
New Results and Insighs on ForkAE

Elena Andreeva1 , Arne Deprez2 , Jowan Pittevils2 ,
5Arnab Roy1 , Amit Singh Bhati2 , and Damian Vizár

1 AAU Klagenfurt, Austria
elena.andreeva@aau.at, arnab.roy@aau.at

2 imec-COSIC, KU Leuven, Belgium
arne.deprez1@gmail.com, amitsingh.bhati@esat.kuleuven.be,

jowan.pittevils@student.kuleuven.be
3 CSEM, Switzerland
damian.vizar@csem.ch

Abstract. In this work we summarize, discuss and interpret the recent advances in security
analysis and optimized SW and HW implementations of the NIST second round lightweight
authenticated encryption candidate ForkAE. We highlight the most important comparisons
in the recent ForkAE results, discuss their conclusions and illustrate our interpretation of
these results with further use cases.
While ForkAE with the ForkSkinny primitive is designed with efficiency for short messages
in mind, when the underlying primitive ForkSkinny is used in the recent modes of operation
RPAEF and GCTR the performance is also improved for the longer messages for authenti-
cated encryption and encryption, respectively.
Regarding security, we bring evidence that ForkAE provides stronger security guarantees
than originally claimed, and can thus also be classified as a ‘defense-in-depth’ candidate.
More precisely, ForkAE provides well-defined nonce misuse resistance MNR guarantees in
its sequential SAEF mode of operation (without any modifications) which is a feature that
ensures stronger security guarantees in scenarios where nonces may accidentally or mali-
ciously be forced to repeat. The same security property of the SAEF mode simultaneously
offers additional protections against blockwise adversaries, a use case particularly relevant
in the lightweight setting. Furthermore, both parallel modes PAEF and the recent RPAEF
come with full n-bit security. In addition, we show that when the ForkSkinny primitive is
used in a GCTR counter-mode style encryption – a use case relevant when no explicit au-
thentication is mandated, the resulting schemes come not only with good performance for
longer messages but also with high security guarantees.
With respect to SW and HW implementation results we highlight the recent ForkAE and
ForkSkinny primitive optimized SW and HW implementation strategies and their compar-
isons with other second round candidates, such as the SKINNY-AEAD and Romulus designs.
The referenced optimized SW implementation comes with important improvements over the
existing ForkAE portable implementations of Rhys Weatherley, with table-based and parallel
optimization techniques.

1 Introduction

ForkAE is a family of cryptographic algorithms for lightweight authenticated encryption
and a second-round candidate in the NIST Lightweight cryptography standardization pro-
cess. Its primary target use case are applications of predominantly short message size (e.g.,
8, 16, 32 bytes). This class of applications covers an ever increasing range of practical
scenarios, such as: the Secure Onboard Communication in the automotive industry [4]
which are expected to handle short messages with stringent latency requirements; Criti-
cal communication and massive IoT domains of 5G where frequent bursts of very short
messages [1] need to proccessed; Narrowband IoT which allows for a minimum payload

mailto:damian.vizar@csem.ch
mailto:jowan.pittevils@student.kuleuven.be
mailto:amitsingh.bhati@esat.kuleuven.be
mailto:arne.deprez1@gmail.com
mailto:arnab.roy@aau.at
mailto:elena.andreeva@aau.at

size of 16 bits [3, 2], and which will dominate the communication in applications such as
smart parking lots that need to transmit information encoded on a few bits (e.g., “free”
or “occupied” status); medical implant devices, such as pacemakers, transmit messages of
length at most 16 bytes to and from the device programmer; Advanced robotic prosthetics
which wirelessly transmit bursts of short messages with stringent latency requirements,
as well as 1-byte temporal synchronization messages [5]; Wireless aircraft tyre pressure
monitoring systems which usually transmit payloads of ≤ 10 bytes [28], etc.

Most recently we have witnessed several works investigating various security and imple-
mentation aspects of ForkAE. In this work we give an overview of these results and discuss
their contributions to the advancement of knowledge on the ForkAE lightweight authen-
ticated encryption design and their implications on the use of ForkAE. Our survey covers
implementation-oriented results both in hardware and software, and as well as security
results both on the level of primitive and mode. We also point to further target use cases
for ForkAE, such as defense in depth and much more efficient long message processing.

Finally, we we identify new applications for the forkcipher primitive, as well as
promising future research directions.

2 Brief Description

A forkcipher is a function F : {0, 1}κ ×{0, 1}t ×{0, 1}n ×{0, 1, b} → {0, 1}n ∪{0, 1}2n which
takes a tweakey ∈ {0, 1}t+κ , a message ∈ {0, 1}n as and an output-switch as input and
produces the “left”, the “right” or “both” n-bit output blocks according to the output-
switch. κ and t denotes the length (in bits) of the secret key and tweak respectively.

ForkSkinny is a forkcipher function and the underlying primitive used in the ForkAE
NIST submission [9]. It is constructed following the iterate-fork-iterate (IFI) paradigm
using the tweakable block cipher Skinny[14]. The outline of the ForkSkinny construction
is depicted as in Figure 1.

r1

RF RF

TKS TKS

rinit
RF RF

RF RF

TKS TKS

BC

Tw

TKS TKS

r0

C1

M

C0

KkT Tw

Fig. 1: The structure of ForkSkinny. TKS denote the round tweakey schedule function
and RF denotes the round function.(output-switch omitted)

The round function of ForkSkinny is almost identical to the round function of Skinny.
Each round can be described as

Ri = Mixcolumn ◦ Addconstants ◦ Addroundtweakey ◦ Shiftrow ◦ Subcell

where the Mixcolumn, Shiftrow, Subcell and Addroundtweakey functions are same as
in Skinny. Note that the Addroundtweakey function is used in ForkSkinny to generate
round tweakeys for rinit + r0 + r1 rounds, where r0 and r1 denote the number of rounds
in the left and right branch of ForkSkinny and rinit denotes the number of rounds
before forking. The Addconstants function in ForkSkinny differs from Skinny. Unlike
Skinny (which has 6 bit round constants), the Addconstants in ForkSkinny generates
7 bit round constants using an LFSR. For a more detailed description of the ForkSkinny
algorithm we refer the readers to the article [9].

ForkAE proposed two modes of operation with ForkSkinny – a sequential one SAEF
and a parallel one PAEF.

