
A Detailed Report on the Overhead of Hardware 
APIs for Lightweight Cryptography 

Patrick Karl and Michael Tempelmeier 
Technical University of Munich, Germany 

Department of Electrical and Computer Engineering 
Chair of Security in Information Technology 
{patrick.karl, michael.tempelmeier}@tum.de 

Abstract—The “Competition for Authenticated Encryp-
tion: Security, Applicability, and Robustness” (CAESAR) 
was the frst cryptographic competition that required 
designers to use a mandatory hardware API for their 
implementations. Recently, a similar hardware API for the 
NIST Lightweight Cryptography (LWC) project was pro-
posed. Both APIs feature an accompanying development 
package to help designers implementing the API. 

In this paper, we have an in-depth look on these pack-
ages. We analyze the features of both packages, discuss 
their resource utilization, and demonstrate their impact 
on Ascon128, SpoC-64, and Gimli implementations on a 
modern Artix-7 FPGA. Finally, we provide some tweaks 
and enhancements to further optimize the development 
package for the LWC API. 

I. INTRODUCTION 

As embedded systems and sensor networks become 
ubiquitous, the demand for resource and energy eff-
cient cryptography increases. Therefore, in 2016, the 
NIST initiated the Lightweight Cryptography project 
(LWC) for Authenticated Encryption with Associated 
Data (AEAD) and Hash functions [1]. Its goal is to 
identify suitable cryptographic primitives that can be 
effciently implemented in hardware and software. By 
the year of 2019, 57 algorithms were submitted. 56 of 
those were considered as frst round candidates and 32 
were selected for the currently ongoing second round, 
which focuses on benchmarking the candidates in terms 
of security and performance. 

For a fair comparison of cryptographic software im-
plementations, benchmarking suits like SUPERCOP [2] 
were introduced during the ECRYPT Stream Cipher 
Project (eSTREAM) [3]. For hardware implementations, 
this idea was realized in the Automated Tool for Hard-
ware EvaluatioN (ATHENa) [4]. However, a benchmark-
ing suite, that fnds the best synthesis parameter, is 
not enough for a fair comparison of different hardware 

implementations; especially, if they all make different 
assumptions on the used interface. Thus, a common 
hardware interface is needed [5]. 

The frst proposal for a uniform hardware interface 
was during the SHA-3 competition [6]. Also for the Post-
Quantum project an hardware API was proposed [7]. 

During the CAESAR contest, a hardware API for 
AEAD [8] was proposed, and for the frst time, of-
fcially included into a cryptographic competition. A 
corresponding development package for hardware imple-
mentations [9] increased the design process signifcantly. 
This enabled a fair comparison of different hardware 
implementations in [10]. 

Consequently, also for the NIST Lightweight Cryptog-
raphy project a Hardware API [11] with corresponding 
development package [12] was proposed. This develop-
ment package is based on the CAESAR development 
package but adds additional features and claims to be 
more resource effcient. 

In the following, we analyze whether this claim holds 
true and show the impact of the development packages 
on exemplary designs. We show, that modifying the 
development package can lead to false impressions on 
resource requirements. However, under equal precon-
ditions the API and its development package provide 
useful content towards a fair comparison of hardware 
implementations. Finally, we propose some minor mod-
ifcations for the Development Package. 

II. RELATED WORK 

In [8], a Hardware API for high-speed implementa-
tions for the CAESAR contest was proposed. In addi-
tion to that, the authors provided a development pack-
age for hardware implementations. The current release 
also introduces a much requested extension to support 
lightweight cipher cores [9]. With this extension, several 

mailto:michael.tempelmeier}@tum.de


CAESAR lightweight candidates were implemented and 
evaluated in [13]. 

This release is also used in the implementations 
of [14], where three NIST LWC candidates, i.e. SpoC, 
Spook and GIFT-COFB are evaluated with respect to 
their resource consumption and performance, and fnally 
compared to CAESAR lightweight candidates. 

