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Abstract. In this contribution we investigate a novel approach to the 
implementation of the second round light weight crypto candidates. We 
follow a methodology, called Parallel Synchronous Programming (PSP), 
which converts the control flow of a crypto-algorithm together with the 
data processing into bitsliced format. The resulting design executes N 
parallel versions of a crypto algorithm as a sequence of discrete steps 
with constant computational effort. The aggregate of these N parallel 
versions completes in constant-time, not only at the level of the crypto-
graphic kernels, but also over the aggregate of N messages. PSP is espe-
cially useful when dealing with algorithms with complex system control 
such as the multiple phases of AEAD. We present a methodology to map 
permutations as well as AEAD primitives into PSP form. We present 
sample results for Ascon-p 12 , GIFT-128, WAGE permutation, ACE per-
mutation, as well as their AEAD modes. We compare with related work 
in automatic generation of bitsliced code. 
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1 Introduction 

To preserve the privacy and security of security-sensitive applications, crypto-
graphic algorithms are required. The authenticated encryption with associated 
data (AEAD) is a form of encryption that guarantees the confidentiality, in-
tegrity, and authenticity of encrypted message and the integrity and authenticity 
of its associated data. AEAD ciphers are essential in emerging areas, including 
but not limited to cyber physical systems, medical devices, smart grid, and sen-
sor networks. However, their widespread adoption is hindered by the budget of 
resource-constrained devices. In 2018, National Institute of Standards and Tech-
nology (NIST) published a call for lightweight cryptographic algorithms that are 
suitable for use in constrained environments [16] which motivated the design of 
several AEAD ciphers that are suitable for such constrained platforms. 
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Vulnerabilities of Non-Constant Time Software: Apart from the mathematical 
sanity of security guarantees, it is important to pay attention to the implemen-
tation of cryptographic algorithms. In a physical implementation of any design, 
there are indirect sources of information that potentially can be used to gain 
adversarial information about the internal state of ciphers. These sources of 
information are called side-channels. There is a great effort dedicated in the 
research community to the expansion of side-channel-related defense techniques. 

Timing side-channel is one of such indirect sources of information. A wide 
array of attacks exists in which the run-time of the program is used to gain 
information about a running algorithm. This information can be used to gain 
adversarial information about the the program. For example, the Flush+Reload 
[19] attack uses the shared cache (L3) access time to break both secret-key [11] 
and public-key [9, 18] algorithms. As another example, Prime+Probe [17] uses 
the same concept of cache access time to break cryptographic algorithms when 
memory space is not shared between the attacker and the victim. Furthermore, 
the use of table lookups that are secret key-dependent in the implementation of 
cryptographic algorithms, while beneficial for performance, draws a correlation 
between the run-time of the program and the secret key of the cryptographic 
algorithms and can be utilized for the attackers’ benefit [8, 15]. This means 
that at implementation-time, the designer of such secure algorithms must be 
aware of the security premises and avoid leaving exploitable gaps. However, 
this is not a straight-forward task and trying to maintain the security of an 
algorithm, requires tremendous engineering effort and several iterations for each 
implementation. 

Inconstancy of run-time in a program, in general, can have three main causes: 
First, the implemented algorithm can be data-dependent and this data is mea-
sured at run-time. Second, the memory hierarchy present in most processor 
architectures can cause uncertainty of run-time during software development. 
Third, access to shared devices on the system can cause contention-based run-
time variability. In the following, we discuss existing techniques to address these 
causes. 

Bitslicing: Bitslicing was originally proposed to provide full utilization of the 
processor’s word-length. However, bitslicing has noticeable characteristics that 
make it attractive for secure applications, specifically for avoiding timing side-
channel vulnerabilities. In bitslicing, every data in the program is transposed 
to a vertical format; In an N-bit processor, each variable is scattered among 
1-bit of N memory locations. In such programs, the cache access time does not 
provide useful information for the attacker. Moreover, by nature, any algorithm 
in bitsliced format has to be calculation-based meaning no table-lookups are 
possible. 

