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Abstract. This work briefly recaps the benefits of the fixslicing imple-
mentation strategy when applied to AES-128, GIFT-128 and Skinny-128 
and shows how it impacts the software performance of some selected 
NIST LWC round 2 candidates built upon those internal primitives, 
namely GIFT-COFB, Romulus, Skinny-AEAD and SAEAES. Benchmark 
results for constant-time implementations on ARM Cortex-M3 are re-
ported for payloads up to 256 bytes. 
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1 Introduction 

The NIST LightWeight Cryptography (NIST LWC) competition started in 2018 
with the goal of selecting the future authenticated encryption standard(s) for 
resource-constrained environments. Some candidates are more hardware-oriented 
and therefore less efficient in software, and vice versa. However, the border be-
tween the two categories may be thinner than it seems. For instance, the fixslicing 
implementation strategy [ANP20] was originally introduced as a new represen-
tation for the hardware-oriented GIFT block cipher [BPP+17] to achieve very 
efficient software constant-time implementations. As a result, the round 2 can-
didate GIFT-COFB [BCI+20] ranks among the fastest candidates on microcon-
trollers [Wea20,RPM20]. It was recently highlighted in [AP20] that the main 
idea behind the fixsliced GIFT representation is actually generic by providing 
new bitsliced speed records for AES and Skinny-128 on 32-bit architectures. 

This work aims at giving insights into the benefits of fixslicing in the context 
of the NIST LWC standardization process by reporting fixsliced implementation 
results on ARM Cortex-M based microcontrollers for some selected round 2 
candidates built upon the AES-128, GIFT-128 and Skinny-128 internal primitives. 

2 The fixslicing implementation strategy 

2.1 Overview 

Fixslicing is a specific instance of bitslicing, a generic implementation strategy to 
achieve software constant-time implementations, where at least one of the slices 



2 Alexandre Adomnicai and Thomas Peyrin 

remains fixed. A fixed n-slice consists of n bits that remain at the same position 
through the entire algorithm execution (except when applying some corrections 
to resynchronize with the classical representation). The goal of fixslicing is to 
take advantage of an alternative representation for a few rounds in order to make 
the linear layer less costly to implement. This technique is especially of interest 
for Substitution-bitPermutation Network (SbPN) designs where the linear layer 
is basically free in hardware (it consists of simple wirings) but usually expensive 
in software since the bits have to be moved around using many bitmasks, shifts 
and bitwise ORs. Fixslicing was originally introduced as a new GIFT representa-
tion allowing to boost its performance on 32-bit microcontrollers up to a factor 
of 7 when compared to classical bitsliced implementations [ANP20]. The bit per-
mutations used in the GIFT block ciphers have the special property that, from a 
bitsliced perspective, all bits within a slice remains in the same one through the 
permutation. The authors showed that fixing one of the slices and adjusting the 
others so that the bits are correctly aligned for the S-box makes the linear layer 
software-friendly, hence the ferm ‘fixslicing’. Note that a similar optimization 
has been previously applied to the PRESENT block cipher [BKL+07] by intro-
ducing an alternative representation of the cipher thanks to a decomposition of 
the permutation layer over two consecutive rounds [RAL17]. 

2.2 Application to AES-like ciphers 

In its original publication, the fixslicing implementation strategy was mentioned 
to be generic for other SbPN designs with the special property that all bits 
within a slice remains in the same one through the permutation layer. However, 
a recent application to AES-like ciphers [AP20] demonstrated that fixslicing has 
a much wider scope of applications than initially thought. More precisely, the 
authors showed that an application of fixslicing to the AES allows to reduce 
the number of operations in the linear layer by 41% when compared to classical 
bitsliced implementations on 32-bit platforms. To put it in a nutshell, fixslicing 
AES-like ciphers is equivalent to omit the ShiftRows by fixing all the slices to 
never move and adjusting the MixColumns calculations accordingly. The authors 
also report fixsliced Skinny-128 implementations results on ARM Cortex-M3 and 
show that it outperforms prior results reported in the literature by a factor of 
4. Especially, it is shown how to take advantage of some symmetry in the 8-bit 
S-box in order to implement it using 4 slices instead of 8. This allows to achieve 
fixsliced implementations that operate on a single block at a time, which is highly 
valuable for operating modes that do not provide parallelism. The Table 1 recaps 
the results previously reported in the literature for the internal primitives we will 
consider in the following section. Regarding Skinny-128-384, we also consider 
the new variant Skinny-128-384+ which corresponds to Skinny-128-384 reduced 
from 56 to 40 rounds. This variant was introduced to provide more attractive 
security margin/efficiency trade-offs as Skinny-128-384 guarantees a much larger 
security margin when compared to other candidates’ internal primitives [Pey20]. 
Note that no results for the fixsliced Skinny-128 tweakey schedule have been 
previously reported in the literature. Since this building block will be needed to 
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benchmark our selected Skinny-based candidates, we describe hereafter how we 
did implement it. 

