
Fixslicing - Application to Some
NIST LWC Round 2 Candidates

Alexandre Adomnicai and Thomas Peyrin

Temasek Laboratories, Singapore
Nanyang Technological University, Singapore

firstname.lastname@ntu.edu.sg

Abstract. This work briefly recaps the benefits of the fixslicing imple-
mentation strategy when applied to AES-128, GIFT-128 and Skinny-128
and shows how it impacts the software performance of some selected
NIST LWC round 2 candidates built upon those internal primitives,
namely GIFT-COFB, Romulus, Skinny-AEAD and SAEAES. Benchmark
results for constant-time implementations on ARM Cortex-M3 are re-
ported for payloads up to 256 bytes.

Keywords: NIST LWC · Fixslicing · AES · GIFT · Skinny

1 Introduction

The NIST LightWeight Cryptography (NIST LWC) competition started in 2018
with the goal of selecting the future authenticated encryption standard(s) for
resource-constrained environments. Some candidates are more hardware-oriented
and therefore less efficient in software, and vice versa. However, the border be-
tween the two categories may be thinner than it seems. For instance, the fixslicing
implementation strategy [ANP20] was originally introduced as a new represen-
tation for the hardware-oriented GIFT block cipher [BPP+17] to achieve very
efficient software constant-time implementations. As a result, the round 2 can-
didate GIFT-COFB [BCI+20] ranks among the fastest candidates on microcon-
trollers [Wea20,RPM20]. It was recently highlighted in [AP20] that the main
idea behind the fixsliced GIFT representation is actually generic by providing
new bitsliced speed records for AES and Skinny-128 on 32-bit architectures.

This work aims at giving insights into the benefits of fixslicing in the context
of the NIST LWC standardization process by reporting fixsliced implementation
results on ARM Cortex-M based microcontrollers for some selected round 2
candidates built upon the AES-128, GIFT-128 and Skinny-128 internal primitives.

2 The fixslicing implementation strategy

2.1 Overview

Fixslicing is a specific instance of bitslicing, a generic implementation strategy to
achieve software constant-time implementations, where at least one of the slices

2 Alexandre Adomnicai and Thomas Peyrin

remains fixed. A fixed n-slice consists of n bits that remain at the same position
through the entire algorithm execution (except when applying some corrections
to resynchronize with the classical representation). The goal of fixslicing is to
take advantage of an alternative representation for a few rounds in order to make
the linear layer less costly to implement. This technique is especially of interest
for Substitution-bitPermutation Network (SbPN) designs where the linear layer
is basically free in hardware (it consists of simple wirings) but usually expensive
in software since the bits have to be moved around using many bitmasks, shifts
and bitwise ORs. Fixslicing was originally introduced as a new GIFT representa-
tion allowing to boost its performance on 32-bit microcontrollers up to a factor
of 7 when compared to classical bitsliced implementations [ANP20]. The bit per-
mutations used in the GIFT block ciphers have the special property that, from a
bitsliced perspective, all bits within a slice remains in the same one through the
permutation. The authors showed that fixing one of the slices and adjusting the
others so that the bits are correctly aligned for the S-box makes the linear layer
software-friendly, hence the ferm ‘fixslicing’. Note that a similar optimization
has been previously applied to the PRESENT block cipher [BKL+07] by intro-
ducing an alternative representation of the cipher thanks to a decomposition of
the permutation layer over two consecutive rounds [RAL17].

