 〈14〉n

141: function GetDomainForE(ℓE )
142: if ℓE = 0 then return 〈0〉n

143: if ℓE mod r = 0 then return 〈13〉n

144: if ℓE mod r 6= 0 then return 〈15〉n

151: function padx(X)
152: if |X| mod x = 0 then return X

153: return X ‖ 1 ‖ 0x−(|X| mod x)−1

161: function Init(K, N, dN , ℓA)
162: V0 ← lsbs(N ‖K)
163: S1 ← P ((N ‖K)⊕d dN )
164: V1 ← lsbs(S1)
165: if ℓA = 0 then return (S1, V0)

166: if ℓA 6= 0 then return (S1, V1)

171: function ProcessAD(S1, A, dA)

172: (A1, · · · , Aa)
r
←− A

173: for i = 1..a− 1 do

174: Si+1 ← P ′(Si ⊕ (Ai ‖ 0c))

175: Sa+1 ← P (Sa ⊕ (Aa ‖ 0c)⊕d dA)
176: return Sa+1

181: function lsbx(X)
182: if |X| ≤ x then return X

183: return X[(|X| − x− 1)..0]

191: function msbx(X)
192: if |X| ≤ x then return X

193: return X[(|X| − 1)..(|X| − x)]

201: function DN,A

K
(C, T )

202: ℓA ← |A|
203: ℓE ← |C|
204: dN ← GetDomainForN(ℓA, ℓE)
205: dA ← GetDomainForA(ℓA, ℓE)
206: dE ← GetDomainForE(ℓE)
207: A← padr(A)
208: C ← padr(C)
209: (S1, Vf )← Init(K, N, dN , ℓA)
210: Sa+1 ← ProcessAD(S1, A, dA)
211: (M, T ′)← Decrypt(Sa+1, C, Vf , dE, ℓE)
212: if T = T ′

then return M
213: else return ⊥

221: function Encrypt(Sa+1, M, Vf , dE, ℓE)
222: x← ℓE mod r

223: (M1, · · · , Mm)
r
←− M

224: V ← Vf

225: for i = 1..m do

226: (Ua+i, Va+i)
r,c
←−− Sa+i

227: Xa+i ←Mi ⊕ Ua+i

228: Ci ← Xa+i ⊕s lsbs(V )
229: Ya+i ← Va+i

230: if i = m then

231: Ya+i ← Ya+i ⊕d dE

232: Cm ← msbx(Cm)

233: V ← Va+i

234: Sa+i+1 ← P (Xa+i ‖ Ya+i)

235: C ← (C1 ‖C2 ‖ · · · ‖Cm)
236: T ← msbτ (Sa+m+1)
237: return (C, T )

241: function Decrypt(Sa+1, C, Vf , dE, ℓE)
242: x← ℓE mod r
243: if ℓE = 0 then

244: T ′ ← msbτ (Sa+1)
245: return (ε, T ′)

246: (C1, · · · , Cm)
r
←− C

247: V ← Vf

248: for i = 1..m do

249: (Ua+i, Va+i)
r,c
←−− Sa+i

250: Xa+i ← Ci ⊕s lsbs(V )
251: Ya+i ← Va+i

252: Mi ← Ua+i ⊕Xa+i

253: if i = m then

254: Ya+i ← Ya+i ⊕d dE

255: Mm ← msbx(Mm)

256: V ← Va+i

257: Sa+i+1 ← P (Xa+i ‖ Ya+i)

258: M ← (M1 ‖M2 ‖ · · · ‖Mm)
259: T ′ ← msbτ (Sa+m+1)
260: return (M, T ′)

• Partial: t1 is the partial-control bit. It is set to 1 if the current data block is
partial, i.e. if its size is less than the required block size. For all other data blocks,
t1 is 0.

• Type: t0 is called the type-control bit. It identifies the type of the current data
block. For the nonce and the processing of the final message block, t0 is set to 1.
For all other cases, t0 is set to 0.

While processing a data block, the domain values are set as the integer representation of
t3 ‖ t2 ‖ t1 ‖ t0. For example, if we are processing the nonce (which is always a complete
r-bit block), where the associated data is empty, and the message is not empty, it holds
that dN = (t3t2t1t0) = (0101)2 = 5.
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4 nAE Security Analysis

This section analyzes the nAE security of Oribatida. In the following, let K և K and
π և Perm(Fn

2 ). We use Π[π, π]K = Π[π]K as short form of Oribatida, instantiated with π
for P and for P ′, and keyed by K.
Let A be a nonce-respecting nAE adversary w.r.t. Π[π]K . We denote by qp, qf , qb, qe,
qd, σe, σd the number of primitive queries, forward primitive queries, backward primitive
queries, encryption queries, decryption queries, blocks summed over all encryption queries,
and blocks summed over all decryption queries, respectively. Clearly, it holds that qp =
qf + qb. For simplicity, we define a function ρ as

ρ(i, j)
def
=





0 if j = 1 ∧ ai = 0

1 if j = 1 ∧ ai 6= 0

ai + j − 1 otherwise

So, V i
ρ(i,j) denotes the used block for masking the ciphertext block Ci

j .

Theorem 1 (nAE Security of Oribatida). Let A be a nonce-respecting adversary w.r.t.
Π[π]K . Then, AdvnAE

Π[π]K
(A) is upper bounded by

(
σ
r

)
+ 2
(

qp

r

)

2r(r−1)
+

σ2

2n
+

3qp

2k
+

r(qd + σd) + 2σeqp + qpqc + qd(σe + qp)

2c+s
+

2rqp

2n−τ
+

qd

2τ
.

Proof. We follow the strategy of the nAE proof of Beetle [12]. The queries by A and
their corresponding answers are collected in a transcript τ = (τe, τd, τp). Encryption
construction queries are stored as tuples τe = {(N i, Ai, M i, Ci, T i)}, for 1 ≤ i ≤ qe,
decryption construction queries as tuples τd = {(N i, Ai, M i, Ci, T i)}, for 1 ≤ i ≤ qd, and
primitive queries are stored as tuples τp = {(Qi, Ri)}, where π(Qi) = Ri, for 1 ≤ i ≤ qp.

Sampling. We define the ideal oracle to consist of an on-line and an off-line phase. In
the on-line phase, the ideal oracle samples the responses (Ci, T i) uniformly at random
from the bit strings of expected lengths for encryption queries. For decryption queries, it
always outputs ⊥. For forward primitive queries Qi, it forwards the result of π(Qi) to A;
for backward primitive queries Ri, it forwards the result of π−1(Ri).
In the off-line phase, the ideal oracle samples the internal chaining values V i

j և {0, 1}c

and U i
j և {0, 1}r uniformly at random for all construction queries in encryption direction.

It derives the analogous internal chaining values V i
j , for 1 ≤ j ≤ k for all construction

queries in decryption direction (N i, Ai, Ci, T i) that share N i = N i′

and Ai = Ai′

, and
for which Ci

1 = Ci′

1 , . . . , Ci
k = Ci′

k holds for some i′-th construction query, where i 6= i′.
Moreover, for construction queries whose plaintext or ciphertext length is not a multiple of
r bits, the oracle samples exactly the missing bits Ci

m uniformly independently at random
that are not fixed from previous queries, at most at most r − |Ci

mi | bits at a time. The
so-sampled values for the final blocks Ci

mi are stored also in the transcript. Moreover, the
random key K is revealed to the adversary at the end of the off-line phase.

Bad Events. We define the following bad events. If any of them occurs, the adversary
aborts, and we define that it wins in this case.

• bad1: Multi-collision on the rate part X in encryption construction queries. For some
w ≥ r, there exist indices (i1, j1), (i2, j2), . . . , (iw, jw) with i1, i2, . . ., iw ∈ [1..qe],
and j1 ∈ [1..ai1 ], j2 ∈ [1..ai2 ], etc., s. t. X i1

j1
= X i2

j2
= . . . = X iw

jw
.

• bad2: Collision of two permutation inputs in encryption construction queries. There
exist indices (i, j) 6= (i′, j′) with i, i′ ∈ [1..qe], j ∈ [1..mi], and j′ ∈ [1..mi′

] s. t.(
X i

j ‖ Y i
j

)
=
(

X i′

j′ ‖ Y i′

j′

)
.
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• bad3: Collision of two permutation outputs in encryption construction queries. There
exist indices (i, j) 6= (i′, j′) with i, i′ ∈ [1..qe], j ∈ [1..mi], and j′ ∈ [1..mi′

] s. t.(
U i

j ‖V i
j

)
=
(

U i′

j′ ‖V i′

j′

)
.