However, bitslicing has its downsides; In order to implement an algorithm in 
a bitsliced manner, only a set of basic logic instructions can be used and they 
do not support control flow computations. The control-related data in the al-
gorithms are therefore excluded from the bitsliced model. The designer has to 
decide between completely unrolling the algorithm to be able to have an entirely 
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bitsliced design or exclude the control flow from bitsliced format. Furthermore, 
these properties of bitslicing, make bitsliced implementations resilient to mem-
ory hierarchy-based timing uncertainties. However, the data-dependency of the 
algorithm and its access to shared devices in the system can still cause cause 
variations in execution time. 

Parallel Synchronous Programming: The recently presented programming model, 
Parallel Synchronous Programming (PSP) [13], overcomes the majority of these 
downsides of bitslicing. Unlike bitslicing, PSP treats the control-flow the same 
as any other data in the program and adds the control-flow to the bitsliced pre-
sentation. By doing so, PSP software is resilient to the data-dependency-based 
timing side-channel in addition to providing the security guarantees of bitsliced 
software. 

The main building block of PSP is a core function, i.e. PSP kernel, with a 
completion output signal. The PSP kernel is in bitsliced format, therefore calcu-
lates multiple instances of the algorithm in parallel, but includes the control flow 
as well. This core function should be called consecutively until the completion 
signal shows that the results are ready. To think about the PSP implementation 
of an algorithm, is to think of it in terms of a Finite State Machine with Datap-
ath (FSMD). To make this discussion simpler, we choose a simple 4-bit counter 
as our driving example. To write the PSP implementation of this algorithm, the 
first step is to define it as an FSMD. The following listing shows the complete 
implementation of this FSMD in Verilog and Figure 1 shows the schematics of 
the same. This counter is reset to zero and takes a 4-bit input (CNT) as the upper 
limit to count to. In each clock cycle, the counter will increment by one until it 
reaches the CNT value. Once this value is reached, the output done signal is set 
to one. 

module counter_v ( 
input clk, // Clock 
input rst, // Synchronous reset active high 
input [3:0] CNT, // Count destination 
output done // done flag 

); 

reg [3:0] counter_reg; 

assign done = (counter_reg == CNT); 

always @(posedge clk) begin 
if(rst) begin 

counter_reg <= 4’h0; 
end else begin 

if (!done) 
counter_reg <= counter_reg + 4’h1; 

else 
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counter_reg <= counter_reg; 
end 

end 

endmodule 
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Fig. 1: Schematic view of the 4-bit counter example 

The PSP code for this counter, will implement the counter logic with logic 
operations in the target processor ISA and map the flip-flops to static variable 
assignments in the C code. The following shows a snippet of the PSP core func-
tion that is generated automatically from the Verilog implementation. Every call 
to this function calculates the same logic as every clock cycle in the Verilog im-
plementation. Furthermore, since the number of operations do not change, every 
call to this function will take the same amount of time to run regardless of the 
input values. 

void counter_c(MDTYPE clk, MDTYPE rst, MDTYPE* CNT, MDTYPE* done) 
{ 
... 
NOT1(rst, n01_); 
XOR2(counter_reg[0], CNT[0], n02_); 
XOR2(CNT[1], counter_reg[1], n03_); 
OR2(n02_, n03_, n04_); 
XOR2(CNT[3], counter_reg[3], n05_); 
XOR2(CNT[2], counter_reg[2], n06_); 
OR2(n05_, n06_, n07_); 
OR2(n04_, n07_, n08_); 
NOT1(n08_, *done); 
AND2(counter_reg[0], n08_, n09_); 
OR2(counter_reg[0], n08_, n10_); 
AND2(n01_, n10_, n11_); 
BIC2(n11_, n09_, n00_[0]); 
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... 
DFF(clk, n00_[0], counter_reg[0]); 
DFF(clk, n00_[1], counter_reg[1]); 
DFF(clk, n00_[2], counter_reg[2]); 
DFF(clk, n00_[3], counter_reg[3]); 

} 

To use this PSP core function, we write a main function wrapper, i.e. PSP 
wrapper, which prepares the inputs at the beginning in bitsliced format and 
keeps calling the counter c(...) function until all the parallel calculations are 
complete. This ensures that regardless of the input values, the run-time will be 
the same for all inputs. The following code snippet shows a simple wrapper for 
the counter c example. 

int main() { 
// prepare inputs in bitsliced format 

... 