2.2 Application to AES-like ciphers

In its original publication, the fixslicing implementation strategy was mentioned
to be generic for other SbPN designs with the special property that all bits
within a slice remains in the same one through the permutation layer. However,
a recent application to AES-like ciphers [AP20] demonstrated that fixslicing has
a much wider scope of applications than initially thought. More precisely, the
authors showed that an application of fixslicing to the AES allows to reduce
the number of operations in the linear layer by 41% when compared to classical
bitsliced implementations on 32-bit platforms. To put it in a nutshell, fixslicing
AES-like ciphers is equivalent to omit the ShiftRows by fixing all the slices to
never move and adjusting the MixColumns calculations accordingly. The authors
also report fixsliced Skinny-128 implementations results on ARM Cortex-M3 and
show that it outperforms prior results reported in the literature by a factor of
4. Especially, it is shown how to take advantage of some symmetry in the 8-bit
S-box in order to implement it using 4 slices instead of 8. This allows to achieve
fixsliced implementations that operate on a single block at a time, which is highly
valuable for operating modes that do not provide parallelism. The Table 1 recaps
the results previously reported in the literature for the internal primitives we will
consider in the following section. Regarding Skinny-128-384, we also consider
the new variant Skinny-128-384+ which corresponds to Skinny-128-384 reduced
from 56 to 40 rounds. This variant was introduced to provide more attractive
security margin/efficiency trade-offs as Skinny-128-384 guarantees a much larger
security margin when compared to other candidates’ internal primitives [Pey20].
Note that no results for the fixsliced Skinny-128 tweakey schedule have been
previously reported in the literature. Since this building block will be needed to

Fixslicing - Application to Some NIST LWC Round 2 Candidates 3

benchmark our selected Skinny-based candidates, we describe hereafter how we
did implement it.

Algorithm Ref
Parallel

Blocks

Speed (cycles) Code size

(bytes)

RAM (bytes)

M3 M4 In/Output Stack

GIFT-128 key exp.
[ANP20]

GIFTb-128 encryption

1

1

1 813

1 297

1 812

1 279

1 100

994

336

16 (+320)

56

64

AES-128 key exp.
[AP20]

AES-128 encryption

2

2

4 135

1 397

4 173

1 418

962

2 556

368

32 (+352)

112

112

Skinny-128-384 encryption [AP20]

Skinny-128-384+ encryption [AP20]

1

2

1

2

4 223

2 566

3 055

1 862

4 238

2 579

3 066

1 872

1 536

1 636

1 504

1 620

16 (+896)

32 (+1 792)

16 (+640)

32 (+1 280)

60

60

60

60

Table 1: Constant-time implementation results on ARM Cortex-M3/4 for fixs-
liced implementations of AES-128, GIFT-128 and Skinny-128-384. For encryption
routines, speed is expressed in cycles per block. In/Output refers to the amount
of memory needed to store the input and ouput plus the temporary variables
(including the round keys).

2.3 Efficient implementation of the Skinny tweakey schedule

Skinny follows the Tweakey framework [JNP14] and thus takes a tweakey input
instead of a key or a pair key/tweak. The Skinny family of tweakable block
ciphers has three main tweakey size versions: t = n, t = 2n and t = 3n where
n refers to the block size and z = t/n refers to the tweakey size to block size
ratio. The tweakey state is also viewed as a collection of z 4 × 4 square arrays
of bytes, denoted TK1 when z = 1, TK1 and TK2 when z = 2, and finally
TK1, TK2, TK3 when z = 3. During the round tweakeys addition, the first
and second rows of all tweakey arrays are extracted and bitwise exclusive-ORed
to the cipher internal state, respecting the array positioning. Then, the tweakey
arrays are updated as follows. First, a permutation PT is applied on the cell
positions of all tweakey arrays.

PT = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7]

Then, every cell of the first and second rows of TK2 and TK3 (for the versions
where TK2 and TK3 are used) are individually updated with an LFSR. The
Figure 1a illustrates one round of the tweakey schedule.

4 Alexandre Adomnicai and Thomas Peyrin

As a matter of efficiency, we suggest to compute double rounds of the tweakey
schedule instead of single ones. The main reason lies in the fact that, during a
round, the first and second rows of all tweakey arrays are just moved to the third
and fourth rows. When implementing the tweakey schedule in a bitsliced fashion,
it is more efficient to compute the operations on the entire state. Considering
double rounds is equivalent to applying the permutation and the LFSR to all
rows, as depicted in Figure 1b.