Algorithm Ref 
Parallel 

Blocks 

Speed (cycles) Code size 

(bytes) 

RAM (bytes) 

M3 M4 In/Output Stack 

GIFT-128 key exp. 
[ANP20] 

GIFTb-128 encryption 

1 

1 

1 813 

1 297 

1 812 

1 279 

1 100 

994 

336 

16 (+320) 

56 

64 

AES-128 key exp. 
[AP20] 

AES-128 encryption 

2 

2 

4 135 

1 397 

4 173 

1 418 

962 

2 556 

368 

32 (+352) 

112 

112 

Skinny-128-384 encryption [AP20] 

Skinny-128-384+ encryption [AP20] 

1 

2 

1 

2 

4 223 

2 566 

3 055 

1 862 

4 238 

2 579 

3 066 

1 872 

1 536 

1 636 

1 504 

1 620 

16 (+896) 

32 (+1 792) 

16 (+640) 

32 (+1 280) 

60 

60 

60 

60 

Table 1: Constant-time implementation results on ARM Cortex-M3/4 for fixs-
liced implementations of AES-128, GIFT-128 and Skinny-128-384. For encryption 
routines, speed is expressed in cycles per block. In/Output refers to the amount 
of memory needed to store the input and ouput plus the temporary variables 
(including the round keys). 

2.3 Efficient implementation of the Skinny tweakey schedule 

Skinny follows the Tweakey framework [JNP14] and thus takes a tweakey input 
instead of a key or a pair key/tweak. The Skinny family of tweakable block 
ciphers has three main tweakey size versions: t = n, t = 2n and t = 3n where 
n refers to the block size and z = t/n refers to the tweakey size to block size 
ratio. The tweakey state is also viewed as a collection of z 4 × 4 square arrays 
of bytes, denoted TK1 when z = 1, TK1 and TK2 when z = 2, and finally 
TK1, TK2, TK3 when z = 3. During the round tweakeys addition, the first 
and second rows of all tweakey arrays are extracted and bitwise exclusive-ORed 
to the cipher internal state, respecting the array positioning. Then, the tweakey 
arrays are updated as follows. First, a permutation PT is applied on the cell 
positions of all tweakey arrays. 

PT = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7] 

Then, every cell of the first and second rows of TK2 and TK3 (for the versions 
where TK2 and TK3 are used) are individually updated with an LFSR. The 
Figure 1a illustrates one round of the tweakey schedule. 
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As a matter of efficiency, we suggest to compute double rounds of the tweakey 
schedule instead of single ones. The main reason lies in the fact that, during a 
round, the first and second rows of all tweakey arrays are just moved to the third 
and fourth rows. When implementing the tweakey schedule in a bitsliced fashion, 
it is more efficient to compute the operations on the entire state. Considering 
double rounds is equivalent to applying the permutation and the LFSR to all 
rows, as depicted in Figure 1b. 

Extracted
round tweakey

PT

LFSR

LFSR

(a) Single round (from [Jea16]) 

Extracted
round tweakey

LFSR

LFSR

LFSR

LFSR

Extracted
round tweakey

P 2
T

(b) Double round 

Fig. 1: Single and double round implementations of the Skinny tweakey schedule 

While the LFSRs are specific to each tweakey array, the permutation remains 
the same. Therefore, when considering several tweakey arrays (i.e. z = 2 or z = 
3), computing the permutation after having extracted and exclusive-ORed all 
tweakeys together allows to speed up the computations. However, the drawback 
of this approach is that one has to apply the permutation to the round tweakeys 
as many times as it should have been done in the naive approach. Because 
P 16 = Id, instead of calling P 2 as many times as required, we can compute P i T T T 
for i ∈ {2, 4, · · · , 14} depending on the round number. The Figure 2 illustrates 
our efficient implementation of the tweakey schedule. 
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Fig. 2: Speed-optimized implementation of the Skinny tweakey schedule to derive 16 round tweakeys. Can be reiterated to 
derive more round tweakey material. 
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We opted for this approach to reach the best possible performance for the 
Skinny-based NIST LWC candidates we consider in our benchmark. Still, it has 
a considerable impact on code size as reported in Table 2. When those memory 
requirements are too high to be practical, we suggest to omit this implementation 
trick at the cost of a slower execution time. Our code is publicly available at 
https://github.com/aadomn/skinny. 