// reset: 
MDTYPE rst = 0xffffffff; 
counter_c(clk, rst, CNT_val, &done); 

// keep calling the counter_c() until all calculations complete: 
rst = 0; 
while (done != 0xffffffff) { 

counter_c(clk, rst, CNT_val, &done); 
} 

return 0; 
} 

In our previous work [13] we introduced an automated methodology to gener-
ate the PSP kernel from a Hardware Description Language (HDL) (such as Ver-
ilog) of the algorithm’s FSMD. Throughout this paper we refer to this method-
ology as PSP Code Generator (PSPCG). 

Execution time of AEAD ciphers: A normal implementation of the AEAD ci-
phers can have both data- and operation-dependent variations in run-time. On 
the one hand, AEAD ciphers entail several modes of operation to ensure in-
tegrity, confidentiality, and authenticity of data. In a software implementation 
of these ciphers, each one of these modes takes a certain amount of time that 
is not necessarily the same as the other modes’ execution times. On the other 
hand, the run-time of some modes is dependent on the length of the message. 
These sources of run-time variation makes an implementation of AEAD ciphers 
prone to timing side-channel attacks. 

The constant-time characteristics of PSP drive us to look into PSP imple-
mentations for a number of LWC candidates. We compare available reference 
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implementations and bitsliced implementations of selected round two candidates 
with their PSP counterparts in terms of run-time, performance, and code size. 
Furthermore, we discuss an automated implementation methodology for PSP im-
plementation of the selected ciphers. In Section 2, we describe the LWC ciphers 
studied in this work. In Section 3, we demonstrate our technique to incorporate 
constant-time property to AEAD implementations and to automate it using 
PSPCG. In Section 4, we study different aspects of our implementations of the 
chosen candidates and compare our results with the existing work. We conclude 
the paper in Section 5. 

2 Selected Round 2 Candidates 

Round 2 Permutation/ 
Primitve AEAD 

Candidates Block cipher 
ACE ACE Permutation ACE-AE-128 

Ascon 12 p Permutation Ascon-128 
GIFT GIFT-128 Block cipher GIFT-COFB 
WAGE {WAGE} Permutation WAGE-AE-128 

Table 1: List of selected Round 2 candidates for PSP evaluation 

NIST LWC competition candidates are ideal for PSP code generation, where 
both the data and control flow of the algorithm is bitsliced. The candidates 
contain four broad phases in their AEAD computation. First, initialization and 
loading phase where the key and nonce are loaded onto the state. Second, pro-
cessing associated data phase where the associated data is loaded onto the state. 
Third, encryption phase where the plaintext is loaded onto state to generate cor-
responding ciphertext. Fourth, finalization phase where the authentication tag 
is computed. The complex control involved in different phases are ideal for PSP. 
We focus on four Round 2 candidates for PSP code generation. The experiments 
performed in this paper and their corresponding measurements do not compare 
the selected candidates among each other. Instead, we focus on the feasibility of 
PSP code generation and its performance in AEAD operations of the selected 
candidates. We chose these submissions for several reasons, including but not 
limited to the availability of C reference implementation, Verilog or VHDL im-
plementation, and existing bitsliced code. Other ciphers also posses the above 
resources, but in the interest of time we decided to only proceed with the four 
choices listed in Table 1. 

ACE [1] is a 320-bit permutation which is used in different modes of opera-
tion for AEAD. The ACE permutation is based on sponge duplex construction 
in sLiSCP sponge mode [3]. The 320-bit state is a modest size for hardware and 
is a multiple of 32 and 64-bits for software implementation. The internal per-
mutation of ACE consists of 16 iterations of ACE-step on the 320-bit state. This 
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permutation is repeatedly applied to the state with different inputs, including 
the key, nonce, plaintext, and associated data, to perform the different steps 
of ACE-AE-128. We focus on ACE-AE-128 and ACE permutation to study the 
effects of our PSP bitslicing. 

