
What the Fork: Implementation Aspects of a Forkcipher

4 Antoon Purnal1, Elena Andreeva2, Arnab Roy3, and Damian Vizár

1 imec-COSIC, KU Leuven, Belgium
antoon.purnal@esat.kuleuven.be

2 Technical University of Denmark, Denmark
elean@dtu.dk

3 University of Bristol, United Kingdom
arnab.roy@bristol.ac.uk

4 CSEM, Switzerland
damian.vizar@csem.ch

Abstract. Lightweight cryptography refers to cryptographic designs that are heavily op-
timized to minimize resources, such as computational complexity, latency, energy/power
consumption, hardware area, code size, and RAM, or to be very efficient in a particular
application scenario, where the “conventional” cryptography would not suffice. Prompted by
the growing demand for such designs, NIST launched the Lightweight Cryptography project
which is supposed to identify and possibly standardize suitable lightweight authenticated
encryption (AE) and hashing algorithms in a well established open competition framework.
One of these submissions is ForkAE. ForkAE proposes a new primitive ForkSkinny and AE
modes optimized for applications where very short messages dominate the communication. In
this paper, we investigate multiple implementation/trade-off strategies for ForkAE, bench-
mark the synthesized hardware and compare it with several other lightweight AE primitives,
and give performance and area estimates for the implementation of the ForkAE modes, as
well as some selected competitors.

1 Introduction

Lightweight cryptography (LWC) is the general term used for cryptography tailored for
resource-constrained devices and applications [23], where the computational complexity,
latency, energy and/or power consumption, hardware area, code size, or RAM usage of
“conventional” cryptography simply does not fit in the budget. For example, a lightweight
blockcipher may be designed to have a tiny hardware implementation but be slower than
average [16], or very fast but to require larger hardware area and power [15], or be especially
suitable for hardware [14]. Viewed from another perspective, lightweight cryptography can
be understood as a set of designs that occupy the more extreme axes in the design/trade-
off space. Unlike the “conventional” cryptography, which usually aims to cover a wide
variety of platforms and applications, LWC is targeting narrower classes of applications
with (very) particular constraints [13]. The need for specialized and highly optimized
cryptography is evidenced both by the massive growth of the application markets (such
as the “Internet of Things”) and by the recent NIST Lightweight Cryptography project,
which attracted 56 candidate designs [24] in round one.

Short messages. An important class of LWC applications which is of interest for the
design of authenticated encryption with associated data (AEAD or AE) are applications
where the majority of messages is of short length (e.g., 8 bytes). This class covers a wide
range of practical scenarios.

mailto:damian.vizar@csem.ch
mailto:arnab.roy@bristol.ac.uk
mailto:elean@dtu.dk
mailto:antoon.purnal@esat.kuleuven.be

The Secure Onboard Communication in the automotive industry [4] are expected to handle
short messages with stringent latency requirements. Critical communication and massive
IoT domains of 5G will have to process frequent bursts of very short messages [1]. Nar-
rowband IoT allows a minimum payload size of 16 bits [3, 2], which will dominate the
communication in applications such as smart parking lots that need to transmit infor-
mation encoded on a few bits (e.g., “free” or “occupied” status). Most medical implant
devices, such as pacemakers, transmit messages of length at most 16 bytes to and from
the device programmer. Advanced robotic prosthetics wirelessly transmit bursts of short
messages with stringent latency requirements, as well as 1-byte temporal synchronization
messages [5]. Wireless aircraft tyre pressure monitoring systems usually transmit payloads
of ≤ 10 bytes [25].

AE for short messages. Most of the modern AE schemes (e.g., CCM [28], GCM [22],
OCB [21] and of the CAESAR candidates [11]) are constructed as modes of operation for
a low-level cryptographic primitive, such as a (tweakable) blockcipher or a cryptographic
permutation. When processing a nonce-associated data (AD)-plaintext tuple, virtually
every such AE scheme makes a few calls to the primitive that are in addition to and
independent of (a + m), the lengths of the associated data (AD) a and the message m.
These additional calls serve different purposes, typically they perform a nonce-based setup,
or a computation of a key-dependent ciphertext redundancy. Such fixed-cost computation
is well amortized on long inputs. However, for short inputs where the message processing
may entail as little as a single primitive call, the extra calls result in a significant overhead.