3 Security of ForkSkinny and ForkAE

3.1 Cryptanalysis of Forkcipher: An Overview

In general, in an instantiaion of a forkcipher any exploitable weakness in the forking
structure can give advanatge to an adversary. For example, on an earlier instantiation of
forkcipher - ForkAES, the recosntruction query was used to cryptanalyse [11] and mount
an attack on 9 out of 10 rounds. The cryptanalysis of ForkAES [11] exploited the (tweakey)
differential in AES particularly in the forking setup. This differential trail is reffered to
as reflection trail. Although the cryptanalysis in [11] did not violate the security of the
ForkAES, it certainly showed the possible weaknesses in the forking structure. It also
reduced the security margin of ForkAES significantly in terms of number of rounds. In
[12], Bariant et al. improved upon the cryptanalysis of ForkAES proposed in [11]. They
proposed an attack on the full ForkAES and showed several theoretical attacks on the full
ForkAES by identifying a fraction of weak keys.

ForkSkinny does not contain the exploitable weakness used against ForkAES. In [12],
used a different approach to cryptanalyse reduced round ForkSkinny. The paper pro-
vided cryptanalysis of ForkSkinny-128 with 256-bit key and 256-bit tweakey (128-bit
key and 128-bit tweak).

3.2 Security of ForkSkinny

Security of ForkSkinny depends heavily on the security of the block cipher SKINNY.
It is clear that any cryptanalysis on (reduced round) SKINNY can also be applied to
ForkSkinny. The known cryptanalysis of reduced round ForkSkinny does not cover
significantly more number of rounds than SKINNY. For example, the most recent third
party cryptanalysis [12] of ForkSkinny-128 with 256-bit key and 256-bit tweakey (128-
bit key and 128-bit tweak) covers 26 and 24 rounds respectively. This is not far off from
the best known attack on SKINNY, which is on 23 rounds. The cryptanalysis in [12]

does not contradict, as also concurred by the authors of the paper, the security of Fork-
Skinny and ForkAE. Here we remark that ForkSkinny-128 with 256-bit key is not a
valid instantiation according to the ForkSkinny specification submitted to the NIST.

Overall, the known cryptanalysis results on ForkSkinny (and on forkcipher) confirms
the designers perspective that ForkSkinny has a security margin that is comparable to
SKINNY.

3.3 New Security Results on SAEF

Several instances of the SAEF mode for nonce-based AEAD have been submitted as part
of the ForkAE algorithm family [9]. SAEF is a sequential design, primarily conceived
to have a reduced memory footprint compared to the PAEF mode. The original security
claim given for SAEF was n/2-bit nonce-based AEAD security. In a recent work, Andreeva
et al. [8] show that SAEF is in fact an a secure OAE scheme. We give the necessary context,
the formal statement of the new result, and discuss the implications.

Online Authenticated Encryption Security Notion. The security notion of Online
Authenticated Encryption (OAE) is one of the security notions that aim at mitigating the
impact accidental nonce reuse on AEAD (a.k.a. nonce misuse). Even infrequent nonce-
reuse can have catastrophic consequences on the security of AE schemes targeting the basic
nonce-based AEAD security [35]. The severity and plausibility of nonce reuse in practice
has been demonstrated by real-world attacks. For example, Böck et al. in USENIX’16 [15]
demonstrated that 184 HTTPS servers worldwide repeat nonces used with AES-GCM,
leading to a complete break of authenticity in the TLS session. Vanhoef and Piesens at
CCS’17 [34] presented an attack which forces nonce repetitions and breaks the WPA2
wireless protocol. The risk of an accidental nonce reuse is also high for small devices, such
as in IoT, due to constraints on memory, energy etc.

The “best possible” security of nonce based AEAD against nonce misuse captured by the
notions of MRAE [31] and the RAE [21] is, unfortunately, mutually exclusive with the
AE scheme in question being online. An online AE scheme processes the plaintext as in
smaller, typically fixed-size blocks during encryption, and computes the ciphertext as a
sequence of such blocks, such that i-th ciphertext block can be computed after having seen
the first i plaintext blocks only. Practical AE schemes that are online can typically also
be implemented with a constant memory footprint.

¡¡¡¡¡¡¡ HEAD The security notion called OAE proposed by Fleischmann et al. [18] (and
later corrected by Hoang et al. [21]) slots between the notions of nonce-based AEAD and
MRAE, capturing the same level of integrity (as MRAE) and a well-defined, albeit lower
level of confidentiality in face of nonce misuse, which is achievable by online AE schemes.
======= The security notion called OAE proposed by Fleischmann et al. [18] (and
later corrected by Hoang et al. [22]) slots between the notions of nonce-based AEAD and
MRAE, capturing the same level of integrity (as MRAE) and a well-defined, albeit lower
level of confidentiality in face of nonce misuse, which is achievable by online AE schemes.
¿¿¿¿¿¿¿ 67fe6bdbc01d176f2633984e5bc96f4aab09d87a Roughly speaking, for an underlying
primitive’s blocksize, an OAE-secure scheme will leak the length of longest block-aligned
prefix of two plaintexts encrypted with the same nonce and associated data but nothing
more. Endignoux and Vizár [20] later showed that the equivalence of OAE-security to (an

adapted version of) the blockwise-adaptive AE security from [19]. The result implies that
OAE-secure schemes are safe to use in settings where block-wise adaptive attackers may
exist, i.e., where an application outputs a part of the ciphertext before it has been fed the
entire plaintext. Such attacks pose a real threat to lightweight applications, e.g., due to
small devices not equipped with sufficient memory. The OAE notion has been targeted by
the COLM [6] CAESAR defense in depth finalist.

OAE security of SAEF.

In [8] the authors investigate the OAE security of ForkAE and more precisely on the online
scheme SAEF. ForkAE was proposed with two modes initially in mind: the parallelizable
mode PAEF and the sequential mode SAEF [9]. Both are provably secure nonce-based AE
schemes [30] (we skip the syntax of AE schemes for brevity). The former achieves optimal
quantitative security (thus allowing for secure instances with a small block size) while the
latter is secure up to the birthday bound but requires a smaller internal state. We focus
on the SAEF mode which processes blocks of AD and message with single call to F each,
using tweaks composed of the either a padded nonce (of length t − 4) or a string of n − 3
zeros, and a domain separation constant. See Figure 2.

