
Updates on Romulus, Remus and TGIF

Tetsu Iwata1, Mustafa Khairallah2,3, Kazuhiko Minematsu4, and
Thomas Peyrin2,3

1 Nagoya University, Japan
tetsu.iwata@nagoya-u.jp

2 Nanyang Technological University, Singapore
3 Temasek Laboratories @ NTU

mustafam001@e.ntu.edu.sg,thomas.peyrin@ntu.edu.sg
4 NEC Corporation, Japan
k-minematsu@ah.jp.nec.com

Abstract. Romulus and Remus are two families of lightweight and effi-
cient authenticated encryption with associated data (AEAD) proposed by
the authors in 2019 as the submissions to NIST Lightweight Cryptography
project. In this article, we report updates on the provable security and
implementation results on Romulus and Remus since the initial submission
documents.

Keywords: Romulus · Remus · authenticated encryption · lightweight
cryptography · tweakable block cipher.

1 Introduction

Romulus and Remus are two families of authenticated encryption with associated
data (AEAD) proposed in [10, 11]. They are candidates of NIST Lightweight
Cryptography project (hereafter NIST LWC).

Romulus consists of a nonce-respecting variant called Romulus-N, and a
misusing-resistant variant, called Romulus-M. Similarly, Remus consists of nonce-
based Remus-N variant and misusing-resistant Remus-M variant. Each variant
further consists of several parameters having different efficiency and security
characteristics.

Both Romulus and Remus are based on Skinny, a tweakable block cipher (TBC)
proposed at CRYPTO 2016 [2]. Romulus directly uses Skinny as a TBC, and the
security proof is based on the standard pseudo-randomness assumption of the
TBC. Remus is different and it uses Skinny as an ideal cipher to build another
TBC. This allows even more efficiency from Romulus, at the cost of the security
proof being based on the ideal-cipher model.

The underlying structure of Romulus and Remus is similar to COFB, a block
cipher AE mode proposed at CHES 2017 [3], yet, they have numerous design
improvements and optimizations as a TBC-based AEAD.

mailto:k-minematsu@ah.jp.nec.com
mailto:tetsu.iwata@nagoya-u.jp

In this article, we report updates on the security and efficiency of Romulus and
Remus. In more detail, we show the security bounds of Romulus and Remus can
be improved with respect to the maximum message length. For example, nonce-
based variant Romulus-N has security bound Opqd{2

τ q plus the computational
security term of Skinny, for qd decryption queries with τ -bit tag. This is essentially
identical to ΘCB3 (a well-known TBC-based AEAD) except for the constants,
and the smallest possible as an AEAD algorithm of τ -bit tags. Other variants can
be improved as well (though the level of improvement differs for each variant).
We also present a fix of the security bound of Remus-N3 to include an additional
term that does not change the overall bit security. The authenticity bounds of
Romulus-M and Remus-M are also corrected and improved. The effect of the
number of encryption queries is now incorporated, and the overall security bound
is independent from the lengths of the queries for the information-theoretic case
of Romulus-M.

We would like to note that since the variants of TGIF [12] share the same
mode designs as Remus-N1, Remus-N2, Remus-M1 and Remus-M2, the provable
security updates regarding these variants applies to TGIF, as well.

For update on implementation, we show the serialized hardware implemen-
tations that have sufficient speed and ultimately small gate size making our
designs very competitive for extremely constrained environments. We also verify
our theoretical performance/area estimates with comparison to real hardware
implementations. We show different trade-offs between serialized, round-based
and unrolled architectures for different design goals: low area, high throughput
or high efficiency.

2 Update on Provable Security

We refer to the submission documents [10, 11] for the algorithms of the variants
of Romulus and Remus, and the security notions (privacy and authenticity), and
the accompanying notations. We improved the authenticity bounds. However, for
completeness we also present the privacy bounds which did not change from the
initial submission documents. For Remus-N3 we present fixed bounds for both
privacy and authenticity.

2.1 Updated bounds of Romulus-N

˚ n,t
For A P t0, 1u , we say A has a AD blocks if it is parsed as pAr1s, . . . , Arasq Ð A.
Let a ˜ “ ta{2u ` 1 which is a bound of actual number of primitive calls for AD.