Recently, Andreeva et al. [6] proposed the new symmetric primitive forkcipher. When
forkcipher is coupled together with the appropriate AEAD mode of operation it achieves
optimal (a+m) primitive calls for the shortest messages [6]. This is achieved at the cost of
constructing an expanding forkcipher primitive and utilizing its inverse in decryption (else
additional primitive calls are always incurred). More precisely, a forkcipher is a tweakable
expanding primitive; it produces two redundant output blocks. This allows for building
modes that have a zero fixed cost and are able to completely process the shortest mes-
sages with a single primitive call while still being able to process longer inputs, albeit
somewhat less efficiently. The proposed forkcipher instance ForkSkinny is an iterated
design that follows the TWEAKEY framework [20]. Roughly speaking, ForkSkinny is
like the tweakable blockcipher Skinny [10] except that halfway through the encryption,
its state is duplicated (or else forked), and each fork is further encrypted with indepen-
dent round keys with a total computational complexity of ≈ 1.6 of Skinny. Intuitively,
ForkSkinny modes should outperform any modes of Skinny for the shortest queries.

Implementing ForkSkinny. The authors of the ForkAE submission [7] give results
for a preliminary hardware (HW) implementation. In this paper, we investigate further
the HW implementation aspects of ForkSkinny and its AE modes. More specifically,
we (1) explore the HW implementation strategies and trade-offs that are available for an
iterated forkcipher, (2) benchmark the obtained implementations and compare them with
other lightweight (tweakable) blockciphers and permutations submitted to the NIST LW
competition, and (3) estimate the resource costs of ForkSkinny modes and compare
them to those of other similar lightweight AE schemes.

Contributions. In this work we describe several implementation strategies for
the newly proposed ForkSkinny. Those can be additionally generalized to any it-

erated forkcipher. Our optimizations are targeting: (1) Post-fork parallelism; we show
how to exploit the almost-independent processing of the two ForkSkinny branches after
the forking point. (2) Recomputation; for small area constraints, we describe an efficient
rewind/restart mechanism for serialization of the forkcipher branching. (3) Unrolling: for
low latency, we describe different unrolled forkcipher implementations.
We further compare the performance and area of the synthesized implemen-
tation of ForkSkinny in its modes with a suitable and manageable subset of
NIST LWC candidates: Skinny-AEAD [9], Romulus [19] and Ascon [18]. We employ
a methodology that allows us to swiftly and reproducibly compile a meaningful compar-
ison. In that effort: (1) We use or provide a full implementation for each involved lower
level primitive, and synthesize with a freely available technology library. (2) We give a fair
comparison by estimating the overall implementation cost and performance of each mode
under the same assumptions. Moreover, we provide configurable ForkSkinny imple-
mentations in the public domain§. Finally, we identify promising future research
directions and applications for the forkcipher primitive.

2 ForkSkinny Specification

A forkcipher is a function F : {0, 1}κ ×{0, 1}t ×{0, 1}n ×{0, 1, b} → {0, 1}n ∪{0, 1}2n which
takes a tweakey ∈ {0, 1}t+κ, a message ∈ {0, 1}n as and an output-switch as input and
produces the “left”, the “right” or “both” n-bit output blocks according to the output-
switch. κ and t denotes the length (in bits) of the secret key and tweak respectively.

Andreeva et al. have recently proposed an instantiation of forkcipher called ForkSkinny.
ForkSkinny is constructed following the iterate-fork-iterate (IFI) paradigm using the
tweakable block cipher Skinny[10]. The outline of the ForkSkinny construction is de-
picted in Figure 1.

r0

RF RF

TKS TKS

rinit
RF RF

RF RF

TKS TKS

BC

Tw

TKS TKS

r1

C0

M

C1

KkT Tw

Fig. 1: The structure of ForkSkinny. TKS denote the round tweakey schedule
function and RF denotes the round function (output-switch omitted)

The round function of ForkSkinny is almost identical to the round function of Skinny.
Each round can be described as

Ri = Mixcolumn ◦ Addconstants ◦ Addroundtweakey ◦ Shiftrow ◦ Subcell

§All current and future ForkAE implementations are available at https://github.com/byt3bit/forkae

https://github.com/byt3bit/forkae

where the Mixcolumn, Shiftrow, Subcell and Addroundtweakey functions are same as
in Skinny. Note that the Addroundtweakey function is used in ForkSkinny to generate
round tweakeys for rinit + r0 + r1 rounds, where r1 and r0 denote the number of rounds
in the left and right branch of ForkSkinny and rinit denotes the number of rounds
before forking. The Addconstants function in ForkSkinny differs from Skinny. Unlike
Skinny (which has 6 bit round constants), the Addconstants in ForkSkinny gener-
ates 7 bit round constants using an LFSR. ForkSkinny always have a key size κ = 128
(bits) and for each instance r0 = r1. We will denote an instance of ForkSkinny as
ForkSkinny-n-t + κ-(rinit, r0). Following this notation there instances of ForkSkinny
are: ForkSkinny64-192-(17, 23), ForkSkinny-128-192-(21, 27), ForkSkinny-128-256-
(21, 27) and ForkSkinny-128-288-(25, 31). For a more detailed description of the Fork-
Skinny algorithm we refer the readers to the article [6].