Extracted
round tweakey

PT

LFSR

LFSR

(a) Single round (from [Jea16])

Extracted
round tweakey

LFSR

LFSR

LFSR

LFSR

Extracted
round tweakey

P 2
T

(b) Double round

Fig. 1: Single and double round implementations of the Skinny tweakey schedule

While the LFSRs are specific to each tweakey array, the permutation remains
the same. Therefore, when considering several tweakey arrays (i.e. z = 2 or z =
3), computing the permutation after having extracted and exclusive-ORed all
tweakeys together allows to speed up the computations. However, the drawback
of this approach is that one has to apply the permutation to the round tweakeys
as many times as it should have been done in the naive approach. Because
P 16 = Id, instead of calling P 2 as many times as required, we can compute P i T T T
for i ∈ {2, 4, · · · , 14} depending on the round number. The Figure 2 illustrates
our efficient implementation of the tweakey schedule.

F
ix
slicin

g -
A
p
p
lica

tio
n

 to S
o
m
e N

IS
T

 L
W

C
 R

o
u
n
d

 2 C
a
n
d
id
a
tes

5

TK3

LFSR3

LFSR3

LFSR3

LFSR3

LFSR3

LFSR3

LFSR3

LFSR3

....

....

....

....

LFSR3

LFSR3

LFSR3

LFSR3

LFSR3

LFSR3

LFSR3

LFSR3

TK2

LFSR2

LFSR2

LFSR2

LFSR2

LFSR2

LFSR2

LFSR2

LFSR2

....

....

....

....

LFSR2

LFSR2

LFSR2

LFSR2

LFSR2

LFSR2

LFSR2

LFSR2

TK1

....

....

....

....

RTK0 RTK1

P 2
T

RTK2

P 4
T

RTK3 RTK4

P 14
T

RTK13 RTK14 RTK15

Fig. 2: Speed-optimized implementation of the Skinny tweakey schedule to derive 16 round tweakeys. Can be reiterated to
derive more round tweakey material.

6 Alexandre Adomnicai and Thomas Peyrin

We opted for this approach to reach the best possible performance for the
Skinny-based NIST LWC candidates we consider in our benchmark. Still, it has
a considerable impact on code size as reported in Table 2. When those memory
requirements are too high to be practical, we suggest to omit this implementation
trick at the cost of a slower execution time. Our code is publicly available at
https://github.com/aadomn/skinny.

Algorithm
Parallel

Blocks

Speed (cycles) Code size

(bytes)

RAM (bytes)

M3 M4 In/Output Stack

Skinny-128-384 tweakey exp.

Skinny-128-384+ tweakey exp.

1

2

1

2

3 252

3 517

2 426

2 588

3 266

3 580

2 449

2 605

5 754

10 608

4 796

8 620

896

1 792

640

1 280

60

60

60

60

Table 2: Implementation results on ARM Cortex-M for constant-time imple-
mentations of the Skinny-128-384 tweakey schedule. Speed refers to the entire
tweakey expansion while the number of parallel blocks refer to the representa-
tion to match. In/Output refers to the amount of memory needed to store all
the pre-computed round tweakeys.

3 Application to some NIST LWC round 2 candidates

3.1 GIFT-COFB

Implementation results for fixsliced GIFT-COFB have already been reported
in [ANP20]. For our benchmark, we run measurements using the balanced im-
plementation publicly available at https://github.com/aadomn/gift. This im-
plementation aims at providing a trade-off between efficiency and compactness.

3.2 The Romulus family of lightweight AEAD algorithms

Romulus [IKMP20] consists of two families, a nonce-based and a nonce misuse-
resistant authenticated encryption, namely Romulus-N and Romulus-M. In this
document, we only consider the primary versions of each family, namely Romulus-
N1 and Romulus-M1, as well as the new variants Romulus-N1+ and Romulus-M1+
based on Skinny-128-384+.