Fig. 2: The encryption algorithm of SAEF[F] mode. The bit noM = 1 iff |M | = 0. The picture illustrates
the processing of AD when length of AD is a multiple of n (top left) and when the length of AD is not
a multiple of n (top right), and the processing of the message when length of the message is a multiple
of n (bottom left) and when the length of message is not a multiple of n (bottom right). The white
hatching denotes that an output block is not computed. If |M | = 0, the tag is equal to TA; else if |A| = 0,
the AD processing is skipped.

The results of [8], stated below in Theorem 1, show that the SAEF mode is provably OAE
secure without the need of applying any design modifications, as long as the total amount
of data processed with a single key is � 2n/2 blocks, with n the blocksize of the underling
ForkSkinny cipher. This implies that SAEF guarantees qualitatively stronger security
than claimed in the original submission at unchanged quantitative levels. With the effi-
ciency gain due to ForkSkinny, SAEF is conjectured to outperform COLM instantiated
with the SKINNY tweakable blockcipher (with the same parameters).

Theorem 1 ([8]). Let F be a tweakable forkcipher with n-bit block. Then for any nonce-
≤ 2n−1misuse adversary A who makes at most qe encryption queries, at most qv decryp-

tion queries such that the total number of forkcipher calls induced by all the queries is at

most σ, we have

3 · σ2
oprpf prtfpAdv (A) ≤ Adv (B) + SAEF[F] F 2n+1

auth prtfp σ2 + 4 · qv
AdvSAEF[F](A) ≤ AdvF (C) +

2n

for some adversaries B and C, each making at most 2σ queries, and running in time given
by the running time of A plus γ · σ for some “small” constant γ.

Use Cases. The newly-proved security properties of SAEF will greatly benefit lightweight
applications (such as consumer grade and low-power IoT), where it is often necessary to
compute ciphertext blocks on-the-fly with constant memory and/or latency. Devices used
in the said applications additionally come with stringent cost constraints and often get
inadequate security as a consequence [25, 24], and would thus greatly benefit from a
lightweight AEAD scheme with robust security. We exemplify how an OAE secure scheme
can be useful in the context of lightweight cryptography applications.

Nonce reuse in lightweight applications. Many lightweight applications have stringent cost
constraints on the embedded platforms they use. The pertinent platforms thus cannot ben-
efit from most robust HW, while at the same time, these HW platforms may realistically be
exposed to physical attackers in many applications (outdoor smart-home equipment acces-
sible from the street, smart city infrastructure being exposed by its very nature, intelligent
building sensors and actuators being accessible from maintenance access ports etc). As a
consequence, certain sources of accidental nonce reuse (such as a reset occurring during
counter incrementation, lack of persistent storage to store nonce value between resets etc)
may be exploited, or even artificially amplified by an attacker with physical access. Having
an AE scheme that is both sufficiently lightweight and maintaining a well-defined level of
security in face of nonce-reuse is truly valuable in such a cases.

Nonce reuse and short messages. Informally speaking, the schemes secure in the sense
of the MRAE notion [31] will retain the same security as nonce-based AEAD, even if
nonces repeat arbitrarily, except for unavoidably leaking the information that the complete
plaintext tuple (N, A, M) repeats (because this implies repetition of ciphertexts). For
encryption queries with a single-block plaintext (up to 8 or 16 bytes with the algorithms
in the ForkAE family), the security afforded by OAE schemes is equivalent with that of
MRAE schemes, as the leakage of the length of longest common blockwise prefix is the same
as leakage of plaintext equality. The main use case targeted by ForkAE are applications
where the communication is dominated by (very) short messages. An application would
thus get the “best possible” nonce-misuse protection for a majority of messages while
benefiting from the efficiency of an OAE scheme.

OAE-aware engineering. In 2015, Hoang et al. warned that OAE confidentiality guarantees
are not as strong as originally believed [22]. They presented the CPSS (chosen prefix
secret suffix) attack, which recovers a valuable secret string that is placed in many OAE
encryption queries of the same session. More precisely, if sufficiently many plaintexts are
composed by appending such a secret string S to an attacker-controlled variable-length
prefix P with a small enough granularity b (typically b = 8 for a byte), then the attacker
can recover S in a chosen plaintext attack with a query complexity d|S|/be ∗ 2b by using
the prefix-preservation property to exhaustively search for the value of one byte of S after
another. Hoang et al. gave the HTTP session cookie as an example of such a setting; in

the context of lightweight-crypto applications, an example of such a repeatedly used secret
string are device authentication passwords, such as used for MQTT [33].

While OAE falls prey to CPSS attack in general, its confidentiality guarantees are still
sufficient in many applications, if sufficient attention is given to the design of the the
higher-level security layer using the OAE scheme. To counter CPSS, it is sufficient to
ensure that a repeatedly used high-value secret is only preceded by a fixed-size prefix.
This is also the case for the password field in MQTT’s CONNECT packet, provided the
implementation does not allow the clientID and userName fields to be changed arbitrarily.

Blockwise encryption for external flash. Applications under the umbrella of “Internet of
Things” typically comprise connected devices based on low-cost embedded platforms (the
“Things”). External flash memory is used in many such applications to extend the storage
capacity of such platforms; the advantage is its low cost, the downside is that it is extremely
easily accessible to an attacker with a physical access to the device. Even if care is taken
not to store any sensitive data on the external flash, this is unavoidable in some cases.
For example, a new firmware image received during a remote firmware update in a micro-
controller may not fit into the internal flash memory alongside the currently running image,
and so is routinely stored in the external flash until the update is complete. In order to
protect valuable intellectual property, as well as prevent malicious firmware modifications,
the firmware image must be encrypted an authenticated.

In a typical configuration (such as in the popular Nordic NRF52840 [32] to give an example)
the received firmware image is highly unlikely to fit into the RAM, which means that the
micro-controller has to compute the ciphertext on the fly and write first ciphertext blocks
to the external flash memory, possibly before the last blocks of the new image have been
received. An OAE secure scheme is a very useful tool in this case, because it allows
exactly this kind of on-the-fly processing, and offers provable security guarantees against
(physical) attackers that may tamper with the firmware image adaptively, while observing
the ciphertext blocks already written.

This observation generalizes to any other large amounts of data that need to be stored on
the external flash and require authenticated encryption.

3.4 n-bit Secure RPAEF for Longer Messages

In addition to SAEF and PAEF, in [10] Andreeva et al. also propose a new authenticated
encryption mode called RPAEF (for Reduced PAEF). RPAEF (ee Figure 3.) can be seen
as the mode ΘCB with a new, forkcipher based finalization.