Ascon [10] contains a suite of authenticated encryption ciphers, mainly 
based on Ascon-128 and Ascon-128a. It was also selected as the primary choice 
for lightweight applications in resource constrained environments in the final 
portfolio of Competition for Authenticated Encryption: Security, Applicability 
and Robustness (CAESAR). It is a permutation based cipher, where the 320-bit 

astate undergoes several p and pb permutations. Its suite consists of a family of 
authenticated encryption ciphers based on their parameters, including the size 
of the secret key, the data rate, and the number of rounds of permutations (a 
and b) in different steps of encryption and decryption. We focus on Ascon-128 
and its p12 permutations in our study. 

WAGE [2] is a 259-bit lightweight cipher designed for efficient hardware im-
plementation of AEAD. It also adopts the sLiSCP sponge mode [3] which is 
a variant of the traditional duplex mode. WAGE permutation consists of the 
tweaked initialization of Welch-Gong Permutation (WGP) [12]. A combination 
of WAGE LFSR with WGP and a 7-bit sbox provides a good trade-off between 
security and hardware efficiency, which was its design goal. It is used in unified 
sponge duplex mode for the AEAD function. We focus on the WAGE-AE-128 
algorithm and its permutation as candidates for PSP code generation. 

GIFT-COFB [4] is a block cipher based AEAD candidate which uses COm-
bined FeedBack (COFB) block cipher mode of operation of AEAD on the hard-
ware optimized GIFT-128 block cipher. It is also designed for hardware, with a 
focus on minimal hardware implementation size. GIFT-128 is 40-round iterative 
block cipher based on a 128-bit substitution permutation network (SPN). There 
are three steps involved in each round which operates on four 32-bit segments of 
the 128-bit state. First, SubCells performs substitutions after some computation. 
Second, PermBits applies different 32-bit permutations to the state. Thirds, Ad-
dRoundKey adds the round key and round constant to the state. We focus on 
WAGE permutation and its AEAD algorithm WAGE-AE-128 as an example of 
block cipher based AEAD candidates for PSP code generation. 

3 Implementation 

This section describes how we implemented PSP versions of several lightweight 
ciphers. We studied four different round two candidates for NIST, listed in Ta-
ble 1. 

Traditionally, bitsliced code for cryptography is developed by hand, by ex-
panding the operations in a cryptographic algorithm at the bit-level. Typical 
implementations that are developed in this manner concentrate on the data 
operations, while control operations remain implemented using conventional op-
erations such as loops and if-then-else blocks. We observe two disadvantages 
with this approach. First, this data-centric bitsliced code only partially achieves 
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the goals of PSP, because the control constructions maintain their time depen-
dency on data. For example, with AEAD constructions, the resulting designs will 
maintain a time dependency on the length of the associated data and the length 
of the input message. Second, the development of bitsliced code is tedious as it 
requires the programmer to develop algorithms as Boolean programs (bit-level 
programs). 

With this work, we wish to demonstrate how to overcome both of these 
disadvantages. We use two different automatic tools to generate bitsliced code. 
First, we have developed a PSP synthesis tool, PSPCG, which starts from RTL 
level hardware descriptions in Verilog and which generates true PSP code in C 
[13]. Our PSP synthesis tool creates C code where both the data processing as 
well as control processing exists in bitsliced form. The tool is developed on top 
of an open-source hardware logic synthesis tool. Second, we also use the Usuba 
compiler, which offers a combination of a dedicated programming language and a 
code synthesis tool. Usuba has been demonstrated for a wide range of lightweight 
cryptographic algorithms [6]. Usuba produces pure bitsliced C programs and it 
does not produce bitsliced control operations. 