3 Forkcipher Modes

Andreeva et al. proposed two modes for ForkAE, the parallelizable mode PAEF and the
sequential mode SAEF [6]. Both are provably secure nonce-based AE schemes [26] (we skip
the syntax of AE schemes for brevity). The former achieves optimal quantitative security
(thus allowing for secure instances with a small block size) while the latter is secure up to
the birthday bound but requires a smaller internal state. Both these modes are designed
to be most efficient for the shortest queries (with 1 or 2 blocks input data), and their
performance deteriorates for longer inputs.

PAEF. PAEF processes blocks of AD and message with single call to F each, using tweaks
composed of the nonce (with length 0 < ν ≤ t − 4), a domain separation constant and a
counter. See Figure 2.

Fig. 2: The encryption algorithm of PAEF[F] mode. The picture illustrates the processing of AD when
length of AD is a multiple of n (top left) and when the length of AD is not a multiple of n (top right),
and the processing of the message when length of the message is a multiple of n (bottom left) and when
the length of message is not a multiple of n (bottom right). The white hatching denotes that an output
block is not computed. If |M | = 0, the tag is equal to TA; else if |A| = 0, the AD processing is skipped.

SAEF. SAEF processes blocks of AD and message with single call to F each, using tweaks
composed of the either a padded nonce (of length t − 4) or a string of n − 3 zeros, and a
domain separation constant. See Figure 3.

Fig. 3: The encryption algorithm of SAEF[F] mode. The bit noM = 1 iff |M | = 0. The picture illustrates
the processing of AD when length of AD is a multiple of n (top left) and when the length of AD is not
a multiple of n (top right), and the processing of the message when length of the message is a multiple
of n (bottom left) and when the length of message is not a multiple of n (bottom right). The white
hatching denotes that an output block is not computed. If |M | = 0, the tag is equal to TA; else if |A| = 0,
the AD processing is skipped.

4 Trade-offs and implementation strategies

This section describes suitable hardware implementation strategies for the forkcipher prim-
itive both in a more general sense (based on the IFI approach) and concretely for the
ForkSkinny instantiation of IFI. Our work largely focuses on round-based implementa-
tions, as they are often the most suitable choice in practice. Furthermore, we establish
strategies for serialized, unrolled and pipelined implementations, as well as illustrate both
extremes of the speed-area trade-off space.

4.1 Round-based implementations

Hardware architecture. Figure 4a presents a round-based ForkSkinny hardware ar-
chitecture, where combined encryption-decryption functionality can be enabled. The IS
and TK registers respectively store internal cipher state and tweakey, and computations
occur directly in these registers. The L register stores the state at the forking point, RC
denotes the round constant, and BC is a combinational implementation of the branch
constant. Decryption requires computing the decryption tweakey with TKSrinit+r1 (·).

Internal parallelism. The (almost) independent nature of the two branches after the
forking step in ForkSkinny gives rise to internal primitive parallelism, allowing to de-
crease the computational time beyond lowering the number of rounds. Inherent to an
iterate-fork-iterate forkcipher, and regardless of the particular instantiation, the paral-
lelism is always available, both in hardware and software. Note however, that for a key
schedule where there is a function f that describes the tweakey of the C0 branch as a func-
tion of the tweakey of the C1 branch, the parallelism can be exploited at a very little cost
in hardware. In the current ForkSkinny key schedule, such a function is: f = TKSr0 (·).
Figure 4b depicts a simplified version of the resulting architecture, revealing that the only
overhead is a second instance of the round function and the function f itself (which is
cheap, owing to Skinny’s lightweight key schedule). As the natural way to implement a

forkcipher in hardware, it allows to compute a forkcipher call at the latency of a conven-
tional tweakable block cipher †. In what follows, we refer to this strategy as fast-forwarding
and we let (//) denote an implementation that makes use of the parallelism.

(a)

(b)

Fig. 4: Hardware architecture diagrams of (a) regular encryption/decryption
architecture, (the optional decryption functionality is shaded)

(b) fast-forwarding the tweakey for efficient parallelism after forking

Decryption can also exploit this kind of parallelism, albeit at the cost of duplicating the
key storage. Indeed, there currently exists no such f that captures the relation between
the tweakey in the decryption and reconstruction branch (it changes every round). The
attractiveness of the forkcipher can hence be further enhanced by designing a fork-friendly
key schedule for efficient parallel decryption.

Instance-specific optimizations and features. For the sake of clarity, the architectures
in Figure 4 abstract away the low-level, instance-dependent optimizations. For instance,
setting the decryption key for ForkSkinny-128-192 and ForkSkinny-128-256 is much
cheaper, because TKS48(·) = TKS0(·) for a large part of the tweakey state. Moreover,
since ForkSkinny-128-192 and ForkSkinny-128-288 do not utilize all of the available
tweakey, storage of the unused cells can be replaced with conditional AND gates (zeroizing
these cells every other round). Finally, all ForkSkinny instances can optionally rewind
key and nonce from the computation registers, removing the need for additional storage.