Algorithm 
Parallel 

Blocks 

Speed (cycles) Code size 

(bytes) 

RAM (bytes) 

M3 M4 In/Output Stack 

Skinny-128-384 tweakey exp. 

Skinny-128-384+ tweakey exp. 

1 

2 

1 

2 

3 252 

3 517 

2 426 

2 588 

3 266 

3 580 

2 449 

2 605 

5 754 

10 608 

4 796 

8 620 

896 

1 792 

640 

1 280 

60 

60 

60 

60 

Table 2: Implementation results on ARM Cortex-M for constant-time imple-
mentations of the Skinny-128-384 tweakey schedule. Speed refers to the entire 
tweakey expansion while the number of parallel blocks refer to the representa-
tion to match. In/Output refers to the amount of memory needed to store all 
the pre-computed round tweakeys. 

3 Application to some NIST LWC round 2 candidates 

3.1 GIFT-COFB 

Implementation results for fixsliced GIFT-COFB have already been reported 
in [ANP20]. For our benchmark, we run measurements using the balanced im-
plementation publicly available at https://github.com/aadomn/gift. This im-
plementation aims at providing a trade-off between efficiency and compactness. 

3.2 The Romulus family of lightweight AEAD algorithms 

Romulus [IKMP20] consists of two families, a nonce-based and a nonce misuse-
resistant authenticated encryption, namely Romulus-N and Romulus-M. In this 
document, we only consider the primary versions of each family, namely Romulus-
N1 and Romulus-M1, as well as the new variants Romulus-N1+ and Romulus-M1+ 
based on Skinny-128-384+. 

A feature shared between both families is that, when processing the input 
message, the tweakey is initialized as follows: 

TK1 ← lfsr56(D) || B || 064 

TK2 ← nonce 

TK3 ← key 

https://github.com/aadomn/skinny
https://github.com/aadomn/gift
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where lfsr56(D) refers to a 56-bit counter and B refers to a domain separa-
tion byte. Therefore, when multiple blocks of message have to be processed, the 
only part of the tweakey that will vary is TK1. In order to avoid useless com-
putations, we suggest to precompute all the round tweakeys excluding TK1 at 
the beginning of the algorithm. Then, for each block, we increment TK1 before 
packing it in the fixsliced representation and running the tweakey schedule for 
this tweak only. Actually, since no LFSR is involved for this tweak and that 
P 16 = Id, we can just compute the first 16 rounds. Moreover, since the last 64T 
bits of TK1 are always zero, we only need to store half of the outputs. Finally 
during the Skinny-128-384 execution we add the round tweakeys in two steps: first 
add the precomputed round tweakeys excluding TK1, and then add the round 
tweakey that exclusively results from TK1. Although it requires some additional 
exclusive-ORs and memory accesses during the AddRoundTweakey operation, it 
allows to save the recomputation of the entire tweakey schedule. 

3.3 Skinny-AEAD 

Skinny-128 also defines the underlying tweakable block ciphers used in Skinny-
AEAD [BJK+20], another submission to the NIST LWC competition. In this 
document, we only consider the primary version Skinny-AEAD-M1 and the cor-
responding new variant Skinny-AEAD-M1+ based on Skinny-128-384+. As for 
Romulus, TK1 is the only tweakey part that varies through the entire algorithm 
execution since it is initialized as follows: 

TK1 ← lfsr64(D) || 056 || B 

TK2 ← nonce 

TK3 ← key 

where lfsr64(D) refers to a 64-bit counter and B refers to a domain separation 
byte. Therefore, the above implementation trick used in Romulus also applies 
to Skinny-AEAD. Moreover, since Skinny-AEAD allows blocks to be processed in 
parallel, we can have a look at the benefits of the Skinny-128 implementation 
that processes two blocks at a time. 

3.4 SAEAES 

SAEAES is an instantiation of the SAEB mode of operation [NMSS18] with the 
AES block cipher. Hereafter we only consider the primary member SAEAES-128-
64-128. Since the SAEB mode of operation does not allow to process several 
blocks in parallel, the underlying fixsliced AES-128 implementation process the 
same block twice. Therefore the AES-128 performance reported in Table 1 are 
actually reduced by a factor of 2. For the key expansion, we rely on a constant-
time implementation of the AES-128 key schedule in order to exclusively consider 
constant-time implementations in our benchmark. 
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3.5 Implementation results 

Hereafter we report implementation results on ARM Cortex-M3/4 based micro-
controllers for the considered NIST LWC candidates mentioned above. For all 
the implementations, the internal primitive is written in assembly language while 
the mode is handled by C code. The code was compiled by arm-none-eabi-gcc 
9.2.1 using the flag -O3 for optimized speed results. The Table 3 reports perfor-
mance for small messages along with memory requirements whereas the Table 4 
reports performance for payloads from 0 to 256 bytes. A graphical representation 
is provided in Figure 3 for greater clarity. 