˚Similarly for plaintext M P t0, 1u , we say M has m message blocks if |M |n “ m.
The same applies to ciphertext C. For encryption query pN, A, Mq or decryption
query pN, A, C, T q of a AD blocks and m message blocks, the number of total

2

TBC calls is at most a ˜ ` m, which is called the number of effective blocks of a
query.

While the specification assumes n-bit tag, we extend it to be (arbitrarily)
fixed truncated to τ P JnK bits, and show the bounds with the case of τ -bit tag.

Theorem 1. Let A be a (NR) privacy adversary against Romulus-N with time
complexity tA and with total number of effective blocks σpriv. Moreover, let B be
an NR authenticity adversary using qd decryption queries, with total number of
effective blocks for encryption and decryption queries σauth, and time complexity
tB . Then

priv tprp Adv pAq ď Adv pA1q, Romulus-N rE

Advauth tprp 3qd 2qd
Romulus-NpBq ď Adv

r

pB1q ` `
E 2n 2τ

hold for some pσpriv, tA ̀ Opσprivqq-TPRP adversary A1, and for some pσauth, tB ̀
Opσauthqq-TPRP adversary B1 .

Theorem 1 holds for all the members of Romulus-N.

Improvements. Theorem 1 improves the previous authenticity bound of

tprp 2σdec 2qd
Adv pB1q ` ` ,

E r 2n 2τ

where σdec denotes the total number of effective blocks in decryption queries.
Privacy bound does not change. In particular, in the new authenticity bound,
the information-theoretic term is independent of the input length and Opqd{2

τ q
is essentially minimum as an AEAD algorithm of τ -bit tag.

2.2 Updated bounds of Romulus-M

For an encryption query pN, A, Mq, we define the number of effective blocks as
n,t n,t

ta{2u ` tm{2u ` 2 ` m1, where pAr1s, . . . , Arasq Ð A, pM r1s, . . . ,M rmsq Ð M
t,n 1 n

(or pM r1s, . . . ,M rmsq Ð M), and pM r1s, . . . ,M rm sq Ð M . For a decryp-
n,t

tion query pN, A, C, T q, it is similarly defined by pCr1s, . . . , Crmsq Ð C or
t,n 1 n

pCr1s, . . . , Crmsq Ð C, and pCr1s, . . . , Crm sq Ð C.

We first present bounds under nonce-respecting adversary:

Theorem 2. Let A be a privacy adversary against Romulus-M that uses qe

encryption queries with time complexity tA and with total number of effective
blocks σpriv. Let B be an authenticity adversary against Romulus-M using qe

encryption queries and qd decryption queries, with total number of effective blocks

3

for encryption and decryption queries σauth and with time complexity tB . Then
we have

priv
pAq ď Advtprp

pA1Adv q, Romulus-M rE

Advauth 5qd
Romulus-MpBq ď Advtprp

pB1q `
E r 2n

for some pσpriv, tA ` Opσprivqq-TPRP adversary A1, and pσauth, tB ` Opσauthqq-
TPRP adversary B1 .

We next present bounds under nonce-misusing adversary:

Theorem 3. Let A be an NM-privacy adversary and let B be an NM-authenticity
adversary, both are against Romulus-M, that use the same parameter as in Theo-
rem 2, and can repeat a nonce at most 1 ď r ď 2n´1 times in encryption queries.
Then we have

nm-priv tprp 4rσpriv
Adv pAq ď Adv pA1q ` , Romulus-M rE 2n

Advnm-auth 4rqe ` 5rqd
Romulus-MpBq ď Advtprp

pB1q `
rE 2n

for some pσpriv, tA ` Opσprivqq-TPRP adversary A1 and pσauth, tB ` Opσauthqq-
TPRP adversary B1 .

Improvements and fix. These theorems show improvements of the authenticity
bounds: previously, the information-theoretic terms of authenticity bounds were
2`qd{2

n ` 2qd{2n for nonce-respecting adversary and 2r`qd{2n ` 2rqd{2n for
nonce-misusing adversary, for maximum message block length `.