A feature shared between both families is that, when processing the input
message, the tweakey is initialized as follows:

TK1 ← lfsr56(D) || B || 064

TK2 ← nonce

TK3 ← key

https://github.com/aadomn/skinny
https://github.com/aadomn/gift

Fixslicing - Application to Some NIST LWC Round 2 Candidates 7

where lfsr56(D) refers to a 56-bit counter and B refers to a domain separa-
tion byte. Therefore, when multiple blocks of message have to be processed, the
only part of the tweakey that will vary is TK1. In order to avoid useless com-
putations, we suggest to precompute all the round tweakeys excluding TK1 at
the beginning of the algorithm. Then, for each block, we increment TK1 before
packing it in the fixsliced representation and running the tweakey schedule for
this tweak only. Actually, since no LFSR is involved for this tweak and that
P 16 = Id, we can just compute the first 16 rounds. Moreover, since the last 64T
bits of TK1 are always zero, we only need to store half of the outputs. Finally
during the Skinny-128-384 execution we add the round tweakeys in two steps: first
add the precomputed round tweakeys excluding TK1, and then add the round
tweakey that exclusively results from TK1. Although it requires some additional
exclusive-ORs and memory accesses during the AddRoundTweakey operation, it
allows to save the recomputation of the entire tweakey schedule.

3.3 Skinny-AEAD

Skinny-128 also defines the underlying tweakable block ciphers used in Skinny-
AEAD [BJK+20], another submission to the NIST LWC competition. In this
document, we only consider the primary version Skinny-AEAD-M1 and the cor-
responding new variant Skinny-AEAD-M1+ based on Skinny-128-384+. As for
Romulus, TK1 is the only tweakey part that varies through the entire algorithm
execution since it is initialized as follows:

TK1 ← lfsr64(D) || 056 || B

TK2 ← nonce

TK3 ← key

where lfsr64(D) refers to a 64-bit counter and B refers to a domain separation
byte. Therefore, the above implementation trick used in Romulus also applies
to Skinny-AEAD. Moreover, since Skinny-AEAD allows blocks to be processed in
parallel, we can have a look at the benefits of the Skinny-128 implementation
that processes two blocks at a time.

3.4 SAEAES

SAEAES is an instantiation of the SAEB mode of operation [NMSS18] with the
AES block cipher. Hereafter we only consider the primary member SAEAES-128-
64-128. Since the SAEB mode of operation does not allow to process several
blocks in parallel, the underlying fixsliced AES-128 implementation process the
same block twice. Therefore the AES-128 performance reported in Table 1 are
actually reduced by a factor of 2. For the key expansion, we rely on a constant-
time implementation of the AES-128 key schedule in order to exclusively consider
constant-time implementations in our benchmark.

8 Alexandre Adomnicai and Thomas Peyrin

3.5 Implementation results

Hereafter we report implementation results on ARM Cortex-M3/4 based micro-
controllers for the considered NIST LWC candidates mentioned above. For all
the implementations, the internal primitive is written in assembly language while
the mode is handled by C code. The code was compiled by arm-none-eabi-gcc
9.2.1 using the flag -O3 for optimized speed results. The Table 3 reports perfor-
mance for small messages along with memory requirements whereas the Table 4
reports performance for payloads from 0 to 256 bytes. A graphical representation
is provided in Figure 3 for greater clarity.

Algorithm
Parallel

Blocks

Speed (cycles) Code size

(bytes)

RAM (bytes)

M3 M4 In/Output Stack

GIFT-COFB 1 5 293 5 334 5 140 428 100

Romulus-N1

Romulus-N1+

1

1

13 352

10 041

13 511

10 178

9 132

8 032

1 092

836

96

96

Romulus-M1

Romulus-M1+

1

1

21 583

16 242

21 903

16 509

9 512

8 442

1 245

989

96

96

Skinny-AEAD-M1

Skinny-AEAD-M1+

Skinny-AEAD-M1

Skinny-AEAD-M1+

1

1

2

2

19 522

14 762

21 138

16 129

19 697

14 910

21 334

16 305

8 616

7 564

15 302

13 294

1 232

976

2 384

1 872

96

96

96

96

SAEAES-128-64-128 1 18 496 18 632 5 030 452 148

Table 3: Implementation results on ARM Cortex-M3/4 for some NIST LWC
round 2 candidates when processing 16 bytes of message along with 16 bytes of
additional data. In/Output refers to the amount of memory needed to store the
input and ouput plus the temporary variables (including the round keys).