In [10], a hardware benchmarking framework was 
presented that incorporates the CAESAR API package 
on a real SoC. Eleven hardware implementations of the 
fnal round CAESAR candidates were evaluated with 
respect to area and throughput. In [15], this framework 
was extended to also provide power and energy mea-
surements. 

Although, there has been a lot of research on pro-
viding an environment for fair comparison of hardware 
implementations, to the best of our knowledge, there is 
no work that analyzes the effciency of the environment 
itself, i.e. the API development package. 

III. API COMPLIANT DEVELOPMENT PACKAGE 

In order to speed up the design process of hardware 
implementations, the CAESAR and LWC API both 
feature a corresponding development package and an 
Implementer’s Guide [9], [16]. As the LWC development 
package emerged from the CAESAR package, both de-
signs consist of the same modules, i.e. the PreProcessor, 
a FIFO, the PostProcessor and the Cipher/CryptoCore1. 

Figure 1 provides an overview of the structure and 
the modules in the CAESAR and LWC development 
packages. The PreProcessor receives data via the public-
data-input (pdi) and secret-data-input (sdi) ports. It 
then removes the header information and stimulates the 
CipherCore which implements the actual cryptographic 
primitive. The PostProcessor receives the cipher’s output, 
adds API specifc header data and sends it to the data-
output (do) port. Parts of the pdi-header is passed from 
PreProcessor to PostProcessor via the FIFO. In the 
following we will refer to that FIFO as HeaderFifo. 

Although both packages have the same structure, 
they slightly differ in their implemented features. As 
mentioned in [16], the LWC packages fully supports hash 
algorithms. In addition to that, a width conversion fea-
ture is provided. Therefore, we distinguish between two 
different interfaces. The pdi, sdi and do ports make up 
the external interface, whereas the connection between 
Pre- and PostProcessor and CipherCore will be referred 

1The module was renamed from CipherCore in CAESAR to 
CryptoCore in LWC. 

Cipher Core

Po
st

-P
ro

ce
ss

o
r

P
re

-P
ro

ce
ss

o
r

FIFO

pdi

pdi_valid

pdi_ready

sdi

sdi_valid

sdi_ready

do

do_valid

do_ready

w

w

w

clk rst

Fig. 1: Modules and Overview of the CAESAR/LWC 
Development Package. 

to as internal interface. The CAESAR package already 
supported multiple interface widths. However, there was 
no distinction between external and internal interfaces, 
such that both had the same width. With the width 
conversion feature in the LWC package, a designer can 
confgure different widths for the internal and external 
interface. Thus, the same test framework can be used 
for CipherCore implementations with different data path 
widths. Width conversion also allows integrating 8- or 
16-bit ciphers into – in embedded systems widely used – 
32-bit designs. As the community demanded support for 
8- and 16-bit external interfaces, they are also supported. 

With the additional features implemented, the question 
of how the development packages compare in terms of 
resource consumption arises. On the one hand, more 
features require more resources. On the other hand, an 
API for lightweight applications should not dominate the 
resource cost of the actual cipher implementation. 

IV. RESOURCE ANALYSIS 

In order to evaluate the effects of the additional 
features and the lightweight rework of the development 
package, we synthesized the underlying modules of both 
support packages with different I/O widths in standalone 
mode. That means, only the module itself without the 
possibility of optimizations across module borders is 
synthesized. For synthesis we used the Xilinx Vivado 
Design Suite v.2018.3 with default synthesis parameters 
for an Artix-7 FPGA. The resource consumption of 
FPGA designs is stated in terms of (Slice-) LUTs and 
(Slice-) registers, i.e. Flip-Flops. However, there are two 
types of Slice-LUTs. Whereas both types can be used 
for implementing logic, only one of them can be used 
as a memory element, i.e. LUTRAM. Therefore, we will 
abbreviate the overall number of occupied Slice-LUTs 
as LUTs, of which a subset will be explicitly used as 
LUTRAM. 