The new bounds now correctly incorporate the number of encryption queries
that were missing in the previous bounds, and we can say that, in the nonce-
misusing case, if the total number of queries (qe ` qd) is sufficiently smaller than
2n{r, the scheme is secure. This does not change the claimed bit security. We
note that subsequent to the update on our security bounds, Chakraborty and
Nandi [5] informed us the need of incorporating the encryption queries and that
they have proved a similar authenticity bound to ours.

2.3 Updated bounds of Remus-N

˚For A P t0, 1u , we say A has a AD blocks if |A|n “ a. Similarly for plaintext
˚ M P t0, 1u we say M has m message blocks if |M |n “ m. The same holds for the

ciphertext C. For encryption query pN, A, Mq or decryption query pN, A, C, T q
of a AD blocks and m message blocks, the number of total TBC calls is at most
a ̀ m, which is called the number of effective blocks of a query. As before τ P JnK
is the tag length.

4

Theorem 4. Let A be an NR privacy adversary against Remus-N using qe

encryption (construction) queries and qp primitive queries with total number of
effective blocks in encryption queries σpriv. Moreover, let B be an NR authenticity
adversary against Remus-N using qe encryption queries and qd decryption queries,
with total number of effective blocks for encryption and decryption queries σauth,
and qp primitive queries. Then we have

9σ2
priv priv ` 4qpσpriv 2qp

Adv pAq ď ` , Remus-N1 2n 2n

9σ2 ` 4qpσpriv priv priv 2qp
Adv pAq ď ` , Remus-N2 22n 2n

0.5σ2
priv priv qpσpriv

Adv pAq ď ` , Remus-N3 2k´8 2k

9σ2 ` 4qp 2qp 3qd 2qd
Advauth auth σauth

` ` ` , Remus-N1pBq ď
2n 2n 2n 2τ

9σ2 ` 4qp 2qp 3qd 2qd
Advauth auth σauth

` ` ` , Remus-N2pBq ď
22n 2n 2n 2τ

0.5σ2 qp 3qd 2qd
Advauth auth σauth

` ` ` . Remus-N3pBq ď
2k´8 2k 2n 2τ

Improvements and fix. For all the variants of Remus-N, the previous authenticity
bounds contain 2`qd{2n, which has been changed to 3qd{2n in our new bounds.
Unlike the case of Romulus-N, the authenticity bounds still implicitly depend on
the message length via σauth. As a fix, the first authenticity term of Remus-N3
was added from the previous bound and the second term was slightly improved
(qpσauth{2

k´8 to qpσauth{2
k) thanks to the revision of the proof. We comment

that this fix does not change the total bit security of pn ́ 8q{2 bits, where k “ n.

2.4 Updated bounds of Remus-M

For encryption query pN, A, Mq or decryption query pN, A, C, T q of a AD blocks
and m message blocks, the number of total TBC calls is at most a ` 2m, which
is called the number of effective blocks of a query.

We first present bounds under nonce-respecting adversary:

Theorem 5. Let A be an NR-privacy adversary against Remus-M using qe

(construction) encryption queries and qp primitive queries with total number of
effective blocks in encryption queries σpriv. Moreover, let B be an NR-authenticity
adversary using qe encryption queries and qd decryption queries, with total number
of effective blocks for encryption and decryption queries σauth, and qp primitive
queries. Then we have

9σ2
priv priv ` 4qpσpriv 2qp

Adv pAq ď ` , Remus-M1 2n 2n

5

9σ2 ` 4qppriv priv σpriv 2qp
Adv pAq ď ` , Remus-M2 22n 2n

9σ2

Advauth auth ` 4qpσauth 2qp 5qd
Remus-M1pBq ď ` ` ,

2n 2n 2n

9σ2

Advauth auth ` 4qpσauth 2qp 5qd
` ` . Remus-M2pBq ď

22n 2n 2n

We next present bounds under nonce-misusing adversary:

Theorem 6. Let A be an NM-privacy adversary and let B be an NM-authenticity
adversary, both are against Remus-M, that use the parameters as specified in
Theorem 5, and can repeat a nonce at most 1 ď r ď 2n´1 times in encryption
queries. Then we have