Namely, it uses a single branch of the ForkSkinny primitive for all but the finalization
call where both branches of ForkSkinny are evaluated. The authentication in RPAEF
is enabled by an aggregate message blocks sum which is fed into the final ForkSkinny
tweak. In terms of number of executed primitive rounds, RPAEF is always (for all message
lengths) more efficient than the respective tweakable blockcipher modes.

When instantiated with ForkSkinny, RPAEF computes the equivalent of ` − 1 calls to
SKINNY and 1 call to ForkSkinny for a message of ` blocks as compared to at least
`+1 SKINNY calls in the most optimal ΘCB tweakable cipher mode. This general RPAEF

Fig. 3: The encryption algorithm of RPAEF[F] mode. The picture illustrates the processing of AD when
length of AD is a multiple of n (top left) and when the length of AD is not a multiple of n (top right),
and the processing of the message when length of the message is a multiple of n (bottom left) and when
the length of message is not a multiple of n (bottom right). The white hatching denotes that an output
block is not computed. If |M | = 0, the tag is equal to TA; else if |A| = 0, the AD processing is skipped.

mode optimization comes at the cost of using of large tweaks (as large as 256 bits) in the
final ForkSkinny call and increased HW area footprint.

Security-wise, a similar proof to the proof of the PAEF construction applies to RPAEF
and this is formally proven in Section 6.7, Theorem 3, [10] showing that RPAEF achieves
optimal n-bit quantitative security.

Implications. RPAEF is the second parallel AE mode (after PAEF) that offers full n-
bit security and in the spirit of the past CAESAR AE competition places ForkAE in a
category of lightweight authenticated encryption schemes with high security margin and
hence the ‘defense in depth’ category. From a practical perspective, this enables use cases
where the key will never be refreshed and enables life-long device utilization span.

3.5 Counter Mode Beyond Birthday Secure Encryption

In [7] the authors introduce a generic CTR encryption mode GCTR that uses an multi-
forkcipher (and forkciphers in particular) as an underlying primitive on inputs a message
M , a nonce N , a block counter j (as the conventional nonce-based CTR mode), and an
additional random IV . The work gives the security analysis of 36 “simple and natural”
GCTR variants and an additional GCTR-X slightly more involved variant under the nivE
security notion by Peyrin and Seurin from [26]. The authors identify numerous security and
efficiency advantages and tradeoffs of these modes both in general and more concretely,
when the modes are instantiated with ForkSkinny.

The results show that many of the schemes achieve from well beyond birthday BB to full
n-bit security under nonce respecting adversaries and some even beyond birthday BB and
close to full n-bit security in the face of realistic nonce misuse conditions. Most variants’
security bounds are better than that of classical CTR mode, which becomes void at ≈ 2n/2

processed blocks.

The authors give a comparison of GCTR using ForkSkinny (a multi-forkcipher MFC
with two branches s = 2) with the traditional CTR and the more recent CTRT modes
where both are instantiated with the SKINNY tweakable cipher. The estimations show
that GCTR with ForkSkinny can achieve an efficiency advantage over 20% for the

longer messages. The efficiency comparison between GCTR, CTRT and basic CTR in [7],
Figure 4 is done by comparing the total number of primitive rounds for instances based
on ForkSkinny [29]. The figure illustrates that the number of rounds required for a
GCTR2-ForkSkinny is smaller than CTR-SKINNY and CTRT-SKINNY for all values of
queried bytes. In fact, any GCTR2-ForkSkinny mode with t = 2n is still more efficient
than the CTRT-SKINNY mode with t = n.

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

·104

of queried bytes

#
of

ro
u
n
d
s
re
q
u
ir
ed

CTR-SKINNY n = 64, t = 0
CTRT-SKINNY n, t = 64

GCTR2-ForkSkinny n, t = 64

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

·104

of queried bytes

#
of

ro
u
n
d
s
re
q
u
ir
ed

CTR-SKINNY n = 128, t = 0
CTRT-SKINNY n, t = 128

GCTR2-ForkSkinny n, t = 128
CTRT-SKINNY t = 2n = 256

GCTR2-ForkSkinny t = 2n = 256

Fig. 4: Efficiency comparison of any GCTR2 mode (instantiated with ForkSkinny) with
CTR and CTRT modes (instantiated with SKINNY). These plots show the number of
rounds required to process the queried bytes (snσ/8). The left figure corresponds to the
input size n = 64 bits whereas the right figure corresponds to the input size n = 128 bits.

Implications. In lightweight scenarios where no explicit authentication is required or
when a lightweight encryption scheme is used for randomness or subkey generation Fork-
Skinny in a GCTR mode can in a very efficient way offer the highest n-bit securiy both
in the nonce misuse and nonce respecting scenarios. This brings in an additional aspect of
the ‘defense in depth’ power of the ForkSkinny primitive when used in an counter-style
encryption.

4 SW and HW Implementation Results

In ASIACRYPT 2019 Andreeve et al. [10] published the first work (up to our knowledge)
that shows optimizied ForkAE HW implementations and performance comparisons (in-
cluding the RPAEF mode). More concretely, Section 7, Table 10 of this work provides a
hardware comparison of the three modes PAEF, SAEF and RPAEF (instantiated with dif-
ferent ForkSkinny variants) with Sk-AEAD. The Sk-AEAD is the tweakable cipher mode
TAE [23] instantiated with Skinny-AEAD M1/M2, M5/M6 [13]. Based on the round-based
implementations all these three modes are shown to perform faster (in terms of cycles) for
short data (up to 3 blocks) with about the same area. RPAEF beats its competitor for
all message sizes at the cost of a area increase of about 20% (for only one of its variants).
The performances are further optimized by exploiting the in-built parallelism (//)in the
ForkSkinny primitive. This allows for further improved performance results with that
strategy to be obtained. For messages up to three 128-bit blocks, the speed-up of PAEF
and SAEF (both parallel(//)) ranges from 25% to 50%, where the advantage is largest for

the single-block messages. Most importantly, the RPEAF, PAEF, and SAEF(//)instances
result in fewer cycles than the θCB variants for all message sizes at a small cost in area
increase. However, the relative advantage of the latter instances is more explicit for short
messages; as it diminishes asymptotically with the message blocks. For message sizes up
to 8 bytes the PAEF-ForkSkinny-64-192 instances are more than 58% faster with also a
considerably smaller implementation size. We refer the reader for detailed read to Section
7, Table 10 of [10]. Building on the latter work Purnal et al. [29] worked on optimized
HW implementations of ForkAE in the First NIST 2019 workshop.