• bad4: Collision of permutation inputs between a construction and a primitive query.
There exist indices (i, j, i′) with i ∈ [1..qe], j ∈ [1..mi], and i′ ∈ [1..qp] s. t.(
X i

j ‖ Y i
j

)
= Qi′

.

• bad5: Collision of permutation outputs between a construction and a primitive
query. There exist indices (i, j, i′) with i ∈ [1..qe], j ∈ [1..mi], and i′ ∈ [1..qp]

s. t.
(
U i

j ‖V i
j

)
= Ri′

.

• bad6: Initial-state collision with a primitive query. There exist indices (i, i′) with
i ∈ [1..qe] and i′ ∈ [1..qp] s. t.

(
X i

0 ‖ Y i
0

)
= Qi′

.

• bad7: Multi-collision in the rate part of w outputs of forward primitive queries. So,
for some w ≥ r, there exist i1, i2, . . ., iw ∈ [1..qp] s. t. msbr(Ri1 ) = msbr(Ri2 ) =
· · · = msbr(Riw ).

• bad8: Multi-collision in the rate part of w outputs of backward primitive queries.
So, for some w ≥ r, there exist i1, i2, . . ., iw ∈ [1..qp] s. t. msbr(Qi1 ) = msbr(Qi2 ) =
· · · = msbr(Qiw ).

We define that the adversary is provided with all internal chaining values V i
j and U i

j after
its interaction, but before it outputs its decision bit. Clearly, this fact only strengthens
the adversary.
We define the set of bad transcripts BadT, to contain exactly those attainable transcripts
τ for which at least one of the bad events occurred. All other attainable transcripts are
in GoodT. It holds that Pr[Θideal ∈ BadT] ≤

∑8
i=1 Pr[badi]. The probability of bad

transcripts in the ideal world is then treated in the proof of Lemma 1. The ratio of
obtaining a good transcript is bounded in Lemma 2. Our bound in Theorem 1 follows
then from them and the application of Lemma 5. We apply w = r in the bounds of
Lemma 1 and 2 to obtain our bound from Theorem 1.

Lemma 1. Let w ≥ r be a positive integer. It holds that

Pr[Θideal ∈ BadT] ≤

(
σ
w

)
+ 2
(

qp

w

)

2r(w−1)
+

σ2

2n
+

3qp

2k
+

2σeqp + qpqc

2c+s
+

2w · qp

2n−τ
.

Lemma 2. Let τ ∈ GoodT. Then

Pr[Θreal = τ ]

Pr[Θideal = τ ]
≤ 1−

(
qd

2τ
+

qd(qp + σe)

2c+s
+

(σd + qd) · w

2c+s

)
.

The proofs of both Lemma 1 and 2 are deferred to Appendix D.

5 Int-RUP Analysis

This section provides our Int-RUP result for Oribatida. We employ the same notations
as in the nAE analysis in Section 4, but add several notations. We denote by qd and
σd the number of decryption queries and blocks over all decryption queries, respectively,
and by qv and σv the analogues for verification queries. Again, we replace π և Perm(Fn

2 ),
assume K և K, and denote Π[π]K for Oribatida, instantiated with π and K.
We recall the notion of a longest common prefix from Bellare et al. [6]. Let Q =
(N, A, M, C, T ) denote a query of A, including the oracle response. Let Q denote a set of
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such queries without Q, i.e., Q 6∈ Q. We define the length of the longest common prefix
of M and another message M ′ as LCP(M, M ′) =def maxi{1 ≤ j ≤ i : Mj = M ′

j}. Given
Q and M , we overload the notation by considering the longest common prefix of M with
the queries in Q′ = (N ′, A′, M ′, C′, T ′) ∈ Q: LCP(M,Q) =def maxM ′∈Q {LCP(M, M ′)}.
Moreover, we define the notion

LCPN,A(M,Q)
def
= max

(N′,A′,M′,C′,T ′)∈Q

N′=N∧A′=A

{LCP(M, M ′)} .

Theorem 2 (Int-RUP Security of Oribatida). Let A be a nonce-respecting adversary
w.r.t. Π[π]K . Then

AdvInt-RUP

Π[π]K
(A) ≤

σ2
e

2n
+

4σeσd + 4σqp + qcqp + qp + r(σd + qd)

2c+s
+

q2
d +

(
qd+qv

2

)

2c
+

(
qe

r

)

2τ(r−1)
+

3rqp

2n−τ
+

3qp

2k
+

2
(

qp

r

)

2r(r−1)
+

2qv

2τ
.

Proof. The Int-RUP analysis of Oribatida follows a similar proof strategy as our nAE

analysis. However, this time, the adversary has access to three oracles for encryption,
decryption and verification. Moreover, the encryption and decryption oracles are the
same in both the real and the ideal world. Both worlds differ only in the verification
oracle. To alleviate the task, we replace the oracles for encryption and decryption Ẽ [π]K ,

D̃[π]K with a pair of consistent pseudo-random oracles $
Ẽ
[π] and $

D̃
[π] (we define our

intent of consistency for encryption and decryption in a moment). The advantage between
both settings can be bounded by

∆
A1

(
Ẽ [π]K , D̃[π]K , Ṽ[π]K , π±; $

Ẽ
, $
D̃

,⊥, π±
)

.

Note that the oracles $
Ẽ

and $
D̃

differ from the independent random oracles in the stronger
RUPAE notion. In the RUPAE notion, they sample independently without considering
common prefixes between queries, which would be impossible to achieve for on-line AE.
Again, we employ the H-coefficient technique. We define several bad events and bad as
well good transcripts. If any of the bad events occurs, the adversary aborts, and we say,
it wins in this case. Next, we consider the probability of forgeries under those idealized
oracles. So, we can exclude the previous bad events and study the probability of forgeries.
Finally, we study the ratio of interpolation probabilities for good transcripts as usual.

Sampling Consistently in the On-line Phase. The on-line phase contains much from
the off-line phase from the nAE analysis. We define the ideal encryption oracle as in the
nAE proof: it samples the responses (Ci, T i) uniformly at random from the bit strings
of expected lengths for encryption queries. The ideal decryption oracle, however, must
sample plaintext outputs consistently. For this purpose, the ideal encryption oracle has
to sample also the internal chaining values V i

j և {0, 1}c and U i
j և {0, 1}r uniformly at

random for all construction queries already in the on-line phase. It stores the values of
Ci

j , V i
j , and U i

j also internally, but does not release U i
j and V i

j in this phase.

On each input (N i, Ai, Ci, T i), the ideal decryption oracle looks up the length of the

longest common prefix of the query p ← LCPNi,Ai

(Ci,Q) with all previous queries Q.
For all blocks in the common prefix 1 ≤ j ≤ p, it uses the same outputs M i

j that have

been fixed from previous queries. Since the oracle has sampled V i
p+1 for the (p + 1)-th

block, it can deduce all bits that are not fixed from previous query outputs. Assume,

i 6= i′, (N i, Ai) = (N i′

, Ai′

), and p = LCPNi,Ai

(Ci, Ci′

) where p < mi, mi′

. Then,
Ci

p+1 = Ci
p+1⊕∆ is the block directly after the common prefix. Sampling V i

j and deriving

8



U i
j ensures consistent sampling. This means that M i

p+1 = M i′

p+1 ⊕∆ holds, for all such
queries that share a common prefix.
From the (p+2)-th block, the ideal decryption oracle samples the responses M i

j և {0, 1}r,

V i
j և {0, 1}c, and U i

j և {0, 1}r uniformly and independently at random from the bit

strings of expected lengths, for p + 2 ≤ j ≤ ai + mi. Queries whose ciphertext lengths
are not multiples of r bits are answered consistently since the oracle samples V i

j , and
all bits that are fixed from previous queries are used. For verification queries, the ideal
verification oracle always outputs ⊥. For forward primitive queries Qi, the ideal oracle
forwards the result of π(Qi); for backward primitive queries Ri, it returns π−1(Ri).

Off-line phase. Here, the ideal oracle releases the internal chaining values (U i
j , V i

j ), after
the considered adversary made all queries, but before outputting the decision bit. The
ideal oracle also reveals a random key K և K then.