9σ2 ` 4qpσpriv 2qp nm-priv priv 4rσpriv
Adv pAq ď ` ` , Remus-M1 2n 2n 2n

9σ2 ` 4qpnm-priv priv σpriv 2qp 4rσpriv
Adv pAq ď ` ` , Remus-M2 22n 2n 2n

9σ2

Advnm-auth auth ` 4qpσauth 2qp 4rqe 5rqd
Remus-M1pBq ď ` ` ` ,

2n 2n 2n 2n

9σ2

Advnm-auth auth ` 4qpσauth 2qp 4rqe 5rqd
` ` ` . Remus-M2pBq ď

22n 2n 2n 2n

Improvements and fix. Our improvements and fix for authenticity bounds can be
described in the same manner to the case of Romulus-M.

2.5 Security proofs

We omit the proofs for the space limitation. For all schemes, the basic proof
strategy has a similarity to the proofs of iCOFB [4], and the recent proposal of
Naito and Sugawara’s PFB mode [15], but we needed a careful case analysis.
For analyzing M variants, we also employed a framework of MAC security proof
proposed by Cogliati et al. [6]. The full proofs are presented in a separate paper [9].

3 Update on Implementation Results

3.1 ASIC efficiency

We have implemented several variants of the Romulus and Remus families against
the TSMC 65nm standard cell library, in order to have a better understanding
of the ASIC performance and cost and verify our estimations in Section 4. The
implementations use the round-based Skinny implementation published on the

6

Skinny website [1]. The results in Table 1 show that Remus is very lightweight
and efficient at the same time as it requires slightly above 3 KGE (3.5 KGE
with a simple interface) for its round-based implementation for Remus-N1. Of
course, even smaller (but slower) trade-off are possible by going with a serial
implementation. At the other end of the spectrum in terms of security, the
nonce-misuse resistant version Remus-M2 can be implemented in less than 5 KGE
and provides 128-bit security, even in environments where randomness is not
very reliable.

We have also implemented the serial, round-based and 4-round unrolled
architectures of Romulus-N1. The figures are expected to be similar for Romulus-
N2 and about 550 GEs smaller, and 12„18% faster for Romulus-N3. Moreover,
Remus and Romulus share a similar structure and our experimental results show
that it is very cheap to convert the implementation to the misuse resistant variant.
The implementation results of the Romulus-N1 and Remus-N1 4-round unrolled
architecture show how Romulus and Remus take advantage of the versatility of
Skinny for different architectures, where the throughput can be multiplied by 4
and the efficiency can be increased at a smaller area cost (about 75„100%).

We have implemented Romulus-N1, Remus-N1 and Remus-N2 using the byte
serial Skinny architecture and serialized feedback function for the modes. Serial
implementations for different variants of Skinny have been proposed in [1, 2, 13].
Such implementations can be easily adapted for other Romulus and Remus
members. We have implemented one of our smallest proposals, Remus-N1 using the
byte-serial implementation of Skinny. Without the interface, Remus-N1 requires
around 2100 GEs using the TSMC 65nm standard cell library including the
Skinny logic, Remus-N1 Logic and both the key and state storage.

We compare our implementations to the ones of Ascon and ACORN, the
winners of the lightweight portfolio of the CAESAR competition, and also Ketje-
Sr. We have downloaded the implementations of ACORN and Ketje-Sr from the
ATHENa benchmarking website [7] that were also used as part of the ASIC
benchmarking efforts of the CAESAR Competition [14]. For Ascon, we have
downloaded the serial and round based implementations from the designers
website [8], since these implementations seem to have better performance metrics
compared to the one on the ATHENa website, at the expense of using a different
interface. We have synthesized all four implementations to the same technology
we are using, TSMC 65nm, to allow fair comparisons. We show that Romulus
achieves comparable performance (but Romulus security proofs are in the standard
model) while Remus is very competitive in terms of low area. For example, all the
variants of Remus can achieve throughput above 1 Gbps for less than 5000 GEs,
while the performance of Ascon drops significantly when the area is reduced to
this range. Additionally, we believe the different security models and goals should
be taken into consideration when comparing the performance, as in Romulus and
Remus we use a much stronger primitive without any round reduction.