Hardware implementations. Following the submission of this document, we will place
the VHDL hardware description of the round-based architectures in the public domain.
These implementations are highly configurable in terms of family members, encryption-
only and encryption-decryption instances, and the exploitation of post-fork parallelism. In
doing so, we hope to reduce the friction of including ForkAE in third-party benchmarking.
Indeed, implementing a novel primitive requires considerably more exploration than a
block cipher or stream cipher, for which the implementation trade-offs are already firmly
established.

†Assuming, of course, that rinit + r0 = rinit + r1 is equal to the original number of TBC rounds.

4.2 Unrolled and high-throughput implementations

Unrolling strategies. Unrolling the rounds of a cryptographic primitive is a useful tech-
nique to reduce the latency of the primitive by amortizing the set-up and hold-times of
sequential logic, or to maintain a high speed even when the design is to be clocked at a much
lower frequency. Fully unrolled implementations are the most extreme and yield the output
in a single cycle by instantiating all rinit +r0 +r1 in hardware. Another, seemingly natural,
strategy for an IFI forkcipher is three-fold unrolling, in which one implements an instance
of max(rinit, r0, r1) unrolled rounds with output taps at rinit, r0, r1 to compute resp. the
rounds before forking, the C0 branch and the C1 branch. Figure 5 presents the synthesis re-
sults for the fully unrolled and three-fold unrolled strategies. In case encryption-decryption
functionality is required, the combinational logic should approximately be doubled, while
the sequential logic can be shared by introducing multiplexers. Like other cryptographic
primitives, forkciphers can also be unrolled less aggressively (e.g. two or three rounds).

Fully unrolled Area Critical path
(1 cycle) [GE] [ns]

ForkSkinny-64-192 34167 26
ForkSkinny-128-192 62387 37

Three-fold unrolled
(3 cycles)

Area
[GE]

Critical path
[ns]

ForkSkinny-64-192
ForkSkinny-128-192

16221
29666

14
20

Fig. 5: Unrolled implementations (encryption) in Nangate 45nm

High-throughput implementations. As demonstrated by the designers, the low circuit
depth of the Skinny round function makes it extremely well-suited for high-throughput,
pipelined implementations [10]. While serial AE modes like Saef, Romulus or Ascon can
only benefit from pipelining when considering a relatively high-end device (e.g., a server)
that can interleave the messages of many communicating nodes, parallel modes like Paef
can exploit a large pipeline depth to the fullest. Using the fast-forwarding approach from
Section 4.1, it is relatively straightforward to construct pipelined ForkSkinny from the
publicly available Skinny implementations [27], with a similar critical path. As another
motivating example, high-throughput implementations are a common strategy for FPGA
platforms [10], because the necessary pipelining registers come “for free” in an FPGA slice.

4.3 Reducing the area requirements

For highly serialized implementations, storage elements and multiplexers constitute the
dominant resource utilization. Forkciphers are flexible in the sense that they allow to re-
trieve the forking state rather than to store it, either by rewinding from C1 or by restarting
from M . This flexibility allows to compute the a + m forkcipher calls as a + 2m BC calls,
bearing similarity with two-pass schemes (e.g. Sundae [8] with a + 2m + 2 BC calls).

5 Synthesis results and comparison

Synthesis flow. For reproducing the results in this article, we fully describe the synthesis
parameters. We allow the use of Scan Flip-Flops. Synthesis occurs with exactly the same

parameters for all designs: Synopsys Design Compiler 2017.N3 using compile, using
the Nangate 45nm open cell technology library in typical operating conditions.

ForkSkinny results. Figure 6 presents the synthesis results for Skinny and Fork-
Skinny (already with write enable for the tweakey state). We can observe that the area
requirements of a forkcipher are not that much larger than for a block cipher, and that the
critical path only slightly increases. Moreover, as conjectured in Section 4.1, the internal
forkcipher parallelism comes at a relatively low cost.

Area [GE] Maximal frequency [MHz]

Primitive
Enc-only Enc+Dec

Primitive
Enc-only Enc+Dec

Regular Parallel Regular Parallel

Skinny-64-192 3003 / 4522 /
Skinny-128-256 4992 / 6355 /
Skinny-128-384 5914 / 8311 /

ForkSkinny-64-192 3692 4307 5362 6229
ForkSkinny-128-192 5299 6113 7305 8608
ForkSkinny-128-256 5842 6688 8101 9450
ForkSkinny-128-288 6751 7917 9182 10876

Regular Parallel Regular Parallel

Skinny-64-192 1351 / 1087 /
Skinny-128-256 1087 / 1020 /
Skinny-128-384 1020 / 962 /

ForkSkinny-64-192 1282 1253 980 952
ForkSkinny-128-192 1064 1020 877 877
ForkSkinny-128-256 1064 1020 917 884
ForkSkinny-128-288 990 962 862 820

Fig. 6: Synthesis results for Skinny and ForkSkinny primitives (in Nangate 45nm)

Comparison targets. In the remainder of this section, we compare round-based imple-
mentations of the ForkSkinny modes with a subset of NIST LWC candidates in simi-
lar categories: Skinny-AEAD [9] (Skinny-based, parallel, full security), Romulus [19]
(Skinny-based, serial, short message performance) and Ascon [18] (short message per-
formance).