Bad Events. We define trivial collisions of chaining values to be collisions in the longest
common prefix. All other collisions are non-trivial collisions. Whenever we consider a non-
trivial collision between blocks or chaining values at block indices j, j′ of two messages,
we assume that at least one of them exceeds the longest common prefix.

• bad1: Non-trivial collision of two permutation inputs in construction queries. There
exist indices (i, j) 6= (i′, j′) with i, i′ ∈ [1..qc], j ∈ [1..mi], and j′ ∈ [1..mi′

] s. t.(
X i

j ‖ Y i
j

)
=
(

X i′

j′ ‖ Y i′

j′

)
.

• bad2: Non-trivial collision of two permutation outputs in construction queries. There
exist indices (i, j) 6= (i′, j′) with i, i′ ∈ [1..qc], j ∈ [1..mi], and j′ ∈ [1..mi′

] s. t.(
U i

j ‖V i
j

)
=
(

U i′

j′ ‖V i′

j′

)
.

• bad3: Multi-collision between w tags. For some w ≥ r, there exist indices i1, i2, . . . ,
iw with i1, i2, . . ., iw ∈ [1..qe], s. t. T i1 = T i2 = . . . = T iw .

• bad4: Non-trivial collision of permutation inputs between a construction and a prim-
itive query. There exist indices (i, j, i′) with i ∈ [1..qc], j ∈ [1..mi], and i′ ∈ [1..qp]

s. t.
(
X i

j ‖ Y i
j

)
= Qi′

.

• bad5: Non-trivial collision of permutation outputs between a construction and a
primitive query. There exist indices i ∈ [1..qc], j ∈ [1..ai + mi], and i′ ∈ [1..qp] s. t.(
U i

j ‖V i
j

)
= Ri′

.

• bad6: Initial-state collision with a primitive query. There exist indices i ∈ [1..qc]
and i′ ∈ [1..qp] s. t.

(
X i

0 ‖ Y i
0

)
= Qi′

.

• bad7: Multi-collision in the rate part of w outputs of forward primitive queries. So,
for some w ≥ r, there exist i1, i2, . . ., iw ∈ [1..qp] s. t. msbr

(
Ri1
)

= msbr

(
Ri2
)

=

· · · = msbr

(
Riw

)
.

• bad8: Multi-collision in the rate part of w outputs of backward primitive queries. So,
for some w ≥ r, there exist i1, i2, . . ., iw ∈ [1..qp] s. t. msbr

(
Qi1
)

= msbr

(
Qi2
)

=

· · · = msbr

(
Qiw

)
.

• bad9: Forgery in decryption queries if all blocks are old: There exists an index
i ∈ [1..qd] s. t. for all blocks 0 ≤ j ≤ ai +mi, there exist indices i′, j′ with i′ ∈ [1..qc],
j′ ∈ [1..mi′

] or i′ ∈ [1..qp] s. t. (X i
j ‖ Y i

j ) = (X i′

j′ ‖ Y i′

j′ ) or (X i
j ‖ Y i

j ) = Qi′

and the

provided tag is valid: msbτ

(
π
(
X i

ai+mi ‖ Y i
ai+mi

))
= T i

9



We define the set of bad transcripts BadT, to contain exactly those attainable transcripts
τ for which at least one of the bad events occurred. All other attainable transcripts are
in GoodT. It holds that Pr[Θideal ∈ BadT] ≤

∑8
i=1 Pr[badi].

The probability of bad transcripts in the ideal world is then treated in the proof of
Lemma 3. The ratio of obtaining a good transcript is bounded in Lemma 4. Our bound
in Theorem 1 follows then from them and the application of Lemma 5. We apply w = r
in the bound of Lemma 3.

Lemma 3. Let w ≥ r be a positive integer. It holds that

Pr[Θideal ∈ BadT] ≤
σ2

e

2n
+

3σeσd + 3σqp + qcqp + qp + w(σd + qd)

2c+s
+

q2
d +

(
qd+qv

2

)

2c
+

(
qe

w

)

2τ(w−1)
+

3wqp

2n−τ
+

3qp

2k
+

2
(

qp

w

)

2r(w − 1)
+

qv

2τ
.

Lemma 4. Let τ ∈ GoodT. Then

Pr[Θreal = τ ]

Pr[Θideal = τ ]
≤ 1−

(
qd

2τ
+

σd(σe + qp)

2c+s

)
.

The proofs of Lemma 3 and 4 are given in Appendix E.

6 Int-RUP Attacks on Existing AE Schemes

This section outlines an Int-RUP attack on the (unmasked) duplex mode. We provide
further attacks on Beetle, SPoC, and a hybrid of both Beetle and SPoC (that have genuine
properties that are general enough to use them as specific examples) in Appendix 6. For
each construction, we briefly recall the necessary parts of their definition. As summarized
in Table 1, the proposed attacks possess an advantage of O(

qpqd

2c ) on the previous construc-
tions. Thus, the improved bounds of Beetle or SPoC do not carry over to the Int-RUP

setting. For all attacks, we consider π և Perm(B) and K և K and a nonce-respecting A.
The core idea of all attacks is as follows: A asks qd decryption queries s. t. some pre-
determined r bits (e.g., the first r bits) of the input to one of the permutations of the
construction are fixed and known (say X). The remaining n− r = c bits may vary. Next,
A asks qp primitive queries Q1, . . . , Qqp with the first r bits fixed to X , but with pairwise
distinct c bits, and receives R1, . . . , Rqp . When qd · qp ≈ O(2c), A can expect a state
collision between an on-line input to the permutation and an (off-line) permutation query.
This collision can be detected from the first r bits of the outputs of the corresponding
construction queries, which will match the colliding inputs. Once A knows the full state
at the input to the permutation of the construction, it can revert the permutation calls
in the construction and finally recover the key.

The Int-RUP Attack on the Duplex Mode. In the following, we briefly adapt this strat-
egy for the duplex mode. Consider the common duplex mode [8]. A asks qd decryption
queries (N, A1, C), (N, A2, C), . . . , (N, Aqd , C), and receives M1, M2, . . ., M qd . The
associated data Ai consist of a single block, the ciphertexts C = (C1, C2) are fixed to
the same two blocks for each query. Now, A can follow the generic idea to complete the
attack. The attack complexity is qdqp ≈ O(2c).
In general, unmasked sponge-based AE schemes allow Int-RUP attacks whose advantage
can depend linearly on the number of off-line primitive queries. Appendix C provides
further attacks on strengthened versions of the schemes to show that they can be similarly
strengthened by a ciphertext masking.
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Table 1: Comparison of the security bounds for Int-RUP attacks.

Bound

Scheme Unmasked Masked

Generic Duplex [8] O(qdqp/2c) O(q2
d/2c)

Beetle [12] O(qdqp/2c) O(q2
d/2c)

SPoC [1] O(qdqp/2c) O(q2
d/2r)

Oribatida [This work] – O(q2
d/2c)

The Int-RUP Attack on Oribatida. For Oribatida as well as for masked variants of Beetle

or SPoC, the attack above does not apply directly. Though, there still exists an attack on
each of the three modes with an advantage of O(q2

d/2c). Here, we consider the application
to Oribatida that shows that our Int-RUP bound of O(q2

d/2c) is tight:

1. A asks qd decryption queries (N i, Ai, Ci, T i), where N i and Ci is static for all queries.
We assume that the associated data Ai are pairwise distinct and consist of a single
block for all queries. A obtains M i from the encryption oracle, for 1 ≤ i ≤ qd. Note
that the rate part X i

2 ← Ci
1 ⊕s lsbs(V i

1 ) is constant for all queries.

2. For qd ≈ O(2c/2), A can expect a collision in the capacity part of the input: V i
2 ← V j

2

for some distinct i 6= j, i, j ∈ [1..qd]. Then, this collision leads to a full-state collision
that can be detected when M i

1 = M j
1 .

3. A asks the encryption oracle with (N, Ai, M i) for (Ci, T ) for some tag T .

4. (N, Aj , Ci, T ) is a valid forgery and yields M j.

The attack is successful w.h.p. for q2
d ≈ O(2c).