4.1 Improved HW Implementation Strategies

In his recent master thesis [27] on the topic also studies HW optimizations with a main
focus on area and throughput efficiencies. The thesis offers two new (Restart and Re-
trace) area-focused architectures which are compared with a balanced (Forkreg) and a
throughput-focused (Parallel) architecture. The work focuses on primitive-level optimiza-
tions regarding the the ForkSkinny cipher. Overall, the work explores 4 architectures:

– Parallel: This implementation calculates the two ForkSkinny branches simultane-
ously in parallel. When looking at area-effciency, this design is worse than a serial
implementation. However, it does not take up double as much area as one might as-
sume when thinking of an implementation with dual parallelism. For small messages,
a round-based encryption-only Parallel ForkSkinny implementation can have higher
throughput and area than the round-based encryption-only SKINNY [4].

– Forkreg: an extra block-sized register called the fork register is used to store the fork-
state and to read this state once the ciphertext part C0 has been calculated.

– Restart: This architecture restarts from the beginning once C0 is ready to compute the
other branch. The main drawback is that the plaintext-data must remain available for
at least rinit + r0 rounds.

– Retrace: This architecture is more flexible than Restart. It allows for both encryption
and decryption and the plaintext can be forgotten once the internal state has been
loaded. This is accomplished by, once C0 has been calculated, decrypting the internal
state back up to the point of the fork and then re-encrypting it to become C1.

The latter three area-efficient architectures (excluding the parallel) are compared to a
SKINNY implementation (see Table 5) where the results were obtained using the NanGate
45NM library for ASICS under normal operating conditions, and where no clock gating
or latches are used, as well as a similar datapath sizes of one sixteenth of the block size
are used. For the ForkSkinny implementations, the throughput is defined as a range
instead of a fixed number. This is to account for the fact that for very short messages,
the throughput is effectively doubled if both outputs of the forkcipher are used. As such,
the range is defined as worst case (very long messages) to best case (very short messages).
An important result to note is that the Restart ForkSkinny-128-288 implementation
uses less area than the Skinny-128-384 implementation. This is due to the fact that both
ForkSkinny-128-192 and ForkSkinny-128-288 only need a half block-sized register to
store the final block of the tweakey state, whereas Skinny-128-384 uses a full block-sized
register to store the final part of the tweakey state.

These results show that the in the Retrace architecture, the possibility to decrypt comes
nearly for free in terms of area – there is only a very small area-difference between the

encryption-only and encryption/decryption implementation. As the number of cycles for
a decryption of the ForkReg and Retrace architecture are the same, an area-efficient de-
sign that must mainly decrypt messages and only rarely encrypt them should probably
use the Retrace architecture. A significant difference between encryption-only and encryp-
tion/decryption Retrace architecture is the critical path, which does change by a large
amount when going from encryption-only to encryption/decryption, especially for the 128-
288 architecture. The encryption/decryption design of Retrace can have higher through-
put when decrypting messages (for small messages) than encryption/decryption SKINNY.
This is mainly due to the fact that decrypting requires the key to be updated before the
real decryption can begin, which nearly doubles the amount of cycles for SKINNY and
Forkreg ForkSkinny but the increase in cycles is (relatively speaking) less pronounced
for Retrace ForkSkinny. The area penalty of forking in an encryption/decryption imple-
mentation of ForkSkinny can be hidden almost entirely at the cost of cycles necessary
to process message blocks.

Fig. 5: Results for the different word-based implementations

4.2 Improved SW Implementation

The main contribution of the work of [16, 17] is the development of an optimized software
implementations for ForkAE.

The authors analyze the performance and efficiency of different ForkAE implementations
on two embedded platforms: ARM Cortex-A9 and ARM Cortex-M0.

The first improvement deals with the portable ForkAE implementations. A decryption
optimization technique is applied which allows to accelerate the existing portable im-
plemetation of [36] for decryption by up to 35%.

Secondly, platform-specific software optimizations are explored. In platforms where cache-
timing attacks are not a risk, the authors present an S-box implementation which improves
the performance of the ForkSkinny round function and contributed to a more efficient
desing for table based implementations. More generally, on such platforms the SKINNY
round function and inverse round function can be transformed into a combination of table-
lookups which allows to for a significant increase in performance. Compared to the existing
portable implementations, the latter technique speeds up both encryption and decryption
by 20% and 25%, respectively. The impact on the amount of memory needed for this
implementation can be minimised by reducing the number of tables.

Furthermore, [16, 17] propose a set of platform-specific optimizations for processors with
parallel hardware extensions such as ARM Neon. Without the need of relying on paral-
lelism provided by long messages (bitsliced implementations), the authors focus on the
data-level parallelism in ForkSkinny. The latter can be used to increase efficiency and
reduce latency for the small messages that are typical in IoT applications and are the
target use case for the ForkAE algorithm.

Finally, the performance of the implementations on the ARM Cortex-M0 and ARM
Cortex-A9 processors are benchmarked and a comparison with the other SKINNY-based
schemes in the NIST lightweight competition – SKINNY-AEAD and Romulus is given. We
elaborate on the performance comparison from this work of ForkAE with other SKINNY-
based AEAD schemes Romulus and SKINNY-AEAD in in Figure 6a and Figure 6b from
[17]. The primary instances of the NIST LWC submission for small messages with differ-
ent number of message (M) and associated data (A) blocks are compared. These figures
highlight the advantage of a forkcipher over a blockcipher for encryption of small messages.