Mode estimation methodology. We acknowledge the engineering effort and added
value of fairly benchmarking hardware implementations on different platforms. Given the
current timeline, we provide a hybrid estimate of the area of the compared designs, in our
effort to provide timely feedback before the announcement of the second round candidates.
As a first-order estimate, we synthesize the underlying primitives (see Figure 6) under
identical conditions and estimate the area of a straightforward implementation of the
modes (using the Nangate 45nm numbers: 7.67GE for Scan flip-flops (SFF), 2.33GE
for multiplexers (MUX), 2GE for XOR/XNOR and 1GE for NAND). In our estimates, we
consider a bus interface of n/4 bits. While we do not count the area of interfaces (e.g.
FIFOs at input and output), a reasonably-sized bus implies that it will not be possible to
write all inputs in a single go, requiring write enable for all registers that store inputs.
Importantly for AEAD schemes, we count either the storage for key, nonce (if applicable)
and counter (if applicable), or the logic required to recompute them (the latter approach
is best for Skinny-based designs). Although some multiplexers are possibly added by
implementing a mode on top of a primitive, we assume for this very coarse estimation
that the critical path of the primitive is unchanged.

Exemplifying this estimate framework, for encryption-only implementations, the PAEF
mode (with l-bit counter) requires n SFF, n + t + l MUX (t + l MUX for the parallel
128-bit versions as recomputing TK1 happens automatically), 5n/4 XOR/XNOR and
n NAND, on top of the primitive as synthesized in Figure 6. Similarly, the SAEF mode
requires n SFF, 2n MUX (n MUX for the parallel 128-bit versions) and 5n/4 XOR/XNOR

for encryption. The numbers for encryption-decryption ForkSkinny are obtained in a
similar fashion.

We estimate Skinny-AEAD in the same way, also using the primitives of Figure 6. For
Romulus, we consider the architecture suggested by the designers [19], adding 128 MUX
for write enable of the internal state. For Ascon, we resynthesize the publicly available
Asconv1.1 implementations [17] (no performance changes w.r.t Asconv1.2), yielding
8125GE with a critical path of 1.71 ns for Ascon128 and 8338 GE with a critical path of
2.06 ns for Ascon128a. To match the assumptions of the other targets, we add key storage
(982GE) but subtract 100GE for control, which is not included for the other schemes.

Comparison with Skinny-based AE schemes. For the Skinny-based designs, Fig-
ure 7 compares round-based implementations that encrypt a blocks of associated data and
m blocks of message. The modes are partitioned first on tag sizes, then on the underly-
ing Skinny‡and on properties of the mode; Saef and Romulus are serial modes with
birthday-bounded security, whereas Skinny-AEAD and Paef are parallel modes with full
n-bit security. When the input consists of a single message block, the ForkSkinny modes
are up to twice as fast as the competition. From the visual presentation in Figure 8, one
can identify from which input sizes ForkSkinny performance reduces.

Implementation
(round-based)

Area [GE]
E-only

Area [GE]
EncDec

Number of cycles for encrypting (a + m) 64-bit blocks
a = 0 a = 1

General
m = 1 m = 2 m = 3 m = 0 m = 1 m = 2

Sk-AEAD M6

PAEF-64-192
PAEF-64-192 (//)

8095

5034
5500

9458

6704
7422

96 96 144

63 126 189
40 80 120

48 96 96

40 103 166
40 80 120

48(d a e + d m e + 1)
2 2

40(a + 1.575m)
40(a + m)

Implementation
(round-based)

Area [GE]
E-only

Area [GE]
EncDec

Number of cycles for encrypting (a + m) 128-bit blocks
a = 0 a = 1

General
m = 1 m = 2 m = 3 m = 0 m = 1 m = 2

Romulus-N3

SAEF-128-192

SAEF-128-256
SAEF-128-192 (//)
SAEF-128-256 (//)

6288

7197

7740
7713
8288

6406

9203

9999
10804
11646

96 144 192

75 150 225

75 150 225
48 96 144
48 96 144

48 96 144

48 123 198

48 123 198
48 96 144
48 96 144

48(d a−1 e + m + 1)
1.75

48(a + 1.562m)

48(a + 1.562m)
48(a + m)
48(a + m)