A. PreProcessor 

The PreProcessor’s synthesis results are shown in 
the upper part of Table I. For the 32-bit PreProcessor 
version it shows that the LWC version requires less 
LUTs but two additional Flip-Flops (FFs) compared to 
the CAESAR design. The additional registers implement 
fags used for hash support in the LWC version. The 16-
and 8-bit versions both consume more LUTs. The 16-bit 
version consumes one additional FF whereas the 8-bit 
version saves 22 FFs. By using the width conversions 
feature, additional FFs are required. However, a conver-
sion from 32-bit to 16- or 8-bit still consumes less LUTs 
than a plain 16- or 8-bit version. This is due to the fact 
that the 32-bit FSM implementation requires less logic 
than the 16- or 8-bit implementation. 

B. PostProcessor 

The LWC PostProcessor can be implemented to make 
use of two different fags, either the last_fit or the 
end_of_block signal, to determine the end of a transmis-
sion. They are both passed from the CryptoCore to the 
PostProcessor. The last_fit version allows using multiple 
data segments per message, thus allowing message sizes 
larger than 216 − 1 bytes, which is required to fulfll 
the NIST requirement to support at least messages of 
250 −1 bytes. The end_of_block version however is more 
resource effcient but only allows transmitting messages 
up to 216 −1 bytes, which is suffcient for most use cases. 
Although the PostProcessor in the lightweight version 
of the CAESAR package could make similar differenti-
ations, the corresponding PreProcessor does not support 
splitting messages over multiple segments. Therefore, a 
different analysis of the PostProcessor is omitted and the 
default implementation with the last_fit fag is used. The 
PostProcessor synthesis results are shown in the lower 
part of Table I. 

For the last_fit confguration, the LWC PostProcessor 
requires in general more LUTs and FFs compared to the 
CAESAR version. The only exception is the FF require-
ment in the 8-bit case, where the LWC version saves 
11 FFs. As one can expect, using the width conversion 
functionality results in an additional overhead, because 
the PostProcessor requires additional resources for data 
alignment. 

When using the end_of_block fag, the LWC Post-
Processor saves a signifcant amount of FFs compared 
to the CAESAR version, while still implementing the 
same functionality regarding message sizes. Even if the 
PostProcessor is confgured to convert between internal 
and external widths, the amount of required FFs is 

reduced compared to the last_fit version. The 32- and 
16-bit versions without conversion save LUTs, whereas 
the 8-bit version and the ones with width conversion 
require more LUTs compared to the plain CAESAR 
versions. 

As the message size of lightweight ciphers is unlikely 
to exceed 216 − 1 bytes, the end_of_block version is the 
appropriate confguration in terms of effciency. 

Module I/O Width CAESAR LWC 
ext. int. LUT FF LUT FF 

32 32 95 33 88 35 

PreProcessor 
16 16 111 24 124 25 

8 8 137 56 159 34 

32 16 – – 114 37 

32 8 – – 111 39 

32 32 87 20 92 28 

PostProcessor 16 16 77 21 86 22 
(last_fit) 8 8 67 42 111 31 

32 16 – – 105 45 

32 8 – – 112 54 

32 32 – – 67 12 

PostProcessor 16 16 – – 62 6 
(end_of_block) 8 8 – – 78 15 

32 16 – – 81 29 

32 8 – – 88 38 

TABLE I: Resource comparison of Pre- and PostProces-
sor. 

C. HeaderFifo 

For the LWC package, the design of the HeaderFifo 
has been replaced after routing problems occurred on 
some hardware platforms. The development package of 
the CAESAR API supports a feature where the tag 
verifcation is performed inside the PostProcessor and 
thus, the tag is passed from the PreProcessor to the 
PostProcessor. That means, the HeaderFifo must be large 
enough to buffer the tag plus the header information. For 
the provided dummy ciphers the tag is 128-bits. There-
fore, the minimum size of the ffo would be 128 bits 
plus the size of two additional words for the header. In 
other words, a 32-bit implementation of a cipher with 
128-bit tag requires a ffo with a depth of 6 words. 
As the ffo depths must be of power of two, a ffo 
buffering 8 words would suffce. That still differs by a 
factor of 128 from the default 1024 word confguration 
which might lead to suboptimal design optimization. 