A=0 A=1 A=2 A=3 A=0 A=1 A=2 A=3 A=0 A=1 A=2 A=3
2=M1=M0=M

0

1

2

3

4

5

6

7

8

9

NUMBER OF MESSAGE (M) AND ASSOCIATED DATA (A) BLOCKS

EN
C

R
Y

PT
IO

N
 T

IM
E

(C
LO

C
K

 C
Y

C
LE

S)
X

 1
00

00 ENCRYPTION TIME PORTABLE
IMPLEMENTATIONS

PAEF-FORKSKINNY-128-288

ROMULUS-N1

SKINNY-M1

A=0 A=1 A=2 A=3 A=0 A=1 A=2 A=3 A=0 A=1 A=2 A=3
M=0 M=1 M=2

0

2

4

6

8

10

NUMBER OF MESSAGE (M) AND ASSOCIATED DATA (A) BLOCKS

EN
C

R
Y

PT
IO

N
 T

IM
E

(C
LO

C
K

 C
Y

C
LE

S)
X

 1
00

00 DECRYPTION TIME PORTABLE
IMPLEMENTATIONS

PAEF-FORKSKINNY-128-288 (1)

PAEF-FORKSKINNY-128-288 (2)

ROMULUS-N1

SKINNY-M1

(a) (b)

Fig. 6: Performance comparison of SKINNY based ciphers on Cortex-A9 from [17]. En-
cryption with implementations from [36]. Decryption with SKINNY, Romulus and PAEF-
ForkSkinny-128-288(1) implementations from [36] and PAEF-ForkSkinny-128-288(2)
implementation with preprocessed tweakey schedule.

Table-based Implementations The lookup table round function is implemented on
the STM32F0 platform with the ARM Cortex-M0 processor as an example lightweight
platform with no cache. Then, the different trade-offs between speed, code size and memory
usage are explored. Table 1 lists the results for an implementation with 4 different lookup
tables. Compared to the portable implementations of [36], it needs up to 16% fewer clock
cycles when the tables are stored in ROM. When the tables are stored in RAM, this gain
is almost 20%.

ForkSkinny gains here in speed in exchange for a higher memory cost. Particularly,
when four lookup tables are used in combination with two tables containing the mixed
and shifted round constants, a total of 4.7 kB of memory is needed. We show that the
impact of the lookup table implementation on the memory usage can be greatly reduced
when only one T -table is used instead four. The performance results for this method are

listed in Table 1. This approach introduces some extra calculations in the round function,
but as can be seen from the results, the impact on the computation time is only a few
cycles per byte. The reduction in memory cost of 3 kB is significant and can be very
important for the resource-constrained devices in embedded applications.

Table 1: Implementation figures for the table-based ForkAE encryption implementation
on the ARM Cortex-M0 from [17].

Encryption Tables in ROM Tables in RAM

4 lookup tables c/B ROM RAM c/B ROM RAM

PAEF-FS-128-192
PAEF-FS-128-256
PAEF-FS-128-288
SAEF-FS-128-192
SAEF-FS-128-256

1 lookup table

2110
2111
2859
2128
2129

6752
6748
7034
6688
6674

192
200
220
192
200

2016
2017
2739
2035
2035

1960
1956
2242
1896
1882

4984
4992
5012
4984
4992

PAEF-FS-128-192
PAEF-FS-128-256
PAEF-FS-128-288
SAEF-FS-128-192
SAEF-FS-128-256

2138
2139
2919
2157
2157

3692
3688
3980
3628
3614

192
200
220
192
200

2030
2031
2805
2049
2049

1972
1968
2260
1908
1894

1912
1920
1940
1912
1920

To study the gain of tabulating the inverse round function, the performance of one spe-
cific implementation for table-based decryption is analysed. The implementation uses one
lookup-table that is stored in ROM and a preprocessed tweakey schedule that is stored
in RAM. The performance metrics are listed in Table 2. When this is compared with the
portable decryption implementation, it can be seen that using lookup tables can signifi-
cantly speed-up decryption, as the amount of cycles that are needed is reduced with up
to 25%. This speed-up is higher than for encryption because of the simpler inverse round
function where the addition of the round tweakey and constants can be done at the end.

Table 2: Implementation figures for the table-based ForkAE decryption implementation
on the ARM Cortex-M0.

Decryption c/B ROM RAM

PAEF-FS-128-192 2241 3261 818
PAEF-FS-128-256 2241 3253 826
PAEF-FS-128-288 3156 3529 958
SAEF-FS-128-192 2259 3317 818
SAEF-FS-128-256 2257 3303 826

Parallel Implementations In Table 3 the performance of ForkAE encryption and de-
cryption on the ZYBO platform is illustrated when the Neon SIMD implementations are
used. For ForkSkinny instances with a block-size n = 128, the S-box and its inverse
are replaced with the 128-bit Neon implementation. For PAEF-ForkSkinny-64-192, the
ForkSkinny implementation with parallel round function is used for encryption. Its de-
cryption only features the parallel S-box layer, as it cannot benefit from parallelism in the
round function.

For the 128-bit instances with the Neon S-box implementation, we observe a reduction in
the amount of cycles for encryption and decryption of approximately 30% when compared

to the portable implementations of [36]. For the PAEF-ForkSkinny-128-288 instance with
three tweakey matrices, this speed-up is a bit lower (27%). This can be explained by the
larger relative importance of the tweakey calculations in this instance. The ROM size is
reduced by approximately 500 bytes in all 128-bit instances. This follows from the smaller
code size of the round function, which now uses the parallel Neon S-box implementation.
The amount of RAM needed for encryption or decryption remains the same.

Table 3: Implementation figures for the Neon SIMD implementations of ForkAE on the
ZYBO platform.

Encryption Decryption

c/B ROM RAM c/B ROM RAM

PAEF-FS-64-192 1184 3235 331 1390 2653 392
PAEF-FS-128-192 736 2619 161 807 2551 810
PAEF-FS-128-256 737 2651 169 806 2583 818
PAEF-FS-128-288 1026 2863 189 1078 2783 950
SAEF-FS-128-192 743 2491 161 812 2415 810
SAEF-FS-128-256 743 2519 169 810 2419 818

The execution time of PAEF-ForkSkinny-64-192 encryption improves with almost 500
cycles per byte, for example 29%, when compared to the portable implementation from
[36]. For decryption, the speed-up is smaller as the degree of parallelism is lower. With
the Neon inverse S-box implementation, we still accelerate decryption with 17%.

A single round of the 64-bit SKINNY round function with a Neon S-box implementation
executes in 95 clock cycles on the ARM Cortex-A9. With 17 rounds before the forking point
and 23 rounds after the forking point, a single branch of the ForkSkinny primitive, which
is equal to the execution of the SKINNY primitive, needs 40 of these rounds. Producing
twice as much output by calculating both branches requires 17 + 2 × 23 = 63 such rounds,

63 or 40 = 1.58 times the amount of computations. When the S-box is calculated in parallel
for the branches after the forking point, two rounds are calculated in 112 clock cycles
instead of 2 × 95. This way producing the double output requires only 1.10 times the
amount of execution time of a single branch.