As expected, GIFT-COFB is the candidate that shows the most outstand-
ing results regarding both efficiency and compactness. For Skinny-based candi-
dates, it results that Romulus-N is the fastest one for small messages and is only
outperformed by Skinny-AEAD when 2 blocks are processed in parallel. How-
ever this parallelism requires twice the RAM to store the pre-computed round
tweakeys which might be troublesome in practice for resource-constrained de-
vices. Although SAEAES-128-64-128 is penalized by the fact that the AES-128
implementation processes a single block at a time instead of two, it shows de-
cent results and is neck and neck with Skinny-AEAD for messages smaller than
64 bytes.

Fixslicing - Application to Some NIST LWC Round 2 Candidates 9

0 32 64 96 128 160 192 224 256
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

1e5 GIFT-COFB

0 32 64 96 128 160 192 224 256
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

1e5 SAEAES-128-64-128

0 32 64 96 128 160 192 224 256
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

1e5 Romulus-M1

0 32 64 96 128 160 192 224 256
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

1e5 Romulus-M1+

0 32 64 96 128 160 192 224 256
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

1e5 Romulus-N1

0 32 64 96 128 160 192 224 256
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

1e5 Romulus-N1+

0 32 64 96 128 160 192 224 256
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

1e5 Skinny-AEAD-M1 (1)

0 32 64 96 128 160 192 224 256
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

1e5 Skinny-AEAD-M1+ (1)

0 32 64 96 128 160 192 224 256
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

1e5 Skinny-AEAD-M1 (2)

0 32 64 96 128 160 192 224 256
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

1e5 Skinny-AEAD-M1+ (2)

Fig. 3: Benchmark of some NIST LWC round 2 candidates on ARM Cortex-M3.
The x-axis and y-axis refer to the message length (in bytes) and the correspond-
ing execution time (in clock cycles), respectively. Note that 16 bytes of additional
data are taken into account for all measurements. For Skinny-AEAD, the number
enclosed in parantheses refer to the number of blocks processed in parallel.

10 Alexandre Adomnicai and Thomas Peyrin

Algorithm
Parallel

Blocks 16

Message size (bytes)

32 64 128 256

GIFT-COFB 1 5 293 6 718 9 502 15 070 26 206

Romulus-N1

Romulus-N1+

1

1

13 352

10 041

18 475 28 625 48 925

13 918 21 586 36 922

89 525

67 594

Romulus-M1

Romulus-M1+

1

1

21 583

16 242

26 718 44 986 81 496

20 136 33 872 61 318

154 516

116 210

Skinny-AEAD-M1

Skinny-AEAD-M1+

Skinny-AEAD-M1

Skinny-AEAD-M1+

1

1

2

2

19 522

14 762

21 138

16 129

24 979 35 893 57 721

18 902 27 182 43 742

21 388 28 992 44 200

16 379 22 274 34 064

101 377

76 862

74 616

57 644

SAEAES-128-64-128 1 18 496 24 198 35 602 58 410 104 026

Table 4: Benchmarking results on ARM Cortex-M3 for different message lengths
along with 16 bytes of additional data.

4 Conclusion and perspectives

In this work, we reported fixsliced implementation results for some NIST LWC
round 2 candidates. We also introduced a fast software implementation of the
Skinny tweakey schedule when considering a bitsliced implementation. It is very
likely that other internal primitives used in other candidates may benefit from
the fixslicing implementation strategy and further examination on a case-by-case
basis would be needed to get the whole picture in the context of the NIST LWC
standardization process.

References

ANP20. Alexandre Adomnicai, Zakaria Najm, and Thomas Peyrin. Fixslicing: A
New GIFT Representation: Fast Constant-Time Implementations of GIFT
and GIFT-COFB on ARM Cortex-M. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2020(3):402–427, Jun. 2020. https://
tches.iacr.org/index.php/TCHES/article/view/8595.

AP20. Alexandre Adomnicai and Thomas Peyrin. Fixslicing AES-like Ciphers: New
bitsliced AES speed records on ARM-Cortex M and RISC-V. Cryptology
ePrint Archive, Report 2020/1123, 2020. https://eprint.iacr.org/2020/
1123.

https://tches.iacr.org/index.php/TCHES/article/view/8595
https://tches.iacr.org/index.php/TCHES/article/view/8595
https://eprint.iacr.org/2020/1123
https://eprint.iacr.org/2020/1123

Fixslicing - Application to Some NIST LWC Round 2 Candidates 11

BCI+20. Subhadeep Banik, Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu,
Mridul Nandi, Thomas Peyrin, Yu Sasaki, Siang Meng Sim, and Yosuke
Todo. GIFT-COFB. Cryptology ePrint Archive, Report 2020/738, 2020.
https://eprint.iacr.org/2020/738.