Sk-AEAD M5
PAEF-128-192 (//)
PAEF-128-256 (//)

8746
8020
8745

10109
11112
12103

96 144 192
48 96 144
48 96 144

96 144 192
48 96 144
48 96 144

48(a + m + 1)
48(a + m)
48(a + m)

Romulus-N1 7018 7136 112 168 224 56 112 168 56(d a−1 e + m + 1)
2

Sk-AEAD M1-2

PAEF-128-288
PAEF-128-288 (//)

9966

9274
10141

12363

11705
13697

112 168 224

87 174 261
56 112 168

112 168 224

56 143 230
56 112 168

56(a + m + 1)

56(a + 1.553m)
56(a + m)

Fig. 7: Nangate 45nm area and cycle counts for round-based implementations of Skinny-
based authenticated encryption, considering a blocks of associated data and m blocks
message. As established earlier, the area is partly synthesized and partly estimated.

General speed-area investigation of NIST candidates. Comparing with NIST can-
didates that are based on other (T)BC or even permutations (like Ascon) is more com-

‡Although having equal tag sizes, Skinny-AEAD M6 and PAEF-64-192 are not a perfect match. Of all
Skinny-based designs, they are the closest competitor when tiny messages (≤8 bytes) are predominant.

300

200

100

0

300

200

ForkSkinny-128-192
ForkSkinny-128-192 (//)
Skinny-AEAD M5
Romulus N1

1 2 3 4

ForkSkinny-64-192
ForkSkinny-64-192 (//)
Skinny-AEAD M6

1 2 3 4

m

#
cy
cl
es

#
cy
cl
es

100

0

m

Fig. 8: Number of cycles for round-based implementations as a function of input
size (a = 0, m variable) for 64-bit blocks (left) and 128-bit blocks (right)

plicated. Admitting that we cannot cover every implementation strategy for every scheme
with limited resources, we attempt to approximate the speed-area positions of these candi-
dates in the trade-off space using the aforementioned conservative estimation methodology.
The speed metric (execution time per message) incorporates both the number of cycles (cf.
Figure 7) and the critical path of the design (cf. Figure 6) to account for the difference in
circuit depth between the primitives. Figure 9 plots some interesting comparison targets
in a speed-area graph in four configurations, two of which with 64-bit input blocks and
two with 128-bit input blocks. We can observe that for very short messages (≤ 8 bytes),
the PAEF-64-192 instances have excellent properties, either outperforming Ascon or
providing a similar latency with smaller area. Considering messages of 128 bits or longer,
while the encryption-decryption ForkSkinny architectures are no longer the absolute
best in class, they are capable of occupying several good positions in the speed-area plane,
while the encryption-only architectures still have excellent performance.

12 000 12 000

5 000

PAEF-64-192 Enc-only
PAEF-64-192 (//) Enc-only
SkinnyAEAD-M6 Enc-only
PAEF-64-192 EncDec
PAEF-64-192 (//) EncDec
SkinnyAEAD-M6 EncDec
Ascon128 EncDec

5 000

4 000 4 000

3 000 3 000

PAEF-64-192 Enc-only
PAEF-64-192 (//) Enc-only
SkinnyAEAD-M6 Enc-only
PAEF-64-192 EncDec
PAEF-64-192 (//) EncDec
SkinnyAEAD-M6 EncDec
Ascon128 EncDec

20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100

Message latency [ns] for a = 0,m = 1 Message latency [ns] for a = 1,m = 0

12 000

20 30 40 50 60 70 80 90 100

Message latency [ns] for a = 0, m = 1

SAEF-128-192 Enc-only
SAEF-128-192 (//) Enc-only
PAEF-128-192 (//) Enc-only
Skinny-AEAD M6 Enc-only
Romulus-N3 Enc-only
SAEF-128-192 Enc-Dec
SAEF-128-192 (//) Enc-Dec
PAEF-128-192 (//) Enc-Dec
Skinny-AEAD M6 Enc-Dec
Romulus-N3 Enc-Dec
Ascon128a Enc-Dec

12 000

11 000 11 000

10 000 10 000

9 000 9 000

20 30 40 50 60 70 80 90 100

SAEF-128-192 Enc-only
SAEF-128-192 (//) Enc-only
PAEF-128-192 (//) Enc-only
Skinny-AEAD M6 Enc-only
Romulus-N3 Enc-only
SAEF-128-192 Enc-Dec
SAEF-128-192 (//) Enc-Dec
PAEF-128-192 (//) Enc-Dec
Skinny-AEAD M6 Enc-Dec
Romulus-N3 Enc-Dec
Ascon128a Enc-Dec

11 000 11 000

10 000 10 000

9 000 9 000

A
re
a
[G

E
]

A
re
a
[G

E
]

A
re
a
[G

E
]

A
re
a
[G

E
]