7 Version Notes and Effective Future Tweaks

Version Notes. Initially, this submission targeted a slightly modified variant of Orib-

atida, where we adapted the domains for the sake of consistency, and decided to always
use at least one block of associated data. After this work was under submission, the NIST
announced the criteria for second-round candidates of the lightweight-competition stan-
dardization process. Since design tweaks were prohibited for the second round, we revised
our analysis to our second-round candidate Oribatida v1.2 that has no tweaks compared
to our first-round submission, as requested by the NIST.
While this work was under submission, Rohit and Sarkar pointed out an attack against
Oribatida-192 with complexity O(296) on the NIST lightweight mailing list. According to
their observation, an adversary could guess the 96-bit hidden part (the capacity) that is
not returned with the tag, and compute backwards until the initial state to find the correct
secret key. We acknowledge their observation; we note that the security of Oribatida-256
was unaffected by the observation since the capacity matches the key length. We found
that we already addressed this event in bad4 and bad5 in our analysis, and also bounded
its probability correctly in our Int-RUP analysis. Though, we revised the denominator
in the probabilities of bad4 and bad5 of our nAE analysis. We addressed their observation
in this revised submission by updating the bound for those bad events in the nAE analysis
and updated the security guarantees.

Possible Future Tweaks. We propose two simple future tweaks that can easily increase
the key-recovery security of Oribatida-192 back to 128 − log2(r) ≈ 121 bits. The first
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Figure 2: A possible tweak to increase the security of our secondary variant Oribatida-192.

approach would be to restrict the tag length of Oribatida-192 to 64 bits, which would
increase the capacity at the end to 128 bits. A more generic approach would be to
mask the final authentication tag. This could be realized by using the secret key as
mask, as has been employed already, e.g., for PRIMATEs [2]. Though, it is preferable
to use the previous capacity Va+m as mask, as is done also for the ciphertext blocks:
T ← msbτ (P (Xa+m ‖ Ya+m)) ⊕s msbs(Va+m), assuming s ≤ τ and that Ya+m is the
capacity after the domain has been XORed to it. This method is illustrated in Figure 2.
It not only spares the need of buffering the input key until the end, but also unifies the
masking for ciphertext and tag, which is helpful for hardware implementations. Both
approaches would thwart any attack effectively in the sense that the current term of
rqp/2n−τ would become rqp/2n−τ+s in the analysis of bad4 and bad5, assuming s ≤ τ .
In this document, as well as for the second round of the NIST lightweight competition, we
followed the NIST submission guidelines and avoided tweaks. Thus, we suggest masking
the tag as simple but effective tweak for a potential third-round submission.
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A Notions and Definitions for AE and Int-RUP

Definitions of Nonce-based Authenticated Encryption. Let K be a set of keys, N be
a set of nonces, A a set of associated data, M a set of messages, C a set of ciphertexts,
and T a set of authentication tags. A nonce N ∈ N is an input that must be unique
for each authenticated encryption query. A nonce-based authenticated encryption scheme
(with associated data) Π = (E ,D) is a tuple of deterministic encryption algorithm E :
K × N × A ×M → C × T and deterministic decryption algorithm D : K × N × A ×
C × T → M × {⊥} with associated key space K. The encryption algorithm E takes a
tuple (K, N, A, M) and outputs (C, T ), where C is a ciphertext and T an authentication
tag. We assume that |C| = |M | holds for all inputs (K, N, A, M) and their corresponding
ciphertexts. The associated data is authenticated, but not encrypted. The decryption
function D takes a tuple (K, N, A, C, T ) and outputs either the unique plaintext M for
which EK(N, A, M) = (C, T ) holds, or outputs ⊥ if the input is invalid. We introduce

EN,A
K (M) as short form of EK(N, A, M) and DN,A

K (C, T ) for DK(N, A, C, T ), respectively.

Standard Notions. The ideal AE scheme provides two oracles $ : N ×A×M→ C × T
and ⊥ : N ×A× C × T →M× {⊥} for encryption and verification. We overload the ⊥
notation to mean the oracle and the symbol of invalid decryption. Given a tuple (N, A, M),
the ideal encryption oracle outputs ciphertext-tag tuples (C, T ) that are random bits of

the expected length, i.e., computes (C′, T ′) = EN,A
K (M) and samples C և {0, 1}|C

′| and
T և {0, 1}τ . The ideal decryption oracle ensures that, given an input (N, A, C, T ) where
(C, T ) had been the output to a previous encryption query (N, A, M), the decryption
oracle outputs the corresponding message M . Otherwise, the decryption always returns
the invalid symbol ⊥ for every new decryption query that had not been the answer of an
earlier encryption query.

The Ideal-permutation Model is useful to study schemes based on public permutations.
Therein, the adversary has an additional oracle π± that provides access to the public
permutation π ∈ Perm(B) for B = F

n
2 in for- and backward direction. We write Π[π], E [π],

D[π], etc. to denote that an AE scheme Π and its algorithms are based on π.
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Definition 1 (nAE Security). Let K և K, π և Perm(B), and let Π[π] = (E [π]K ,D[π]K)

be a nonce-based AE scheme. Let A be a nonce-respecting adversary. Then, AdvnAE

Π[π](A)
def
=

∆A (E [π]K ,D[π]K , π±; $,⊥, π±).

Notions under Release of Unverified Plaintext Material. In the RUP model, the ad-
versary can always see the resulting plaintext from a decryption query. To formulate
the forgery goal, the oracles are adapted. A verification oracle outputs 1 iff the input
is valid, and 0 otherwise. A nonce-based RUP AE scheme Π̃ = (ẼK , D̃K , ṼK) is a three

tuple of encryption algorithm Ẽ : K × N × A × M → C × T , decryption algorithm
D̃ : K×N ×A×C×T →M, and verification algorithm ṼK : K×N ×A×C×T → {0, 1}.
The signature of the encryption and decryption algorithms are unchanged.

Definition 2 (Int-RUP Security). Let K և K, π և Perm(B), and let Π̃[π] = (Ẽ [π]K ,

D̃[π]K , Ṽ[π]K) be a nonce-based RUP AE scheme. Let A be nonce-respecting. Then

AdvInt-RUP

Π[π] (A) =def ∆A

(
Ẽ [π]K , D̃[π]K , Ṽ [π]K , π±; Ẽ [π]K , D̃[π]K ,⊥, π±

)
.

H-coefficient Technique. We use Patarin’s H-coefficient technique as proof method in
the variant by Chen and Steinberger [14, 25]. The results of the interaction of an adversary
A with its oracles are collected in a transcript τ . The oracles can sample randomness
before the interaction, and are then deterministic throughout the experiment [14]. A
shall distinguish the real world Oreal from the ideal world Oideal. Θreal and Θideal denote
random variables that represent the distribution of transcripts in the real and the ideal
world, respectively. A transcript τ is called attainable if the probability to obtain τ in the
ideal world – i.e. over Θideal – is non-zero. The fundamental Lemma of the H-coefficients
technique, whose proof is given in [14, 25], states that we can partition the set of all
attainable transcripts into two disjoint sets GoodT and BadT.

Lemma 5 (Fundamental Lemma of the H-coefficient Technique [25]). Assume that there
exist ǫ1, ǫ2 ≥ 0 such that for any transcript τ ∈ GoodT, it holds that

Pr [Θreal = τ ]

Pr [Θideal = τ ]
≥ 1− ǫ1.

Moreover, assume that Pr [Θideal ∈ BadT] ≤ ǫ2. Then, for all adversaries A, it holds that

∆A (Oreal;Oideal) ≤ ǫ1 + ǫ2.

B Further Int-RUP Attacks on the Unmasked SPoC and

Beetle

This section sketches attacks on Beetle, SPoC, and hybrids thereof.

Int-RUP Attack on Beetle. Beetle [12] is a recent permutation-based lightweight AE
scheme; hereafter, we consider the updated variant from [13]. An overview of the en-
cryption process is provided in Figure 3. The map ρ : {0, 1}r × {0, 1}r → {0, 1}r ×

{0, 1}r computes ρ(I1, I2)
def
= (shuffle(I1) ⊕ I2, I1 ⊕ I2) for all inputs I1, I2 ∈ {0, 1}r,

where shuffle(x) =def (lsbr/2(x) ‖ lsbr/2(x) ⊕ msbr/2(x)). The results of ρ are ordered
as (Xa+i, Ci)← ρ(Ya+i, Mi) and (Ya+i, Mi)← ρ−1(Xa+i, Ci), respectively.

1. A asks qd encryption queries (N1, A1, M), (N2, A2, M), . . . , (N qd , Aqd , M) and
receives C1, C2, . . . , Cqd . M and Ai consist of one block for each i.
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Figure 3: The Beetle authenticated encryption scheme.