However, for reasons of comparison, the CAESAR and 
LWC HeaderFifos were set to a depth of 4 words which 
is the default confguration in the LWC package. The 
standalone synthesis results for different word widths 
are shown in Table II. It shows a signifcant decrease in 
resource consumption for all of the three word widths. 

W 
LUT 

CAESAR 
FF LUTRAM LUT 

LWC 
FF LUTRAM 

32 110 39 64 32 7 24 

16 61 23 32 20 7 12 

8 37 15 16 16 7 8 

TABLE II: Synthesis results for the HeaderFifo, 4 words 
(LWC default). 

D. CipherCore / CryptoCore 

Both development packages provide a dummy cipher 
implementation to demonstrate the design’s functionality. 
For the AEAD scheme, they implement the same spec-
ifcation; whereas hash support is only implemented in 
the LWC CryptoCore. Just as for the other modules, we 
synthesized the Cipher/CryptoCore as standalone mod-
ules to compare them. Since the LWC API supports hash 
functionality, the corresponding core was synthesized 
twice. The frst version is unchanged, i.e. with hash 
support, whereas in the second run the CryptoCore’s 
hash_in port was removed. Internally tying the hash_in 
fag to zero allows the synthesis tool to remove most of 
the logic required for hash support. 

Table III shows the results for all three word sizes. 
It shows, that the savings of the LWC core depend on 
the confguration. In the 32-bit version, the LWC saves 
resource even if hash functionality is implemented. For 
the 8-bit case, the LWC core uses around 50 extra LUTs 
when implementing hash functionality and 7 extra LUTs 
when deactivating it. The reason for that difference is the 
impact of the LUTRAM. Whereas the CAESAR core 
makes use of 5 internal RAMs, the LWC core only uses 
3 RAMs, i.e. 60%. As the absolute number of allocated 
LUTRAM cells decreases, the savings of the LWC core 
also decrease. 

Comparing the LWC versions with and without hash 
support also shows that the absolute cost of the additional 
hash support stays relatively equal. This shows that in 
relative terms, additional features become more costly 
the smaller the overall design is. 

W 
LUT 

CAESAR 
FF LUTRAM 

LWC (with/without hash) 
LUT FF LUTRAM 

32 524 119 160 458/405 96/94 96/96 

16 317 113 80 347/301 97/95 48/48 

8 209 113 40 258/216 98/95 24/24 

TABLE III: Synthesis results of the provided Cipher-
Core (CAESAR) and CryptoCore (LWC). 

E. Bringing it together 

Standalone synthesis prevents the tool from optimizing 
logic across module borders. In order to compare the 
development packages of both APIs, we synthesized the 
whole package with its corresponding dummy cipher 
implementations: First, both HeaderFifos were set to 
a depth of 1024, which is the default value in the 
CAESAR package. The synthesis results are shown in 
Table IVa. For every width, the LWC design consumes 
less resources. Although only a few LUTs are saved in 
the 8-bit version, the 32-bit version saves 622 LUTs, 
which is a saving of about 31% compared to CAESAR’s 
LUTs. Reason for that is again, the huge amount of 
LUTRAM allocation in the CAESAR version. The LWC 
PostProcessor was confgured to make use of the last_fit 
fag, supporting multi-segment messages2. Hash support 
was enabled in the LWC version as a mechanism for 
disabling hash was not intended in the original package. 

As the HeaderFifo dominated the size of the whole 
design, we reduced the ffos’ sizes in the second run. 
Since the default value is four words in the LWC 
package, we confgure the CAESAR ffo to its minimal 
size, which is the size of the tag plus four additional 
words. As mentioned in Section IV-C, the depth must 
be a power of two. This results in depths of 8, 16 
and 32 words for the 32-, 16- and 8-bit CAESAR 
versions. Table IVb shows the synthesis results. Now 
as the HeaderFifo is not the dominant factor anymore, 
the resource comparison follows the observations in 
Table III. As the design becomes smaller, the CAESAR 
version’s overhead decreases and the additional hash 
support becomes an increasing factor. 