8 000 8 000

7 000 7 000

6 000 6 000

8 000 8 000

7 000 7 000

6 000 6 000

5 000 5 000

4 000 4 000

3 000 3 000

Message latency [ns] for a = 1,m = 0

Fig. 9: Speed vs area for several NIST candidates;
64-bit input blocks (top) 128-bit input blocks (bottom)

6 Conclusion and future work

Forkcipher and its instantiation ForkSkinny are novel constructions which come with
new implementation challenges and possibilities. In this work we explore those. We describe
multiple implementation strategies for ForkSkinny that allow us to fine-tune the desired
performance-area trade-off. Some of these strategies are standard (round-based, serial,
unrolled) but others are using the intrinsic properties of ForkSkinny (internal parallelism
through fast forwarding, and restarting/rewinding). The latter strategies can be directly
applied to any iterate-fork-iterate forckcipher. We note that these strategies cannot be
exploited by the existing fixed-input length primitives (although similar strategies are
pertinent for recent variable-input length primitives such as Farfalle [12]).
Furthermore, we design a set of highly configurable implementations of ForkSkinny
that allow to mix-and-match the desired instance together with a set of implementation
strategies. We also release these implementations in the public domain.
Finally, we provide a comparison of the performance and area of a subset of the NIST
LWC candidates targeting the short message scenario. The data for the comparison is
obtained by a hybrid, reproducible method that combines an actual implementation of
the primitive, and a conservative estimation of the mode.

Future work. Our results highlight several future research avenues. The ForkSkinny
decryption cannot benefit from the same optimizations as the encryption because of the
post-fork key schedules going in opposite direction. One idea in that direction is to con-
struct a key schedule for efficient parallel decryption, which would allow also for an efficient
switching between the subkeys of the two forks both in encryption and decryption.

Acknowledgements. This work was supported in part by the Research Council KU
Leuven C1 on Security and Privacy for Cyber-Physical Systems and the Internet of Things
with contract number C16/15/058. In addition, this work is supported by the Horizon 2020
research and innovation programme under Cathedral ERC Advanced Grant 695305. Arnab
Roy is supported by the EPSRC grant No. EPSRC EP/N011635/1.

References

[1] 3GPP TS 22.261: Service requirements for next generation new services and markets.
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3107

[2] 3GPP TS 36.213: Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures.
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2427

[3] NB-IoT: Enabling New Business Opportunities. http://www.huawei.com/minisite/iot/img/nb iot whitepaper en.pdf
[4] Specification of Secure Onboard Communication. https://www.autosar.org/fileadmin/user upload/standards/classic/4-

3/AUTOSAR SWS SecureOnboardCommunication.pdf
[5] DeTOP Dexterous Transradial Osseointegrated Prosthesis with neural control and sensory feedback.

http://www.detop-project.eu/ (2016)
[6] Andreeva, E., Lallemand, V., Purnal, A., Reyhanitabar, R., Roy, A., Vizár, D.: Forkcipher: a New

Primitive for Authenticated Encryption of Very Short Messages. In: Advances in Cryptology -
ASIACRYPT 2019 - 25th International Conference on the Theory and Application of Cryptology
and Information Security

[7] Andreeva, E., Lallemand, V., Purnal, A., Reyhanitabar, R., Roy, A., Vizár, D.: ForkAE v1. Submis-
sion to NIST Lightweight Cryptography Project (2019)

[8] Banik, S., Bogdanov, A., Peyrin, T., Sasaki, Y., Sim, S.M., Tischhauser, E., Todo, Y.: SUNDAE-
GIFT. NIST Lightweight Cryptography: Submission to Round 1

http:http://www.detop-project.eu
https://www.autosar.org/fileadmin/user
http://www.huawei.com/minisite/iot/img/nb
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2427
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3107

[9] Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y., Sasdrich, P., Sim,
S.M.: SKINNY-AEAD and SKINNY-Hash

[10] Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y., Sasdrich, P., Sim,
S.M.: The SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS. In: Advances in
Cryptology - CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 14-18, 2016, Proceedings, Part II. pp. 123–153 (2016). https://doi.org/10.1007/978-3-
662-53008-5 5

[11] Bernstein, D.J.: Cryptographic competitions: CAESAR. http://competitions.cr.yp.to
[12] Bertoni, G., Daemen, J., Hoffert, S., Peeters, M., Assche, G.V., Keer, R.V.: Farfalle: paral-

lel permutation-based cryptography. IACR Trans. Symmetric Cryptol. 2017(4), 1–38 (2017),
https://tosc.iacr.org/index.php/ToSC/article/view/801

[13] Biryukov, A., Perrin, L.: State of the Art in Lightweight Symmetric Cryptography. IACR Cryptology
ePrint Archive 2017, 511 (2017), http://eprint.iacr.org/2017/511