7

Table 1: ASIC Implementations of Remus and Romulus using the TSMC 65nm
standard cell library. Power and Energy are estimated at 10 Mhz. Energy is for 1
TBC call for Remus-N members and 2 TBC calls for Remus-M members.

Area Minimum Throughput Power Energy Thput/Area
Variant Cycles

(GE) Delay (ns) (Gbps) (µW) (pJ) (Gbps/kGE)

Nonce-respecting schemes (64-bit data security)

Remus-N1 44 3611 0.98 2.96 218.5 961.4 0.82
Remus-N1 Low Area 936 2834 0.8 0.1705 98 9172 0.06

Nonce-respecting schemes (128-bit data security)

Remus-N2 Low Area 936 3700 0.8 0.1705 - - 0.046
Remus-N2 44 4774 0.84 3.46 265.6 1168 0.72
Remus-N2 unrolled x4 14 9278 0.98 9.14 - - 0.98

Romulus-N1 Low Area 1264 4498 0.8 0.1689 - - 0.0376
Romulus-N1 60 6620 1 2.78 548 32.8 0.42
Romulus-N1 unrolled x4 18 10748 1 9.27 - - 0.86

ACORN [7] - 6580 0.9 8.8 - - 1.36
Ascon Low Area [8] 3078 4545 0.5 0.042 167 51402 0.01
Ascon Basic Iterative [8] 6 8562 1 10.4 292.7 - 1.22
Ketje-Sr [7] - 19230 0.9 1.11 - - 0.06

Nonce-misuse resistant schemes (64-bit data security)

Remus-M1 44(AD)/88(M) 3805 1.01 2.16 278.5 2446 0.56

Nonce-misuse resistant schemes (128-bit data security)

Remus-M2 44(AD)/88(M) 4962 0.93 2.34 390.7 3440 0.47

3.2 FPGA efficiency

The FPGA results presented in Table 2 show that the FPGA implementations of
Romulus and Remus follow the same trend as the ASIC implementations achieving
between 156 and 285 Slices for the round based implementations and less than
500 Slices for the 4-round unrolled implementations. Table 2 shows that Romulus
and Remus are significantly smaller, faster and more efficient than than the
Deoxys-based design Lilliput for example.

4 Hardware Implementations

4.1 General Architecture and Hardware Estimates

The goal of the design of Romulus and Remus is to have a very small area overhead
over the underlying TBC, specially for the round-based implementations. In order
to achieve this goal, we set two requirements:

1. There should be no extra Flip-Flops over what is already required by the
TBC, since Flip-Flops are very costly (4 „ 7 GEs per Flip-Flop).

2. The number of possible inputs to each Flip-Flop and outputs of the circuits
have to be minimized. This is in order to reduce the number of multiplexers
required, which is usually one of the cause of efficiency reduction between
the specification and implementation.

8

Table 2: FPGA Results for Remus and Romulus on the Xilinx Virtex 6 FPGA
using ISE

Max. Freq. Throughput Throughput/Area
Variant Slices LUTs Registers

(MHz) (Mbps) (Mbps/Area)

Nonce-respecting schemes (64-bit data security)

Remus-N1 189 540 308 250 727.7 3.8
Remus-N1 : 550 1669 338 147.7 1358.84 2.4

Nonce-respecting schemes (128-bit data security)

Remus-N2 225 757 358 250 727.7 3.23
Romulus-N1 307 919 534 250 695 2.26
Romulus-N1 : 597 1884 528 250 2300 3.85

Lilliput-I-128 391 1506 1017 185 657.8 1.68
Lilliput-II-128 309 1088 885 185 328.9 1.06

Nonce-misuse resistant schemes (64-bit data security)

Remus-M1 220 595 322 240 348 1.58

Nonce-misuse resistant schemes (128-bit data security)

Remus-M2 279 816 397 219 317.6 1.13

: Unrolled x4.