Comparing the default confgurations i.e. Table IVa for 
CAESAR and Table IVb for LWC, it shows that the 32-
bit LWC version saves around 1304 LUTs due to a large 
saving in LUTRAM. For the 16- and 8-bit versions, the 

2This is the default LWC confguration. As already mentioned, the 
lightweight CAESAR package does not provide support for multi-
segment messages. So, the LWC implementation is not only smaller, 
but also supports more features. 



W 
ext int LUT 

CAESAR 
FF LUTRAM LUT 

LWC 
FF LUTRAM 

32 32 2009 266 1184 1387 209 672 

16 16 1226 212 592 1025 188 400 

8 8 793 250 296 786 194 216 

32 16 – – – 1328 229 624 

32 8 – – – 1194 234 600 

(a) Equally sized HeaderFifo, i.e. 1024 words. 

W 
ext int LUT 

CAESAR 
FF LUTRAM LUT 

LWC 
FF LUTRAM 

32 32 771 213 224 705 166 116 

16 16 588 185 112 564 151 60 

8 8 458 232 56 518 170 32 

32 16 – – – 624 186 68 

32 8 – – – 496 198 44 

(b) Minimum sized HeaderFifo. 

TABLE IV: Synthesis results of the development pack-
ages implementing the dummy cipher for different 
HeaderFifo dimensions. 

savings decrease but are still signifcant. The same holds 
true for the FF savings. 

Using the CAESAR package with default confgura-
tion for lightweight cipher comparison might therefore 
distort the comparison of ciphers because the package is 
likely to dominate the resource requirements. 

Table IV also shows the infuence of the width con-
version feature: As expected it requires additional FF for 
data alignment. However, the overhead/saving in terms 
of logic depends on the size of the ffo, because the 
ffo’s width equals the external width by default. Thus, 
for small ffos, the 32/8-bit version even saves LUTs 
compared to the pure 8-bit implementation. 

V. EXEMPLARY ANALYSIS OF PUBLISHED 

IMPLEMENTATIONS 

In the following, the impact of the API packages 
on the resource consumption of different cipher imple-
mentations is analyzed. For evaluating the CAESAR 
package, the Ascon128 implementation from [17] and 
the SpoC-64 implementation from [18] are taken. For the 
LWC package, we took the Ascon128 implementation 
(without hash support) from [18] and the SpoC-64 imple-
mentation from [18]. The CAESAR and LWC variants 
for both, the Ascon128 and SpoC-64 implementations 
where confgured with the same parameter set. However, 

the CAESAR Ascon128 was implemented using the 
development package version 1.0.3, which is a high-
speed variant. The lightweight support for the CAESAR 
package was frst introduced in the current release 2.0. 
According to the authors, the Ascon128 LWC version 
requires more cycles per associated data block (factor of 
1.5) and message blocks (factor of 1.7) compared to the 
CAESAR high-speed version. 

In addition to that, the Gimli implementation 
from [19] was included to demonstrate the package over-
head for extremely constrained implementations. The 
hash support for the Gimli implementation was manually 
deactivated3 for comparability. 

Table V lists the synthesis results for the 32-bit 
implementations. For the CAESAR implementations, 
Ascon128 requires less resources than SpoC-64, es-
pecially in terms of LUTRAM consumption. This is 
due to the different parameterization of the HeaderFifo. 
For SpoC-64, the ffo was confgured to a word width 
of 32-bits and depth of 512 words. In the Ascon128 
implementation, however, the ffo width was trimmed 
to 24-bits4 and the depth set to 4 words. 

For the LWC implementations with equally sized 
HeaderFifos, Ascon128 requires more LUTs than the 
SpoC-64 implementation, but less FFs. As the Gimli 
implementation is specifcally opted for resource opti-
mization, it requires less LUTs and FFs than the other 
implementations. The increased LUTRAM requirements 
come from the fact that the 384-bit Gimli-state is im-
plemented in LUTRAM. This reduces the amount of 
required FFs but decreases performance because only 
parts of the state are accessible in each clock cycle. 