[14] Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y.,
Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher. In: Paillier, P., Verbauwhede, I. (eds.)
Cryptographic Hardware and Embedded Systems - CHES 2007, 9th International Workshop, Vienna,
Austria, September 10-13, 2007, Proceedings. Lecture Notes in Computer Science, vol. 4727, pp. 450–
466. Springer (2007). https://doi.org/10.1007/978-3-540-74735-2 31, https://doi.org/10.1007/978-3-
540-74735-2 31

[15] Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen, L.R., Leander, G.,
Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen, S.S., Yalçin, T.: PRINCE - A Low-
Latency Block Cipher for Pervasive Computing Applications - Extended Abstract. In: Wang, X.,
Sako, K. (eds.) Advances in Cryptology - ASIACRYPT 2012 - 18th International Conference on
the Theory and Application of Cryptology and Information Security, Beijing, China, December 2-
6, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7658, pp. 208–225. Springer (2012).
https://doi.org/10.1007/978-3-642-34961-4 14, https://doi.org/10.1007/978-3-642-34961-4 14

[16] Cannière, C.D., Dunkelman, O., Knezevic, M.: KATAN and KTANTAN - A Family of Small and Ef-
ficient Hardware-Oriented Block Ciphers. In: Clavier, C., Gaj, K. (eds.) Cryptographic Hardware and
Embedded Systems - CHES 2009, 11th International Workshop, Lausanne, Switzerland, September
6-9, 2009, Proceedings. Lecture Notes in Computer Science, vol. 5747, pp. 272–288. Springer (2009).
https://doi.org/10.1007/978-3-642-04138-9 20, https://doi.org/10.1007/978-3-642-04138-9 20

[17] IAIK, T.G.: Hardware implementations of the authenticated encryption design ASCON.
https://github.com/IAIK/ascon hardware/tree/master/generic implementation

[18] Iwata, T., Khairallah, M., Minematsu, K., Peyrin, T.: Ascon v1.2. Submission to NIST Lightweight
Cryptography Project (2019)

[19] Iwata, T., Khairallah, M., Minematsu, K., Peyrin, T.: Romulus v1. Submission to NIST Lightweight
Cryptography Project (2019)

[20] Jean, J., Nikolić, I., Peyrin, T.: Tweaks and Keys for Block Ciphers: The TWEAKEY Framework.
In: Sarkar, P., Iwata, T. (eds.) Advances in Cryptology – ASIACRYPT 2014. pp. 274–288. Springer
Berlin Heidelberg, Berlin, Heidelberg (2014)

[21] Krovetz, T., Rogaway, P.: The Software Performance of Authenticated-Encryption Modes. In: Joux,
A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer (2011)

[22] McGrew, D.A., Viega, J.: The Security and Performance of the Galois/Counter Mode (GCM) of
Operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 343–
355. Springer (2004)

[23] Mouha, N.: The Design Space of Lightweight Cryptography. IACR Cryptology ePrint Archive 2015,
303 (2015), http://eprint.iacr.org/2015/303

[24] NIST: Ligthweight Cryptography. https://csrc.nist.gov/projects/lightweight-cryptography
[25] PLC, M.: Wireless Tyre Pressure Monitoring (wTPMS). https://www.meggitt.com/products-

services/tyre-pressure-monitoring/
[26] Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.) Proceedings of

the 9th ACM Conference on Computer and Communications Security, CCS 2002, Washington,
DC, USA, November 18-22, 2002. pp. 98–107. ACM (2002). https://doi.org/10.1145/586110.586125,
https://doi.org/10.1145/586110.586125

[27] Skinny: Skinny Hardware Implementations - Application-Specific Integrated Circuits (ASIC).
https://sites.google.com/site/skinnycipher/implementation

[28] Whiting, D., Housley, R., Ferguson, N.: Counter with CBC-MAC (CCM). IETF RFC 3610 (Infor-
mational) (Sep 2003), http://www.ietf.org/rfc/rfc3610.txt

http://www.ietf.org/rfc/rfc3610.txt
https://sites.google.com/site/skinnycipher/implementation
https://doi.org/10.1145/586110.586125
https://doi.org/10.1145/586110.586125
https://www.meggitt.com/products
https://csrc.nist.gov/projects/lightweight-cryptography
http://eprint.iacr.org/2015/303
https://github.com/IAIK/ascon
https://doi.org/10.1007/978-3-642-04138-9
https://doi.org/10.1007/978-3-642-04138-9
https://doi.org/10.1007/978-3-642-34961-4
https://doi.org/10.1007/978-3-642-34961-4
https://doi.org/10.1007/978-3
https://doi.org/10.1007/978-3-540-74735-2
http://eprint.iacr.org/2017/511
https://tosc.iacr.org/index.php/ToSC/article/view/801
http:http://competitions.cr.yp.to
https://doi.org/10.1007/978-3