One of the advantages of Skinny as a lightweight TBC is that it has a very
simple datapath, consisting of a simple state register followed by a low-area
combinational circuit, where the same circuit is used for all the rounds, so the
only multiplexer required is to select between the initial input for the first round
and the round output afterwards (Figure 1(a)), and it has been shown that
this multiplexer can even have lower cost than a normal multiplexer if it is
combined with the Flip-Flops by using Scan-Flops (Figure 1(b)) [13]. However,
when used inside an AEAD mode, challenges arise, such as how to store the
key and nonce, as the key scheduling algorithm will change these values after
each block encryption. The same goes for the block counter. In order to avoid
duplicating the storage elements for these values; one set to be used to execute
the TBC and one set to be used by the mode to maintain the current value, we
studied the relation between the original and final value of the tweakey. Since the
key scheduling algorithm of Skinny is fully linear and has very low area (most of
the algorithm is just routing and renaming of different bytes), the full algorithm
can be inverted using a very small circuit that costs 64 XOR gates for Romulus-N1
and 0 gates for Remus. Moreover, the LFSR computation required between blocks
can be implemented on top of this circuit, costing 3 „ 5 extra XOR gates. This
operation can be computed in parallel to ρ, such that when the state is updated
for the next block, the tweakey key required is also ready. This costs only „ 67
XOR gates as opposed to „ 320 Flip-Flops that will, otherwise, be needed to
maintain the tweakey value. Hence, the mode was designed with the architecture
in Figure 1(b) in mind, where only a full-width state-register is used, carrying
the TBC state and tweakey values, and every cycle, it is either kept without
change, updated with the TBC round output (which includes a single round of
the key scheduling algorithm) or the output of a simple linear transformation,
which consists of ρ{ρ ´1, the unrolled inverse key schedule and the block counter.

9

Another possible optimization is to consider the fact that most of the area
of Skinny comes from the storage elements, hence, we can speed up Romulus or
Remus to almost double the speed by using a simple two-round unrolling, which
costs „ 1, 000 GEs, as only the logic part of Skinny needs replication, which is
only ă 20% increase in terms of area for Romulus.

Romulus-M is estimated to have almost the same area as Romulus-N, except
for an additional set of multiplexers in order to use the tag as an initial vector
for the encryption part. This indicates that it can be a very lightweight choice
for high security applications.

state state

Skinny Skinny

input

input

(a) Overview of the round based
architecture of Skinny.

state

Skinny lt

input

output

(b) Overview of the round based
architecture of Remus. lt: The lin-
ear transformation that includes ρ,
block counter and inverse key sched-
ule.

Fig. 1: Expected architectures for Skinny and Remus

For the serial implementations we followed the currently popular bit-sliding
framework [13] with minor tweaks. The state of Skinny is represented as the
Feedback-Shift Register which typically operates on 8 bits at a time, while
allowing the 32-bit MixColumns operation, given in Figure 2.

It can be viewed in Figure 2 that several careful design choices such as a
lightweight serializable ρ function without the need of any extra storage and a
lightweight padding/truncation scheme allow the low area implementations to
use a very small number of multiplexers on top of the Skinny circuit for the state

10

S0 S1 S2 S3

S4 S5 S6 S7

S8 S9 Sa Sb

Sc Sd Se Sf SBox

RC

RTK
ρ

input

0x00

len

output

0x00

Fig. 2: Serial State Update Function Used in Romulus and Remus

update, three 8-bit multiplexer to be exact, two of which have a constant zero
input, and „ 22 XORs for the ρ function and block counter. For the key update
functions, we did several experiments on how to serialize the operations and we
found the best trade-off is to design a parallel/serial register for every tweakey,
where the key schedule and mode operations are done in the same manner of
the round based implementation, while the AddRoundKey operation of Skinny is
done serial as shown in Figure 2.

Usually there is a disparity between the theoretical estimate of the state size
of a mode and the practical implementations. However, our practical implementa-
tions show that our theoretical estimates match exactly our implementations for
both round based and serial implementations up to a constant term that covers
the round constants of Skinny and the Finite State Machine of the API/interface,
as shown in Table 3.