As previously stated, the sizes of the HeaderFifos 
for the CAESAR implementations were manually ad-
justed: The implementation from [17], reduced the ffo 
to its minimum size such that functional correctness 
is guaranteed. Due to the different parameterization, 
Table V does not allow a fair comparison of the cipher 
implementations itself, as the overhead added by the API 
package’s modules is not comparable. Figure 2 visualizes 
the LUT ratio of the API package modules and the actual 
CipherCores of the implementations shown in Table V. 

For Ascon128, Figure 2a shows that the LWC Crypto-
Core requires more resources than the CAESAR version. 
This overhead is mitigated by the LWC API package 
that saves around 80 LUTs. Nevertheless, the CAESAR 

3The CryptoCore’s hash_in port was removed and an internal 
hash_in fag was tied to zero. This allows the synthesis tool to trim 
most of the hash-logic in the CryptoCore. 

4Only 24-bits of the 32-bit header word are actually used. 



Cipher LUT FF LUTRAM 
CAESAR 

Ascon1281[17] 1595 818 42 

SpoC-642[18] 2136 876 416 

LWC 

Ascon128 [18] 1802 539 20 

SpoC-64 [18] 1565 728 20 

Gimli3[19] 946 235 84 

1 HeaderFifo: 24 × 4. 
2 HeaderFifo: 32 × 512. 
3 Hash deactivated for comparability. 

TABLE V: Resource table of available ciphers imple-
mented with the CAESAR and LWC package. 

version is a high-speed implementation, which of course 
adds additional overhead to the API package. Consid-
ering the whole design, the CAESAR implementation 
delivers more performance at less resource consumption 
than the LWC implementation. 

Comparing the SpoC-64 implementations in Figure 2b 
shows a signifcant difference in the impact of the API 
modules; whereas both CryptoCore implementations are 
roughly of equal size, the development packages’ almost 
differ by a factor of 4. 

By taking only the CryptoCore LUTs into account, 
the comparison of the CAESAR implementations of 
Ascon128 and SpoC-64 is not as drastically as it seemed 
looking at Table V. In Figure 3, the same separation 
is done for the LWC Gimli implementation. It shows, 
that for small ciphers the API package has a signifcant 
impact. In this specifc case, the API package makes up 
around 28% of the overall LUT requirements. Never-
theless, the number of LUT resources allocated by the 
LWC package is the same for the Ascon128 and the 
Gimli implementation. In that case, the API package 
adds the same overhead for both ciphers and allows 
for a fair comparison. For the Spoc-64 implementation, 
however, the LWC package requires less resources. As 
the implementations did not differ in the confguration, 
we assume that the Spoc-64 implementation allowed for 
more optimization in the package modules. 

VI. TWEAKING THE DEVELOPMENT PACKAGE 

The fact that different HeaderFifo dimensionings can 
lead to different impressions when comparing cipher 
implementations brings up the question whether the ffo 
is required at all. 

1250 

345 

CryptoCore 
API 

1540 

262 

(a) Ascon128 with CAESAR (left) and LWC (right). 

1348 

788 

1361 

204 

CryptoCore 
API 

(b) SpoC-64 with CAESAR (left) and LWC (right). 

Fig. 2: Distribution of allocated LUTs for SpoC (2b) and 
Ascon128 (2a). The CAESAR package is shown on the 
left, whereas the LWC package is depicted on the right. 

684 

262 

CryptoCore 
API 

Fig. 3: Distribution of LUT allocation for a constrained 
Gimli LWC implementation. 

The drawbacks of removing the ffo is that there is a 
combinatorial path from the input of the PreProcessor to 
the output of the PostProcessor. However, for lightweight 
implementations where high frequencies are not neces-
sarily a concern, removing the ffo would save additional 
resources and improve comparability with respect to 
resource consumption. 

When removing the HeaderFifo, it turned out that 
there are some implementation faws in the PreProcessor 
regarding the valid/ready handshaking. We submitted a 
patch for the PreProcessor that fxes this issue such that 
the HeaderFifo can be removed. The modifcation in the 
PreProcessor did not change the resource requirements 
signifcantly. 