2. Then, A asks qd queries (N1, A1, C1′

), (N2, A2, C2′

), . . . , (N qd , Aqd , Cq′
d ) to the

decryption oracle where Ci′

← Y i
2 ⊕ shuffle(Y i

2 ). This ensures that the first r bits of
the input to the third permutation is always equal to zero.

3. Now A can follow the generic idea to complete the attack.

The attack complexity is again qdqp ≈ O(2c).

B.1 Int-RUP Attack on SPoC

SPoC is a recent permutation-based submission to the NIST Lightweight competition by
AlTawy et al. [1]. In contrast to the common duplex mode, SPoC uses the capacity part
of the state to derive ciphertext outputs from, while it still absorbs the message in the
rate part. Figure 4 provides a schematic illustration. In SPoC, the adversary cannot fix
any part of the state in contrast to the common duplex and Beetle. Though, there exists
a similar attack as follows:

1. A asks qd queries (N, A, C1), (N, A, C2), . . . , (N, A, Cqd ) to the decryption oracle
and receives M1, M2, . . . , M qd . The associated data A and ciphertext Ci consist of
a single block for every i. This ensures that the first r bits of the input to the third
permutation is always equal to M1 ⊕ C1.

2. Now A can follow the generic idea to complete the attack.

So, the attack needs qdqp ∈ O(2c) to work, as before.

B.2 Int-RUP Attack on A Hybrid of Beetle and SPoC

We can generalize our attacks to hybrid modes of Beetle and SPoC as well. Such a
hybrid would use both modes Beetle and SPoC in parallel to process the queries. Each
message block (say M) is parsed into two sections (say M1 and M2), where |M1| = r1

and |M2| = r2. M1 is processed with Beetle to a ciphertext block C1; M2 is processed
with SPoC to a ciphertext block C2. The final ciphertext block generated is C ← C1 ‖C2.
The associated-data blocks and the ciphertext blocks for decryption are also processed in
the same manner. Note that the hybrid mode is parameterized by r1, r2 and c with the
condition c ≥ r2. The size of rate and capacity of the Beetle part are r1 and c−r2; the size
of both rate and capacity of the SPoC part is r2. As a result, the size of rate and capacity
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Figure 4: The SPoC mode of operation.

of the hybrid mode is r = r1 + r2 and c. When r2 = 0, the hybrid mode translates to the
Beetle mode. Similarly, when r1 = 0, the hybrid mode is equivalent to the SPoC mode.
An Int-RUP attack on such modes could be defined as follows:

1. A asks qd decryption queries (N, A1, C), (N, A2, C), . . ., (N, Aqd , C) to the decryp-
tion oracle and receives M1, M2, . . . , M qd . The ciphertext C and associated data
Ai consist of a single block for every i.

2. There exists at least one value of the last r2 bits of the input to the third permu-
tation which remains same for at least q = qd

2r2
queries. Suppose q such queries are

(N, A1′

, C), (N, A2′

, C), . . ., (N, Aq′

, C).

3. A can detect the previous step as it knows the value of the last r2 bits of the input
to the third permutation because that will be equal to the last r2 bits of C ⊕M i.

4. A retains those q queries and discards the rest.

5. For each of the above queries, A updates the value of the first r1 bits of the ciphertext
to Y2 ⊕ shuffle(Y2) and varies the remaining r2 bits. This ensures that the first r1

bits of the input to the third permutation is always equal to zero.

6. In the above mentioned way, A can ask qd more decryption queries to the decryption
oracle. This time, it is ensured that a total of r bits (first r1 bits and last r2 bits)
of the input to the third permutation are fixed and known to A.

7. Then, A can follow the generic idea to complete the attack.

The attack needs again qdqp ∈ O(2c) as before.

C Int-RUP Attacks on Schemes with Masked Ciphertexts

This section outlines more attacks on masked variants of the permutation-based AE
schemes Beetle and SPoC.
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C.1 Int-RUP Attack on The Masked Beetle

1. The adversary A asks qd encryption queries (N1, A1, M), (N2, A2, M), . . . , (N qd ,
Aqd , M) to the encryption oracle, and receives C1, C2, . . ., Cqd . The associated
data Ai consist of a single block for each i; the message M contains ⌈ c

r ⌉ blocks.

2. A asks qd − 1 decryption queries, one corresponding to each encryption query ex-
cept the first encryption query, to the decryption oracle. The decryption query
corresponding to the i-th encryption query is (N i, Ai, Ci′

), where

Ci′

= Y 1
2 ⊕ Y i

2 ⊕ shuffle(Y 1
2 )⊕ shuffle(Y i

2 ) .

A can calculate the right-hand side of the equation as

shuffle(Y 1
2 )⊕ shuffle(Y i

2 ) = C1 ⊕ Ci ,

and Y 1
2 ⊕ Y i

2 can be computed directly from shuffle(Y 1
2 ) ⊕ shuffle(Y i

2 ) with the def-
inition of the function shuffle. This makes the first r bits of the input to the third
permutation always equal to that of the first encryption query.

3. Afterwards, A repeats Step 2 to 6 from Section 6 to complete the attack.

The attack is successful for q2
d ≈ O(2c). However, the attack strategy differs for SPoC.

C.2 Int-RUP Attack on The Masked SPoC

Here, A has to perform the attack in two stages.

1. First, A asks qd decryption queries (N, A1, C), (N, A2, C), . . . , (N, Aqd , C) to the
decryption oracle, and receives M1, M2, . . ., M qd . The associated data Ai consists
of a single block for each i; the ciphertext C consists of two blocks.

2. When qd ≈ O(2r), A expects a collision in the first r bits of the input to the third
permutation.

3. A can detect this collision by looking at the first message block because it will be
equal only for the two colliding queries.

4. Suppose the associated data of the two colliding queries are Ai and Aj .

5. A makes q1 decryption queries (N, Ai, C1), (N, Ai, C2), . . . , (N, Ai, Cq1 ), and q2

decryption queries (N, Aj , C1), (N, Aj , C2), . . . , (N, Aj , Cq2 ) to the decryption
oracle.

6. When q1 · q2 ≈ O(2r), A expects a full state collision at the input to the third
permutation, between one query with associated data Ai and another query with
associated data Aj .

7. Suppose the two ciphertexts corresponding to the two colliding queries are Cp and
Cq, and the corresponding messages are Mp and M q.

8. A can detect this collision in the following way: A identifies those pairs of queries
(N, Ai, Cx), (N, Aj , Cy), 1 ≤ x ≤ q1, 1 ≤ y ≤ q2, for which the sum of the second
message blocks is equal to the sum of the first message blocks. For each such pair,
A updates Cx and Cy by appending ⌈ c

r ⌉− 1 ciphertext blocks to each of them such
that, Cx

2 = Cy
2 , . . . , Cx

⌈ c
r
⌉ = Cy

⌈ c
r
⌉, and makes decryption queries using these updated

ciphertext values. The ciphertexts Cp and Cq, for all k > 2, Mp
k , will be equal to

M q
k .
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9. Next, A asks (N, Ai, Mp) to the encryption oracle; suppose, the tag is T .

10. Then, A submits the forgery query (N, Aj , Cq, T ) to the verification oracle, which
is a successful forgery.

Again, the probability for forgeries becomes non-negligible when q2
d ≈ O(2c).

D Details of the nAE Analysis of Oribatida

D.1 Proof of Lemma 1

Proof. In the following, we upper bound the probabilities of the individual bad events.

bad1: Multi-collision on X in encryption construction queries. In the ideal world,
the ciphertext blocks are sampled independently uniformly at random from the strings
of expected length. The internal values X i

j can be computed by A once it is given the

transcript including the internal chaining values V i
j . It must hold that X i

j ← Ci
j−ai ⊕s

lsbs(V i
ρ(i,j−ai)). The random sampling of C implies that the probability of the values X i

j

to take any specific r-bit value is 1/2r. Note that in the case of a padded ciphertext block,
each padded bit of Ci

mi is also sampled once randomly and given in the transcript. Hence,
the probability for X i

ai+mi to take any r-bit value is also 2−r in the ideal world. For fixed
indices (i1, j1), (i2, j2), . . . , (iw, jw), it holds that

Pr
[
X i1

j1
= X i2

j2
= . . . = X iw

jw

]
≤ 2−r(w−1).