Algorithm 
Parallel 

Blocks 

Speed (cycles) Code size 

(bytes) 

RAM (bytes) 

M3 M4 In/Output Stack 

GIFT-COFB 1 5 293 5 334 5 140 428 100 

Romulus-N1 

Romulus-N1+ 

1 

1 

13 352 

10 041 

13 511 

10 178 

9 132 

8 032 

1 092 

836 

96 

96 

Romulus-M1 

Romulus-M1+ 

1 

1 

21 583 

16 242 

21 903 

16 509 

9 512 

8 442 

1 245 

989 

96 

96 

Skinny-AEAD-M1 

Skinny-AEAD-M1+ 

Skinny-AEAD-M1 

Skinny-AEAD-M1+ 

1 

1 

2 

2 

19 522 

14 762 

21 138 

16 129 

19 697 

14 910 

21 334 

16 305 

8 616 

7 564 

15 302 

13 294 

1 232 

976 

2 384 

1 872 

96 

96 

96 

96 

SAEAES-128-64-128 1 18 496 18 632 5 030 452 148 

Table 3: Implementation results on ARM Cortex-M3/4 for some NIST LWC 
round 2 candidates when processing 16 bytes of message along with 16 bytes of 
additional data. In/Output refers to the amount of memory needed to store the 
input and ouput plus the temporary variables (including the round keys). 

As expected, GIFT-COFB is the candidate that shows the most outstand-
ing results regarding both efficiency and compactness. For Skinny-based candi-
dates, it results that Romulus-N is the fastest one for small messages and is only 
outperformed by Skinny-AEAD when 2 blocks are processed in parallel. How-
ever this parallelism requires twice the RAM to store the pre-computed round 
tweakeys which might be troublesome in practice for resource-constrained de-
vices. Although SAEAES-128-64-128 is penalized by the fact that the AES-128 
implementation processes a single block at a time instead of two, it shows de-
cent results and is neck and neck with Skinny-AEAD for messages smaller than 
64 bytes. 
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Fig. 3: Benchmark of some NIST LWC round 2 candidates on ARM Cortex-M3. 
The x-axis and y-axis refer to the message length (in bytes) and the correspond-
ing execution time (in clock cycles), respectively. Note that 16 bytes of additional 
data are taken into account for all measurements. For Skinny-AEAD, the number 
enclosed in parantheses refer to the number of blocks processed in parallel. 
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Algorithm 
Parallel 

Blocks 16 

Message size (bytes) 

32 64 128 256 

GIFT-COFB 1 5 293 6 718 9 502 15 070 26 206 

Romulus-N1 

Romulus-N1+ 

1 

1 

13 352 

10 041 

18 475 28 625 48 925 

13 918 21 586 36 922 

89 525 

67 594 

Romulus-M1 

Romulus-M1+ 

1 

1 

21 583 

16 242 

26 718 44 986 81 496 

20 136 33 872 61 318 

154 516 

116 210 

Skinny-AEAD-M1 

Skinny-AEAD-M1+ 

Skinny-AEAD-M1 

Skinny-AEAD-M1+ 

1 

1 

2 

2 

19 522 

14 762 

21 138 

16 129 

24 979 35 893 57 721 

18 902 27 182 43 742 

21 388 28 992 44 200 

16 379 22 274 34 064 

101 377 

76 862 

74 616 

57 644 

SAEAES-128-64-128 1 18 496 24 198 35 602 58 410 104 026 

Table 4: Benchmarking results on ARM Cortex-M3 for different message lengths 
along with 16 bytes of additional data. 

4 Conclusion and perspectives 

In this work, we reported fixsliced implementation results for some NIST LWC 
round 2 candidates. We also introduced a fast software implementation of the 
Skinny tweakey schedule when considering a bitsliced implementation. It is very 
likely that other internal primitives used in other candidates may benefit from 
the fixslicing implementation strategy and further examination on a case-by-case 
basis would be needed to get the whole picture in the context of the NIST LWC 
standardization process. 
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