Other SKINNY-based candidates need M +1 calls to the SKINNY primitive for M message
blocks, while ForkAE, which has no fixed cost, needs M calls to the ForkSkinny primitive
(with 1.10 times the computational cost). As a result, for implementations where no mode
parallelism is exploited (for serial modes, like Romulus), ForkAE encryption will be faster
for messages of up to 10 blocks. This is illustrated in Figure 7. Note that the SKINNY-
AEAD and Romulus submissions to the NIST LWC competition do not include an instance
with 64-bit blocks. However, when 256-bit SIMD hardware is available, this result could
also be extended to the 128-bit instances.

5 Conclusion and future work

ForkAE is an efficient candidate for its core targeted setting of applications with short
messages, however in the light of the recent results, it is also emerging as a suitable design
for efficient (authenticated) encryption for longer messages. ForkAE has also been shown
to give very strong security guarantees and can rightfully be placed in a category of efficient
lightweight schemes providing ‘defense in depth’. As illustrated, ForkAE with its SAEF

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

MESSAGE BLOCKS M

#
 E

Q
U

IV
A

LE
N

T
 S

K
IN

N
Y

 P
R

IM
IT

IV
E

C
A

LL
S

ENCRYPTION TIME 64-BIT INSTANCES

SKINNY ForkSkinny ForkSkinny parallel

Fig. 7: Comparison of encryption time of 64-bit ForkAE implementations with SKINNY-
AEAD, expressed in number of equivalent calls to SKINNY primitive.

mode achieves security even in the face of attackers exploiting nonce repetitions and/or
being able to adaptively change the chosen plaintext block-by-block, which pose a very
realistic attack vector in the lightweight setting due to the frequently constrained nature
of the used HW platforms, frequent exposure to powerful attacks,or due to the distributed
and hence ‘unsupervised’ nature of some of the applications. Additionally, PAEF and
RPAEF achieve full n-bit security relevant for example in use cases where the key will
never be refreshed and life-long devices with frequent utilization span is expected, or when
the use of the most lightweight primitives (with 64-bit block) is desirable. Additionally,
we show that the ForkSkinny primitive also lends itself well to the ‘defense in depth’
design aspect when the ForkSkinny primitive is used in an counter-style encryption.

ForkAE is flexible to be used in various modes, covering the needs of both fast and robust
encryption. An interesting avenue is to explore the improvements offered by the Fork-
Skinny when used in an authentication-only mode. Our preliminary observations indicate
both robust beyond birthday bound security and efficiency advantages.

References

[1] 3GPP TS 22.261: Service requirements for next generation new services and markets.
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3107

[2] 3GPP TS 36.213: Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures.
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2427

[3] NB-IoT: Enabling New Business Opportunities. http://www.huawei.com/minisite/iot/img/nb iot whitepaper en.pdf
[4] Specification of Secure Onboard Communication. https://www.autosar.org/fileadmin/user upload/standards/classic/4-

3/AUTOSAR SWS SecureOnboardCommunication.pdf
[5] Detop dexterous transradial osseointegrated prosthesis with neural control and sensory feedback.

http://www.detop-project.eu/ (2016)
[6] Andreeva, E., Bogdanov, A., Datta, N., Luykx, A., Mennink, B., Nandi, M., Tischhauser, E., Yasuda,

K.: COLM v1 (2014), ”https://competitions.cr.yp.to/round3/colmv1.pdf”
[7] Andreeva, E., Bhati, A.S., Preneel, B., aDamian Vizár: 1, 2, 3, Fork: Counter Mode Variants based

on a Generalized Forkcipher. in submission to a peer-reviewed conference
[8] Andreeva, E., Bhati, A.S., Vizár, D.: Nonce-Reuse Security of the Online SAEF ForkAE mode. in

submission to a peer-reviewed conference

https://competitions.cr.yp.to/round3/colmv1.pdf
http://www.detop-project.eu
https://www.autosar.org/fileadmin/user
http://www.huawei.com/minisite/iot/img/nb
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2427
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3107

[9] Andreeva, E., Lallemand, V., Purnal, A., Reyhanitabar, R., Roy, A., Vizár, D.: Forkae v.1
[10] Andreeva, E., Lallemand, V., Purnal, A., Reyhanitabar, R., Roy, A., Vizár, D.: Forkcipher: A

new primitive for authenticated encryption of very short messages. In: Galbraith, S.D., Moriai, S.
(eds.) Advances in Cryptology - ASIACRYPT 2019 - 25th International Conference on the The-
ory and Application of Cryptology and Information Security, Kobe, Japan, December 8-12, 2019,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 11922, pp. 153–182. Springer (2019).
https://doi.org/10.1007/978-3-030-34621-8 6, https://doi.org/10.1007/978-3-030-34621-8 6

[11] Banik, S., Bossert, J., Jana, A., List, E., Lucks, S., Meier, W., Rahman, M., Saha, D.,
Sasaki, Y.: Cryptanalysis of forkaes. Cryptology ePrint Archive, Report 2019/289 (2019),
https://eprint.iacr.org/2019/289

[12] Bariant, A., David, N., Leurent, G.: Cryptanalysis of forkciphers. IACR Transactions on Symmetric
Cryptology 2020, 233–265 (May 2020), https://tosc.iacr.org/index.php/ToSC/article/view/8564

[13] Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y., Sasdrich, P., Sim,
S.M.: SKINNY-AEAD and SKINNY-Hash

[14] Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y., Sasdrich, P., Sim,
S.M.: The SKINNY family of block ciphers and its low-latency variant MANTIS. In: Advances in
Cryptology - CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 14-18, 2016, Proceedings, Part II. pp. 123–153 (2016). https://doi.org/10.1007/978-3-
662-53008-5 5

[15] Böck, H., Zauner, A., Devlin, S., Somorovsky, J., Jovanovic, P.: Nonce-Disrespecting Adversaries:
Practical Forgery Attacks on GCM in TLS. In: 10th USENIX Workshop on Offensive Technologies
(2016)

[16] Deprez, A.: Optimized Software Implementations for the Lightweight Authenticated Encryption
Schemes. Master Thesis, KU Leuven, 2020

[17] Deprez, A., Andreeva, E., Mera, J.M.B., Karmakar, A., Purnal, A.: Optimized Software Implemen-
tations for the Lightweight Encryption Scheme ForkAE. to appear in CARDIS 2020