Over all queries and blocks of τe, it follows that

Pr [bad1] ≤

(
σ
w

)

2r(w−1)
.

bad2: Collision of two permutation inputs in encryption construction queries. Here,
we consider

Pr
[(

X i
j ‖ Y i

j

)
=
(

X i′

j′ ‖ Y i′

j′

)]
.

All ciphertext blocks and the internal chaining values V i
ρ(i,j−ai), j > ai are sampled

independently and uniformly at random. Moreover, padded bits of ciphertexts are sampled
also independently and uniformly at random. Though, we have to consider two cases;

• j = 0 ∧ j′ = 0: since X i
0 and X i′

0 contain nonces, and since we assume A to be
nonce-respecting, the probability for a collision is zero in this case.

• j > 0: In this case, Y i
j = V i

j ⊕const, where const ∈ {dN , dA, dE} is a public constant.

Moreover, X i
j is derived from Ci

j ; so, both X i
j and Y i

j are chosen independently and
uniformly at random, and the probability for a collision in this case is at most 2−n.

Therefore, for fixed indices (i, j) 6= (i′, j′), the probability is

Pr
[(

X i
j ‖ Y i

j

)
=
(

X i′

j′ ‖ Y i′

j′

)]
≤ 2−n.

Over all combinations of indices, it follows that

Pr [bad2] ≤

(
σ
2

)

2n
.
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bad3: Collision of two permutation outputs in encryption construction queries. This
case is analogous to bad2. The permutation outputs V i

j are sampled randomly. In all
cases, it holds that

Pr
[(

U i
j ‖V i

j

)
=
(

U i′

j′ ‖V i′

j′

)]
≤ 2−n.

Over all combinations of indices, it follows that

Pr [bad3] ≤

(
σ
2

)

2n
.

bad4: Collision of permutation inputs between a construction and a primitive query.
Again, we consider X i

j ← Ci
j−ai ⊕s lsbs(V i

ρ(i,j−ai)) and Y i
j ← V i

j ⊕ const, where const

is a public constant. The values Ci
j−ai and V i

ρ(i,j−ai) are sampled randomly, the values

(X i
j ‖ Y i

j ) take any value with probability at most 2−n.

a) Assume, the primitive query was asked before the construction query. If the con-
struction query was in encryption direction, the collision probability for fixed queries
is at most 2−n, for qp · qc combinations.

b) If the primitive query was asked after an encryption query, then, the latter one
produced a tag. If the primitive query starts at any other block, A can see r−s bits.
Hence, the probability is at most 2−(c+s) for qp · σe combinations. If the primitive
query starts from the tag, the adversary sees τ unmasked bits. Assuming bad1,
there are at most w equal tags over all encryption queries. So, the probability for a
collision is 2−(n−τ), for w · qp combinations.

Over all combinations of indices, it follows that

Pr
[
bad4|bad1

]
≤ max

(σe · qp

2n
,

σe · qp

2c+s

)
+

w · qp

2n−τ
≤

σe · qp

2c+s
+

w · qp

2n−τ
.

bad5: Collision of permutation outputs between an encryption construction query
and a primitive query. Again, U i

j+ai can be derived from M i
j ⊕ Ci

j ⊕s lsbs(V i
ρ(i,j)) and

the values Ci
j and V i

ρ(i,j) are sampled randomly. So, the values U i
j+ai ‖V i

j+ai take any

value with probability at most 2−n. If the primitive query starts at any other block, A
can see r − s bits. Hence, the probability is at most 2−(c+s) for qp · σe combinations.
Following a similar argument as for bounding bad4 and excluding bad1, we obtain over all
combinations of indices that

Pr
[
bad5|bad1

]
≤

σ · qp

2c+s
+

w · qp

2n−τ
.

bad6: Initial-state collision with a primitive query. Here, we know that the key is
chosen uniformly at random. We distinguish between collisions depending on whether the
primitive query was a forward query or a backward query.
If the primitive query was a forward query, it must hit the correct value of K⊕ddN . So, the
probability is at most qp/2k to collide with encryption construction queries. Considering
also decryption queries, a nonce can repeat but change dN . Since there exist at most three
distinct values for dN , the probability is at most 3qp/2k to collide.
If the primitive query was in backward direction, its response must hit any initial state of
a construction query. If the construction query was asked before the primitive, A sees at
best r − s bits of C1. Then, the probability is at most qc · qp/2c+s.
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If the primitive query was asked before the construction query, A can use the nonce part
of the primitive query’s result as nonce. Though, a collision needs the key part to be
correct, which holds with probability at most 3qp/2k. Over all possible options, we obtain

Pr [bad6] ≤
3qp

2k
+

qc · qp

2c+s
.

bad7: Multi-collision in the rate part of w outputs of forward primitive queries. Since
π is chosen randomly from the set of all permutations, the outputs are chosen randomly
from a set of size 2n−(i−1) for the i-th primitive query. So, the probability for w distinct
queries to collide in their rate part is at most 1/2r(w−1) as for bad7 in the nAE proof.
Over all queries, the probability is upper bounded by

Pr [bad7] ≤

(
qp

w

)

2r(w−1)
.

bad8: Multi-collision in the rate part of w outputs of backward primitive queries.
Following a similar argumentation as for bad7, we obtain

Pr [bad8] ≤

(
qp

w

)

2r(w−1)
.

Our bound in Lemma 1 follows from summing up all probabilities.

D.2 Proof of Lemma 2

Proof. It remains to lower bound the ratio of real and ideal probability of obtaining a good

transcript τ . Let τ = (τe, τd, τp) be an attainable transcript, where τd = ⊥all contains only
⊥ for all responses. Since all ciphertext-block outputs and all internal chaining values in
encryption queries are sampled independently and uniformly at random, their probability
is 1/2 per bit. We define σdistinct for the number of distinct calls to the permutation over
all encryption and decryption queries. In the ideal world, it holds that

Pr [Θideal = τ ] = Pr [K] · Pr [τe ∧ τp ∧ τd]

= Pr [K] · Pr [τe] · Pr[τp] · Pr[τd] =
1

2k
·

1

(2n)σdistinct
·

1

(2n)qp

· 1

since the outputs from encryption queries are sampled uniformly at random; so, the
encryption and decryption transcripts τe and τd are independent from τp.
In the real world, the probabilities for choosing K as key and π as permutation are equal
to those of the ideal world. We can separate the probability into

Pr [Θreal = τ ] = Pr [K] · Pr [τe ∧ τp ∧ τd] =
1

2k
· Pr [τe, τd|τp] · Pr [τp]

since the encryption and the decryption transcript depend on the choice of the permutation
π. Let ⊤i denote that the i-th decryption query was a valid forgery. We can upper bound

Pr [τe, τd|τp] · Pr [τp] ≤ Pr [τe|τp] · Pr [τp]−

(
qd∑

i=1

Pr [τe ∧ ⊤i|τp] · Pr [τp]

)

= Pr [τe|τp] · Pr [τp]− Pr [τe|τp] · Pr [τp] ·

(
qd∑

i=1

Pr [⊤i|τe|τp] · Pr [τp]

)

= (Pr [τe|τp] · Pr [τp]) · (1− ǫ) , (1)
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where we define

ǫ
def
=

qd∑

i=1

ǫi and ǫi
def
= Pr [⊤i|τe|τp] · Pr [τp] .

The probability of primitive queries is given by the fraction of all permutations π that
would produce τp, which is

Pr[τp] =
1

(2n)qp

,

as in the ideal world. The ciphertext blocks Ci
j from encryption queries as well as the

chaining values V i
j are results from the permutation π and hence, depend on the permuta-

tion. Since τ is a good transcript, there are no undesired collisions, e.g., between primitive
and construction queries. Hence, all internally computed values (U i

j ‖V i
j ) – note that U i

j

can be derived from Ci
j−ai ⊕s lsbs(V i

ρ(i,j−ai)) ⊕M i
j−ai by the adversary – are results of

fresh values or predefined in decryption queries from the result of previous encryption
queries. Then, the probabilities for the outputs of π in construction queries are given by
1/ (2n)σdistinct

. It is not difficult to see that for positive σdistinct, the ratio of the interpolation
probabilities from Equation (1) can be bounded by

(Pr [τe|τp|Θreal] · Pr [τp|Θreal])

(Pr [τe|Θideal])
=

1
(2n)σdistinct

1
(2n)σdistinct

=
(2n)σdistinct

(2n)σdistinct

≥ 1 .