Table 3: Practical State Size of Romulus and Remus Variants
Variant State Size
Romulus-N1 448 ` Op1q
Remus-N1 256 ` Op1q
Remus-N2 384 ` Op1q
Remus-M1 256 ` Op1q
Remus-M2 384 ` Op1q

4.2 Future Work

We have implemented some representative variants of Romulus and Remus and we
have reported their area and performance. We plan to implement more variants,

11

do energy and power simulations and also provide side-channel and fault protected
implementations.

Acknowledgments

The second and fourth authors are supported by Temasek Laboratories, Singapore.

References

1. The Skinny Cipher Website, https://sites.google.com/site/skinnycipher/
home

2. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,
Sasdrich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency
variant MANTIS. In: CRYPTO (2). Lecture Notes in Computer Science, vol. 9815,
pp. 123–153. Springer (2016)

3. Chakraborti, A., Iwata, T., Minematsu, K., Nandi, M.: Blockcipher-based authen-
ticated encryption: How small can we go? In: CHES. Lecture Notes in Computer
Science, vol. 10529, pp. 277–298. Springer (2017)

4. Chakraborti, A., Iwata, T., Minematsu, K., Nandi, M.: Blockcipher-based authen-
ticated encryption: How small can we go? (full version of [3]). IACR Cryptology
ePrint Archive 2017, 649 (2017)

5. Chakraborty, B., Nandi, M.: Observation on Romulus-M. Private Communication
(2019)

6. Cogliati, B., Lee, J., Seurin, Y.: New Constructions of MACs from (Tweakable)
Block Ciphers. IACR Trans. Symmetric Cryptol. 2017(2), 27–58 (2017)

7. George Mason University: ATHENa: Automated Tools for Hardware EvaluatioN.
https://cryptography.gmu.edu/athena/ (2017)

8. Github: ASCON-128 Hardware Design Document. https://github.com/IAIK/
ascon_hardware/blob/master/doc/ascon_hw_doc.pdf (2017)

9. Iwata, T., Khairallah, M., Minematsu, K., Peyrin, T.: Duel of the titans: The
Romulus and Remus families of lightweight AEAD algorithms. IACR Cryptology
ePrint Archive 2019, 992 (2019)

10. Iwata, T., Khairallah, M., Minematsu, K., Peyrin, T.: Remus v1. Submission to
NIST Lightweight Cryptography Project (2019)

11. Iwata, T., Khairallah, M., Minematsu, K., Peyrin, T.: Romulus v1. Submission to
NIST Lightweight Cryptography Project (2019)

12. Iwata, T., Khairallah, M., Minematsu, K., Peyrin, T., Sasaki, Y., Sim, S.M., Sun,
L.: TGIF v1. Submission to NIST Lightweight Cryptography Project (2019)

13. Jean, J., Moradi, A., Peyrin, T., Sasdrich, P.: Bit-sliding: A generic technique for
bit-serial implementations of spn-based primitives. In: International Conference on
Cryptographic Hardware and Embedded Systems. pp. 687–707. Springer (2017)

14. Kumar, S., Haj-Yihia, J., Khairallah, M., Chattopadhyay, A.: A comprehensive
performance analysis of hardware implementations of caesar candidates. IACR
Cryptology ePrint Archive 2017, 1261 (2017)

15. Naito, Y., Sugawara, T.: Lightweight Authenticated Encryption Mode of Operation
for Tweakable Block Ciphers. IACR Cryptology ePrint Archive 2019, 339 (2019)

12

https://sites.google.com/site/skinnycipher/home
https://sites.google.com/site/skinnycipher/home
https://cryptography.gmu.edu/athena/
https://github.com/IAIK/ascon_hardware/blob/master/doc/ascon_hw_doc.pdf
https://github.com/IAIK/ascon_hardware/blob/master/doc/ascon_hw_doc.pdf

	Updates on Romulus, Remus and TGIF
	Introduction
	Update on Provable Security
	Updated bounds of Romulus-N
	Updated bounds of Romulus-M
	Updated bounds of Remus-N
	Updated bounds of Remus-M
	Security proofs

	Update on Implementation Results
	ASIC efficiency
	FPGA efficiency

	Hardware Implementations
	General Architecture and Hardware Estimates
	Future Work