[18] Fleischmann, E., Forler, C., Lucks, S.: McOE: A Family of Almost Foolproof On-Line Authenticated
Encryption Schemes. In: Canteaut, A. (ed.) Fast Software Encryption - 19th International Workshop,
FSE 2012, Washington, DC, USA, March 19-21, 2012. Revised Selected Papers. Lecture Notes in
Computer Science, vol. 7549, pp. 196–215. Springer (2012). https://doi.org/10.1007/978-3-642-34047-
5 12, https://doi.org/10.1007/978-3-642-34047-5 12

[19] Fouque, P.A., Joux, A., Martinet, G., Valette, F.: Authenticated On-Line Encryption. In: Matsui,
M., Zuccherato, R.J. (eds.) Selected Areas in Cryptography, 10th Annual International Workshop,
SAC 2003. Lecture Notes in Computer Science, vol. 3006, pp. 145–159. Springer, Ottawa, Canada
(2004). https://doi.org/10.1007/978-3-540-24654-1 11, https://hal.inria.fr/inria-00563967

[20] Guillaume Endignoux, D.V.: Linking Online Misuse-Resistant Authenticated Encryp-
tion and Blockwise Attack Models. Cryptology ePrint Archive, Report 2017/184 (2017),
https://eprint.iacr.org/2017/184

[21] Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ and the problem that
it solves. In: Annual International Conference on the Theory and Applications of Cryptographic
Techniques. pp. 15–44. Springer (2015)

[22] Hoang, V.T., Reyhanitabar, R., Rogaway, P., Vizar, D.: Online Authenticated-Encryption and its
Nonce-Reuse Misuse-Resistance. vol. 9215, pp. 493–517. Gennaro, R, Springer Verlag (2015)

[23] Liskov, M.D., Rivest, R.L., Wagner, D.A.: Tweakable block ciphers. In: Yung, M. (ed.) Advances
in Cryptology - CRYPTO 2002, 22nd Annual International Cryptology Conference, Santa Barbara,
California, USA, August 18-22, 2002, Proceedings. Lecture Notes in Computer Science, vol. 2442,
pp. 31–46. Springer (2002). https://doi.org/10.1007/3-540-45708-9 3, https://doi.org/10.1007/3-540-
45708-9 3

[24] O’Donnell, L.: ”2 Million IoT Devices Vulnerable to Complete Takeover”. Threatpost (2019),
”https://threatpost.com/iot-devices-vulnerable-takeover/144167/”

[25] O’Donnell, L.: ”Serious Security Flaws Found in Children’s Connected Toys”. Threatpost (2019),
”https://threatpost.com/serious-security-flaws-found-in-childrens-connected-toys/151020/”

[26] Peyrin, T., Seurin, Y.: Counter-in-tweak: Authenticated encryption modes for tweakable block ci-
phers. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology - CRYPTO 2016 - 36th An-
nual International Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Pro-
ceedings, Part I. Lecture Notes in Computer Science, vol. 9814, pp. 33–63. Springer (2016).
https://doi.org/10.1007/978-3-662-53018-4 2, https://doi.org/10.1007/978-3-662-53018-4 2

[27] Pittevils, J.: Low-area Optimized Hardware Implementations for ForkAE. Master Thesis, KU Leuven,
2020

[28] PLC, M.: Wireless tyre pressure monitoring (wtpms). https://www.meggitt.com/products-
services/tyre-pressure-monitoring/

https://www.meggitt.com/products
https://doi.org/10.1007/978-3-662-53018-4
https://doi.org/10.1007/978-3-662-53018-4
https://threatpost.com/serious-security-flaws-found-in-childrens-connected-toys/151020
https://threatpost.com/iot-devices-vulnerable-takeover/144167
https://doi.org/10.1007/3-540
https://doi.org/10.1007/3-540-45708-9
https://eprint.iacr.org/2017/184
https://hal.inria.fr/inria-00563967
https://doi.org/10.1007/978-3-540-24654-1
https://doi.org/10.1007/978-3-642-34047-5
https://doi.org/10.1007/978-3-642-34047
https://doi.org/10.1007/978-3
https://tosc.iacr.org/index.php/ToSC/article/view/8564
https://eprint.iacr.org/2019/289
https://doi.org/10.1007/978-3-030-34621-8
https://doi.org/10.1007/978-3-030-34621-8

[29] Purnal, A., Andreeva, E., Roy, A., Vizár, D.: What the Fork: Implementation Aspects of a Forkcipher.
In: NIST Lightweight Cryptography Workshop 2019 (2019)

[30] Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.) Proceedings of
the 9th ACM Conference on Computer and Communications Security, CCS 2002, Washington,
DC, USA, November 18-22, 2002. pp. 98–107. ACM (2002). https://doi.org/10.1145/586110.586125,
https://doi.org/10.1145/586110.586125

[31] Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap problem. In: Annual
International Conference on the Theory and Applications of Cryptographic Techniques. pp. 373–390.
Springer (2006)

[32] Semiconductor, N.: nrf52840 product specification v1.1 (2019),
https://infocenter.nordicsemi.com/pdf/nRF52840 PS v1.1.pdf

[33] Standard, O.: Mqtt version 5.0. Retrieved June 22, 2020 (2019)
[34] Vanhoef, M., Piessens, F.: Key reinstallation attacks: Forcing nonce reuse in WPA2. In: Proceedings

of the 2017 ACM SIGSAC Conference on Computer and Communications Security. pp. 1313–1328.
ACM (2017)

[35] Vaudenay, S., Vizár, D.: Can caesar beat galois? - robustness of CAESAR candidates against nonce
reusing and high data complexity attacks. In: Preneel, B., Vercauteren, F. (eds.) Applied Cryptog-
raphy and Network Security - 16th International Conference, ACNS 2018, Leuven, Belgium, July
2-4, 2018, Proceedings. Lecture Notes in Computer Science, vol. 10892, pp. 476–494. Springer (2018).
https://doi.org/10.1007/978-3-319-93387-0 25, https://doi.org/10.1007/978-3-319-93387-0 25

[36] Weatherley, R.: NIST lightweight cryptography primitives. GitHub repository (2020),
https://github.com/rweather/lightweight-crypto

https://github.com/rweather/lightweight-crypto
https://doi.org/10.1007/978-3-319-93387-0
https://doi.org/10.1007/978-3-319-93387-0
https://infocenter.nordicsemi.com/pdf/nRF52840
https://doi.org/10.1145/586110.586125
https://doi.org/10.1145/586110.586125