Table VI shows the synthesis results of the LWC 
development package and its dummy cipher without 
HeaderFifo and with modifed PreProcessor. Comparing 
these numbers with the LWC default confguration in 
Table IVb shows that additional resources can be saved. 
Although the savings in that case are not very large, 
it further reduces the impact of the API package and 
increases accuracy when comparing cipher implementa-



tions. 

W 
ext int 

LUT FF LUTRAM 

32 32 684 159 96 

16 16 550 144 48 

8 8 504 163 24 

32 16 585 179 48 

32 8 475 191 24 

TABLE VI: LWC development package without Header-
Fifo and with the provided dummy CryptoCore. 

VII. CONCLUSION 

In this work, we presented a detailed report on the 
resource utilization of the accompanying development 
packages of the CAESAR and LWC API. 

We showed that the overhead of the additional hash 
support and width conversion is justifable, and that the 
claim holds true that the new LWC development package 
is more resource effcient than the one for CAESAR. 
However, the overall overhead of the development pack-
ages is not negligible for lightweight implementations 
and must be thoroughly reported. 

Furthermore, when comparing optimized synthesis 
results, it is crucial to check whether the actual cipher or 
the surrounding modules were optimized. Otherwise, this 
might lead to false impressions, as the parameters of the 
development packages leave room for improvements. Es-
pecially, the used HeaderFifo has a huge infuence: First, 
the version used in the LWC package is signifcantly 
smaller than the one in CAESAR. Next, although the 
reviewed implementations had the same datapath width, 
the width of the ffos differed. Finally, the ffo can be 
omitted, if the PreProcessor is patched. 

Nevertheless, as previous paper stated, a defned in-
terface is also crucial for a fair comparison of imple-
mentations. Therefore, it might be worth considering the 
internal interface as the boundary for synthesis reports. 
Thus, one could beneft from the existing frameworks 
for a fair benchmarking and limit the risk of blurred 
synthesis results at the same time. 

REFERENCES 

[1] “Lightweight Cryptography,” 2016. [Online]. Available: https: 
//csrc.nist.gov/projects/lightweight-cryptography 

[2] D. J. Bernstein and T. Lange, “System for Unifed 
Performance Evaluation Related to Cryptographic Oper-
ations and Primitives,” 23.01.2020. [Online]. Available: 
https://bench.cr.yp.to/supercop.html 

[3] “eSTREAM: The ECRYPT Stream Cipher Project,” 2004. [On-
line]. Available: https://www.ecrypt.eu.org/stream/index.html 

[4] K. Gaj, J.-P. Kaps, V. Amirineni, M. Rogawski, E. Hom-
sirikamol, and B. Y. Brewster, “ATHENa - Automated Tool 
for Hardware EvaluatioN: Toward Fair and Comprehensive 
Benchmarking of Cryptographic Hardware Using FPGAs,” in 
2010 International Conference on Field Programmable Logic 
and Applications. IEEE, aug 2010. 

[5] M. Tempelmeier, F. D. Santis, J.-P. Kaps, and G. Sigl, “An area-
optimized serial implementation of ICEPOLE authenticated 
encryption schemes,” 2016 IEEE International Symposium on 
Hardware Oriented Security and Trust (HOST), pp. 49–54, May 
2016. 

[6] G. M. University, “The GMU Interface & Communication 
Protocol Used in the Implementations of the SHA-3 Round 3 
Candidates.” [Online]. Available: https://cryptography.gmu.edu/ 
athena/interfaces/GMU_interface_and_protocol_Round_3.pdf 

[7] A. Ferozpuri, F. Farahmand, V. Dang, M. U. Sharif, J.-
P. Kaps, and K. Gaj, “Hardware API for Post-Quantum 
Public Key Cryptosystems,” 2018. [Online]. Available: https: 
//cryptography.gmu.edu/athena/PQC/PQC_HW_API.pdf 

[8] E. Homsirikamol, W. Diehl, A. Ferozpuri, F. Farahmand, 
P. Yalla, J.-P. Kaps, and K. Gaj, “CAESAR Hardware API,” 
Cryptology ePrint Archive, Report 2016/626, 2016. [Online]. 
Available: https://eprint.iacr.org/2016/626/20160617:192254 