It remains to upper bound ǫ. For this purpose, we upper bound the values ǫi for transcripts
that contain forgeries. Since τ is a good transcript, we assume that bad events do not
hold. Hence, either ⊤i does not hold, which yields ǫi = 0; in the opposite case, we
have to consider a few mutually exclusive cases in the following. We assume that there
exists a decryption query (N i, Ai, Ci, T i) s. t. T i is valid. In all cases, the tag can
simply be guessed correctly if the block (X i

ai+mi ‖ Y i
ai+mi) is fresh. Then, the probability

for the tag to be correct is 2−τ . So, we can concentrate on the cases where it is non-
fresh in the following. Prior, we define (Xi1 , Xi2 , . . . , Xiw+1) as a w-chain if there exist
(Yi1 , Yi2 , . . . , Yiw+1) s. t. the following chain has been obtained from primitive queries:

π (Xi1 ‖ Yi1) = (Ui2 ‖Vi2 ) = (Ui2 ‖ Yi2 ) ,

π (Xi2 ‖ Yi2) = (Ui3 ‖Vi3 ) = (Ui3 ‖ Yi3 ) ,

...

π (Xiw
‖ Yiw

) =
(
Uiw+1 ‖Viw+1

)
=
(
Uiw+1 ‖ Yiw+1

)
.

The cases are:

• Case (A): N i is fresh; so, there is no earlier construction query i′ 6= i s. t. N i = N i′

.

• Case (B): N i is old, but (N i, Ai) is fresh, i.e., there exists no earlier construction
query i′ 6= i with (N i, Ai) = (N i′

, Ai′

).

• Case (C): (N i, Ai) is old, but (N i, Ai, Ci) is fresh, i.e., there exists no earlier
construction query i′ 6= i with (N i, Ai, Ci) = (N i′

, Ai′

, Ci′

), and no w-chain of
primitive queries is hit.

• Case (D): (N i, Ai, Ci) is old; (N i, Ai, Ci) a prefix of another construction query.

• Case (E): (N i, Ai) is old and there exists a w-chain of primitive queries that is hit.

Clearly, the cases cover all possible options. We assume that no previous bad events occur,
in particular, no w-multi-collisions or collisions with primitive queries occurred.
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Case (A). We excluded bad6 in this case. The probability that (N i ‖K)⊕d dN hits any
block (X i′

j ‖ Y i′

j ) from another construction query so that the final block is old is at most

Pr
[((

N i ‖K
)
⊕d dN

)
=
(

X i′

j ‖ Y i′

j

)]
≤

σe

2c+s
.

Case (B). Let p ≤ ai + mi denote the length of the longest common prefix of the i-th
query with all other queries. In Case (B), the probability that any block (X i

j ‖ Y i
j ) with

j ≥ p+1 matches the permutation input of any other encryption-query block or primitive
query can be upper bounded by

Pr
[(

X i
j ‖ Y i

j

)
=
(

X i′

j′ ‖ Y i′

j′

)]
≤

σe

2c+s
+

qp

2c+s
.

Case (C). A similar argument as for Case (B) can be applied in Case (C). The probability
that there exists i′ 6= i, s. t. for some block indices, it holds that (j, j′): (X i

j ‖ Y i
j ) =

(X i′

j′ ‖ Y i′

j′ ) is at most 1/2c+s. So, it holds that

Pr
[(

X i
j ‖ Y i

j

)
=
(

X i′

j′ ‖ Y i′

j′

)]
≤

σe

2c+s
+

qp

2c+s
.

Case (D). This case needs that (X i
ai+mi+1 ‖ Y i

ai+mi+1) matches the permutation input
of any other encryption-query block or primitive query. The probability can be upper
bounded by

Pr
[(

X i
j ‖ Y i

j

)
=
(

X i′

j′ ‖ Y i′

j′

)]
≤

σe

2c+s
+

qp

2c+s
.

Case (E). Assume that (X i
p+1 ‖ Y i

p+1) hits a w-chain of primitive queries. Under the
assumption that no other bad events occurred, the probability is at most

Pr

[
(
X i

p+1 ‖ Y i
p+1

)
∣∣∣∣∣

8∧

i=1

badi

]
≤

(mi + 1) · w

2c+s
.

Over all decryption queries, we obtain

ǫ ≤

qd∑

i=1

(
1

2τ
+

σe

2c+s
+

qp

2c+s
+

(mi + 1) · w

2c+s

)
≤

qd

2τ
+

qd(qp + σe)

2c+s
+

(σd + qd) · w

2c+s
.

Our claim in Lemma 2 follows.

E Details of the Int-RUP Analysis of Oribatida

E.1 Proof of Lemma 3

Proof. In the following, we upper bound the probabilities of the individual bad events.
For the most of them, we differentiate between encryption and decryption queries.

bad1: Collision of two permutation inputs in construction queries.

a) Among encryption queries only: here, it holds that

Pr
[(

X i
j ‖ Y i

j

)
=
(

X i′

j′ ‖ Y i′

j′

)]
≤ 2−n.

Since there exist
(

σe

2

)
block combinations, we obtain

(
σe

2

)
/2n.
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b) Dec-then-Enc: If we consider an encryption query block to collide with a block from
a previous decryption query, the probability is at most 2−(c+s) since A can see r− s
bits that it can use as nonce. We have qeσd combinations of such blocks. For the
remaining σeσd blocks, the probability is 2−n.

c) Among decryption queries only: w.l.o.g., we consider the first such collision. If A
modifies the nonce in the later query, the bound is the same as for encryption-only
queries. So, we assume in the remainder of that the later query is a decryption query.
Let j−1 be the first modified block and assume it is in the message-processing part.
If the block indices differ j 6= j′, the probability is 2−(c+s). Otherwise, assume j = j′

and Ai = Ai′

. Then, the permutation output (U i′

j ‖V i′

j ) is sampled randomly in the

ideal world. If A leaves Ci
j−ai = Ci′

j−ai , it automatically holds that

X i
j = Ci

j−ai ⊕ lsbs(V i
ρ(i,j−ai)) = X i′

j = Ci
j−ai ⊕ lsbs(V i

ρ(i,j−ai)).

So, X i
j = X i′

j . With probability 2−c, it also holds for the capacity part V i
j+1 = V i′

j+1

and thus Y i
j+1 = Y i′

j+1. Note that this approach holds only for the first differing

block, for which which yields a term of
(

qd

2

)
/2c. if the collision does not hold, the

masks beginning for the (j + 2)-th block will differ and the probability decreases to
2−(c+s), which produces a term of

(
σd

2

)
/2c+s.

d) Enc-then-Dec: It remains to consider collisions between an encryption query, fol-
lowed by a decryption query. If the block indices j 6= j′ differ, the probability is
again 2−(c+s), for at most σe · σd combinations. Otherwise, if j = j′, A can ap-
ply the strategy above for a collision. Then, the probability is 2−c; though, the qd

queries can collide at best with most encryption query each since we consider the
first collision, producing a term of qd/2c.

Over all cases, we obtain

Pr [bad1] ≤

(
σe

2

)

2n
+ max

(qeσd

2c+s
+

σeσd

2c+s
+

qd

2c

)
+

(
σd

2

)

2c+s
+

(
qd

2

)

2c
≤

(
σe

2

)

2n
+

σeσd

2c+s
+

(
qd

2

)

2c
.

bad2: Collision of two permutation outputs in encryption construction queries. This
case is analogous to bad1. Over all combinations of indices, it follows that

Pr [bad2] ≤

(
σe

2

)

2n
+

σeσd

2c+s
+

(
qd

2

)

2c
.

bad3: Multi-collision on w tags from encryption queries. Since the tags are sampled
uniformly and independently at random in the ideal world, it holds that

Pr
[
T i1

j1
= T i2

j2
= . . . = T iw

jw

]
≤

(
qe

w

)

2τ(w−1)
.

bad4: Collision of permutation inputs between a construction and a primitive query.
Again, we consider X i

j ← Ci
j−ai ⊕s lsbs(V i

ρ(i,j−ai)) and Y i
j ← V i

j ⊕ const, where const

is a public constant. The values Ci
j−ai and V i

ρ(i,j−ai) are sampled randomly, the values

(X i
j ‖ Y i

j ) take any value with probability at most 2−n.

a) Assume, the primitive query was asked before the construction query. If the con-
struction query was in encryption direction, the collision probability for fixed queries
is at most 2−n, for qp · qc combinations.
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b) Otherwise, if the construction query was a decryption query, A can see r − s bits.
Hence, the probability is at most 2−(c+s), for qp · qc combinations.

c) The same argument can be applied in the case when the primitive query was asked
after a decryption query. Then, the adversary can see r−s unmasked bits of the rate
from Ci

j . Again, the probability is at most 2−(c+s) and we have qp · qc combinations.

d) If the primitive query was asked after an encryption query, then, the latter produced
a tag. If the primitive query targets any other block, the argument is the same as in
Case c). If the primitive query starts from the tag, the adversary sees τ unmasked
bits. Assuming bad3, there are at most w equal tags over all encryption queries. So,
the probability for a collision is 2−(n−τ), for w · qp combinations.