BJK+20. Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. SKINNY-
AEAD and SKINNY-Hash. IACR Transactions on Symmetric Cryptology,
2020(S1):88–131, Jun. 2020. https://tosc.iacr.org/index.php/ToSC/
article/view/8619.

BKL+07. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: An Ultra-Lightweight Block Cipher. In Cryptographic Hardware
and Embedded Systems - CHES 2007, 9th International Workshop, Vienna,
Austria, September 10-13, 2007, Proceedings, pages 450–466, 2007.

BPP+17. Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki,
Siang Meng Sim, and Yosuke Todo. GIFT: A Small Present. In Wieland Fis-
cher and Naofumi Homma, editors, Cryptographic Hardware and Embedded
Systems – CHES 2017, pages 321–345, Cham, 2017. Springer International
Publishing.

IKMP20. Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, and Thomas Peyrin.
Duel of the Titans: The Romulus and Remus Families of Lightweight AEAD
Algorithms. IACR Transactions on Symmetric Cryptology, 2020(1):43–120,
May 2020. https://tosc.iacr.org/index.php/ToSC/article/view/8560.

Jea16. Jérémy Jean. TikZ for Cryptographers. https://www.iacr.org/authors/
tikz/, 2016.

JNP14. Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and Keys for Block
Ciphers: The TWEAKEY Framework. In ASIACRYPT (2), volume 8874 of
Lecture Notes in Computer Science, pages 274–288. Springer, 2014.

NMSS18. Yusuke Naito, Mitsuru Matsui, Takeshi Sugawara, and Daisuke Suzuki.
SAEB: A Lightweight Blockcipher-Based AEAD Mode of Operation.
IACR Transactions on Cryptographic Hardware and Embedded Systems,
2018(2):192–217, May 2018. https://tches.iacr.org/index.php/TCHES/
article/view/885, DOI=10.13154/tches.v2018.i2.192-217.

Pey20. Thomas Peyrin. New Romulus and SKINNY-AEAD variants. Announce-
ment to the NIST lwc-forum mailing list, May 2020. https://groups.
google.com/a/list.nist.gov/forum/#!forum/lwc-forum.

RAL17. Tiago B. S. Reis, Diego F. Aranha, and Julio López. PRESENT runs fast
- efficient and secure implementation in software. In Cryptographic Hard-
ware and Embedded Systems - CHES 2017 - 19th International Conference,
Taipei, Taiwan, September 25-28, 2017, Proceedings, pages 644–664, 2017.

RPM20. Sebastian Renner, Enrico Pozzobon, and Jürgen Mottok. NIST LWC Soft-
ware Performance Benchmarks on Microcontrollers, 2020. https://lwc.
las3.de.

Wea20. Rhys Weatherley. Lightweight Cryptography Primitives, 2020. https://
github.com/rweather/lightweight-crypto.

https://eprint.iacr.org/2020/738
https://tosc.iacr.org/index.php/ToSC/article/view/8619
https://tosc.iacr.org/index.php/ToSC/article/view/8619
https://tosc.iacr.org/index.php/ToSC/article/view/8560
https://www.iacr.org/authors/tikz/
https://www.iacr.org/authors/tikz/
https://tches.iacr.org/index.php/TCHES/article/view/885
https://tches.iacr.org/index.php/TCHES/article/view/885
https://groups.google.com/a/list.nist.gov/forum/#!forum/lwc-forum
https://groups.google.com/a/list.nist.gov/forum/#!forum/lwc-forum
https://lwc.las3.de
https://lwc.las3.de
https://github.com/rweather/lightweight-crypto
https://github.com/rweather/lightweight-crypto

	Fixslicing - Application to Some NIST LWC Round 2 Candidates