[9] E. Homsirikamol, P. Yalla, F. Farahmand, W. Diehl, 
A. Ferozpuri, J.-P. Kaps, and K. Gaj, “Implementer’s 
Guide to Hardware Implementations Compliant with the 
CAESAR Hardware API version 2.0,” 2017. [Online]. Avail-
able: https://cryptography.gmu.edu/athena/CAESAR_HW_API/ 
CAESAR_HW_Implementers_Guide_v2.0.pdf 

[10] M. Tempelmeier, F. D. Santis, G. Sigl, and J.-P. Kaps, “The 
CAESAR-API in the real world — Towards a fair evaluation 
of hardware CAESAR candidates,” in 2018 IEEE International 
Symposium on Hardware Oriented Security and Trust (HOST). 
IEEE, apr 2018. 

[11] J.-P. Kaps, W. Diehl, M. Tempelmeier, E. Homsirikamol, and 
K. Gaj, “Hardware API for Lightweight Cryptography,” 2019, 
https://cryptography.gmu.edu/athena/index.php?id=LWC. 

[12] Cryptographic Engineering Research Group, George Mason 
University. Accessed: 13.1.2020. [Online]. Available: https: 
//github.com/GMUCERG/LWC 

[13] F. Farahmand, W. Diehl, A. Abdulgadir, J.-P. Kaps, and 
K. Gaj, “Improved Lightweight Implementations of CAESAR 
Authenticated Ciphers,” Cryptology ePrint Archive, Report 
2018/573, 2018. [Online]. Available: https://eprint.iacr.org/ 
2018/573/20180605:174842 

[14] B. Rezvani and W. Diehl, “Hardware Implementations of 
NIST Lightweight Cryptographic Candidates: A First Look,” 
Cryptology ePrint Archive, Report 2019/824, 2019. [Online]. 
Available: https://eprint.iacr.org/2019/824/20190716:135314 

[15] M. Tempelmeier, G. Sigl, and J.-P. Kaps, “Experimental Power 
and Performance Evaluation of CAESAR Hardware Finalists,” 
in 2018 International Conference on ReConFigurable Comput-
ing and FPGAs (ReConFig). IEEE, dec 2018. 

[16] M. Tempelmeier, F. Farahmand, E. Homsirikamol, 
W. Diehl, J.-P. Kaps, and K. Gaj, “Implementer’s 
Guide to Hardware Implementations Compliant with 
the Hardware API for Lightweight Cryptography,” 2019. 
[Online]. Available: https://cryptography.gmu.edu/athena/LWC/ 
LWC_HW_Implementers_Guide.pdf 

[17] Institute of Applied Information Processing and Communi-
cations (IAIK), Graz University of Technology. 15.1.2020. 

https://cryptography.gmu.edu/athena/LWC
https://eprint.iacr.org/2019/824/20190716:135314
https://eprint.iacr.org
https://github.com/GMUCERG/LWC
https://cryptography.gmu.edu/athena/index.php?id=LWC
https://cryptography.gmu.edu/athena/CAESAR_HW_API
https://eprint.iacr.org/2016/626/20160617:192254
https://cryptography.gmu.edu/athena/PQC/PQC_HW_API.pdf
https://cryptography.gmu.edu
https://www.ecrypt.eu.org/stream/index.html
https://bench.cr.yp.to/supercop.html
https://csrc.nist.gov/projects/lightweight-cryptography


[Online]. Available: https://github.com/IAIK/ascon_hardware/ 
tree/master/caesar_hardware_api_v_1_0_3/ASCON_ASCON 

[18] Signatures Analysis Laboratory, Virginia Tech. Accessed: 
13.1.2020. [Online]. Available: https://github.com/vtsal?tab= 
repositories 

[19] Chair of Security in Information Technology, Technical Univer-
sity of Munich. 13.1.2020. [Online]. Available: https://gitlab. 
lrz.de/tueisec/crypto-implementations/tree/master/LWC/GIMLI 

https://gitlab
https://github.com/vtsal?tab
https://github.com/IAIK/ascon_hardware