Over all combinations of indices, it follows that

Pr
[
bad4|bad3

]
≤ max

(σe · qp

2n
,

σe · qp

2c+s

)
+

σd · qp

2c+s
+

w · qp

2n−τ
≤

σ · qp

2c+s
+

w · qp

2n−τ
.

bad5: Collision of permutation outputs between a construction and a primitive query.
Again, U i

j+ai can be derived from M i
j ⊕ Ci

j ⊕s lsbs(V i
ρ(i,j)); the values Ci

j and V i
ρ(i,j) are

sampled randomly. This case is similar as bad4. Over all index combinations

Pr
[
bad5|bad3

]
≤ max

(σe · qp

2n
,

σe · qp

2c+s

)
+

σd · qp

2c+s
+

w · qp

2n−τ
≤

σ · qp

2c+s
+

w · qp

2n−τ
.

bad6: Initial-state collision with a primitive query. Here, we distinguish between the
cases whether the construction query was asked before or after the primitive query, and
whether the primitive query was in forward or backward direction.

a) Assume, the primitive query was asked after the construction query. If the primitive
query was a forward query, it must hit the correct value of K⊕ddN . This probability
is at most qp/2k to collide when considering encryption construction queries. Con-
sidering also decryption queries, a nonce can repeat often; though, the initial state
can take three different values for the same nonce, namely if the decryption query
changes the length of associated data and message, affecting dN . Since there exist
at most three distinct values for dN , the probability to collide is at most 3qp/2k.

b) If the primitive query was in backward direction, its response must hit any initial
state of a construction query. If the construction query was asked before the primi-
tive, A sees at best r − s bits of C1. Then, the probability is at most qc · qp/2c+s.

c) If the primitive query was asked before the construction query, A can use the nonce
part of the primitive query’s result as nonce. However, a collision must hit the key
part, which holds with probability at most 3qp/2k.

d) If the primitive query was in backward direction, A sees at best r − s bits of C1.
Then, there is at most one starting state, assuming bad1, which yields qp/2c+s.

Over all possible options, we obtain

Pr
[
bad6|bad1

]
≤

3qp

2k
+ max

(qc · qp

2c+s
,

qp

2c+s

)
≤

3qp

2k
+

qc · qp

2c+s
+

qp

2c+s
.
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bad7: Multi-collision in the rate part of w outputs of forward primitive queries. Since
π is chosen randomly from the set of all permutations, the outputs are sampled uniformly
at random from a set of size at least 2n − (i − 1) for the i-th query. So, the probability
for w distinct queries to collide in their rate part is upper bounded by

2c − 1

2n − 1
·

2c − 2

2n − 2
· · · · ·

2c − (w − 1)

2n − (w − 1)
=

w−1∏

i=1

2c − i

2n − i
≤

(
2c

2n

)w−1

= 2−r(w−1).

Over all primitive query indices, it holds that

Pr [bad7] ≤

(
qp

w

)

2r(w−1)
.

bad8: Multi-collision in the rate part of w outputs of backward primitive queries.
Using a similar argumentation as for bad7, we obtain

Pr [bad8] ≤

(
qp

w

)

2r(w−1)
.

bad9: Forgeries if all blocks are old. It remains to bound the probability of a successful
forgery of a verification query (N i, Ai, Ci, T i) s. t. T i is valid and where each block is old.
We consider the same five mutually exclusive cases as in the nAE proof. In all cases, the
tag can simply be guessed correctly if the block (Xai+mi

‖ Y ai+mi

) is fresh. Then, the
probability for the tag to be correct is upper bounded by 2−τ . We adopt the cases and the
notions from the nAE proof and assume that no previous bad events occur, in particular
no w-multi-collisions described earlier or collisions with primitive queries.

• Case (A): N i is fresh; so, there is no earlier construction query i′ 6= i s. t. N i = N i′

.

• Case (B): N i is old, but (N i, Ai) is fresh, i.e., there exists no earlier construction
query i′ 6= i with (N i, Ai) = (N i′

, Ai′

).

• Case (C): (N i, Ai) is old, but (N i, Ai, Ci) is fresh, i.e., there exists no earlier
construction query i′ 6= i with (N i, Ai, Ci) = (N i′

, Ai′

, Ci′

), and no w-chain of
primitive queries is hit.

• Case (D): (N i, Ai, Ci) is old; (N i, Ai, Ci) is a prefix of another construction query.

• Case (E): (N i, Ai) is old and there exists a w-chain of primitive queries that is hit.

Clearly, the cases cover all possible options. We assume that no previous bad events occur,
in particular no w-multi-collisions described earlier or collisions with primitive queries.

Case (A). We excluded bad4, i.e., collisions of permutation inputs between construction
and primitive queries in this case. The probability that (N i ‖K) ⊕d dN hits any block
(X i′

j ‖ Y i′

j ) from another construction query so that the final block is old is at most

Pr
[((

N i ‖K
)
⊕d dN

)
=
(

X i′

j ‖ Y i′

j

)]
≤

σ + qp

2c+s
.

Cases (B)–(D). Let p ≤ ai + mi denote the length of the longest common prefix of the
i-th query with all other queries. The probability that any block (X i

j ‖ Y i
j ) with j ≥ p + 1

matches the permutation input of any other query block or primitive query can be upper
bounded analogously as bad1 and bad4:

Pr
[(

X i
j ‖ Y i

j

)
=
(

X i′

j′ ‖ Y i′

j′

)]
≤

σe + qd

2c+s
+

σe · σd

2c+s
+

(
qd

2

)

2c
+

σ · qp

2c+s
+

w · qp

2n−τ
.
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Case (E). Assume that (X i
p+1 ‖ Y i

p+1) hits a w-chain of primitive queries. Under the
assumption that no other bad events occurred, the probability is at most

Pr
[(

X i
p+1 ‖ Y i

p+1

)]
≤

(mi + 1) · w

2c+s
.

Over all verification queries, we obtain

Pr

[
bad9

∣∣∣∣∣

8∧

i=1

badi

]
≤

qv

2τ
+

σe · σd

2c+s
+

(
qd+qv

2

)

2c
+

σ · qp

2c+s
+

w · qp

2n−τ
+

w · (σd + qd)

2c+s
.

Our bound in Lemma 3 follows from summing up all probabilities.

E.2 Proof of Lemma 4

Proof. It remains to bound the ratio of real and ideal probability of obtaining a good

transcript τ . The bound is similar to that of Lemma 2. The difference to the nAE proof
is that the ideal decryption oracle also generates pseudorandom output blocks M i

j beyond
the longest common prefix. The nAE transcript also contained the sampled internal
values, as does the transcript τ here. Since we assume that no bad events have occurred,
we revisit the following cases for forgeries:

• Case (A): The final input to π, (X i
ai+mi ‖ Y i

ai+mi ) is fresh, i.e., has not occurred

before. Then, the probability that the authentication tag τ i is valid is at most 1/2τ .

• Case (B): The final input to π, (X i
ai+mi ‖ Y i

ai+mi) is old, but there exists some

block index j ∈ [1..ai + mi] s. t. (X i
j ‖ Y i

j ) is fresh. Since the input is old, the

probability that the result of any of the next blocks is old is at most
(σ+qp)

2c+s .

• Case (C): There exists no j ∈ [1..ai + mi] s. t. (X i
j ‖ Y i

j ) is fresh. The probability

that all of those blocks are old is at most
mi(σe+qp)

2c+s .

It follows that

ǫi ≤
1

2τ
+

σe + qp

2c+s
+

mi(σe + qp)

2c+s
.

Over all indices i ∈ [1..qd], it follows that

ǫ ≤

qd∑

i=1

ǫi ≤
qd

2τ
+

σd(σe + qp)

2c+s
.

Our claim in Lemma 4 follows.
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