Implementation of PSP code: We illustrate the implementation of bitsliced code 
design for PSP by the following code snippets. We consider a GIFT-128 module 
definition in Verilog1 . The module accepts a plaintext P, a key K, and produces a 
ciphertext C. The encryption is started through control input ld and completion 
is indicated through control output done. The full encryption requires 40 rounds, 
which are executed by the RTL design in 40 clock cycles. 

module gift128(input wire clk, 
input wire [127:0] P, 
input wire [127:0] K, 
input wire ld, 
output wire [127:0] C, 
output wire done); 

Our PSP code synthesis tool generates a C version out of the Verilog descrip-
tion in two steps. First, the Verilog RTL is converted into a Boolean Program. 
Next, the Boolean Program is expressed in terms of bitwise operations on the 
target processor. The RTL is converted using logic synthesis into a gate-level 
netlist. Next, the netlist is topologically sorted from primary input to primary 
ouput, and from flip-flop output to flip-flop input. This creates a Boolean Pro-
gram, a sequential evaluation of the gate-level netlist obtained from the Verilog 
RTL program. Next, the PSP code synthesis tools converts the Boolean program 
into a C program by converting each Boolean operation into a bitwise operation. 
The bitwise operations are optimized towards the instruction set of the target 
processor. For example, the ARM Cortex series of processors have bitwise in-
structions that complement one operand, such as BIC and ORN. In addition, we 

1 The complete implementation of the GIFT-128 module is available on GitHub https: 
//github.com/Secure-Embedded-Systems/psp-nistlwc20 

https://github.com/Secure-Embedded-Systems/psp-nistlwc20
https://github.com/Secure-Embedded-Systems/psp-nistlwc20
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use inline assembly for computations, leaving only register spilling (memory-load 
and memory-store) to the C compiler. 

The following C header is created for the GIFT-128 example illustrated earlier. 

#define MDTYPE uint32_t 
void gift128(/* MDTYPE clk, -- notused */ 

MDTYPE P[128], 
MDTYPE K[128], 
MDTYPE ld, 
MDTYPE C[128], 
MDTYPE* done); 

The inputs to this function (control signals as well as data) are in bitsliced 
form: 128 bits are delivered through a 128-element array. MDTYPE is a machine-
dependent data type representing the natural wordlength of the target processor. 
A single call to gift128 executes one cycle of the original Verilog design, but for 
32 parallel instances of GIFT-128. As the original Verilog program takes 40 clock 
cycles to complete an encryption, the PSP program takes 40 calls to gift128 to 
complete an encryption. The following snippet illustrates the generated function 
body of gift128 with a code snippet. Logical functions are called in topologi-
cal order (eg. output n074 is produced in the first AND2 and consumed in the 
first OR2 below that). State elements (such as flip-flops in the netlist) are imple-
mented using static variables in C. A flip-flop is updated by assignment of the 
static variable. In the PSP program, the clock signal is implicit since each 
PSP function call corresponds to one clock cycle. 

.. 
MDTYPE n0974_, n0975_, n0979_; 
MDTYPE Mstate_reg_92__D; 
MDTYPE Mstate_reg_107__D; 
MDTYPE Mroundkey_reg_31__D; 
static MDTYPE Mstate_reg_107__Q; 
static MDTYPE Mroundkey_reg_31__Q; 
.. 
AND2(ld, P[92], n0974_); 
AND2(n0979_, C[92], n0975_); 
OR2(n0974_, n0975_, Mstate_reg_92__D ); 
.. 
DFF(/* clk, */ Mstate_reg_107__D , Mstate_reg_107__Q ); 
DFF(/* clk, */ Mroundkey_reg_31__D , Mroundkey_reg_31__Q ); 
.. 

Execution-time properties of PSP code: With the structure of the code as pre-
sented, we can make a more precise statement on the execution-time properties 
of PSP code. While it is common to call bitslice code ‘constant-time’, the reality 
is that this property is rarely achieved in practice, even for bitsliced code. Exe-
cution time depends on program logic, the underlying processor architecture and 
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memory hierarchy, and resource-sharing effects in the processor. PSP programs 
achieve the following properties with respect to their execution time. 
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Fig. 2: Aggregate execution of 4 slices over 8 time steps 

– Each call to a PSP function will execute the same number of Boolean op-
erations and load/store operations. Each call to a PSP function completes 
one logical step in an algorithm, corresponding to one clock cycle from a 
reference RTL description. In Figure 2, each column represents one such 
time-step. 

– The PSP function computes (N=32) Boolean programs in parallel, and each 
of these programs can be independently controlled through bitsliced control. 
For the gift example above, ld initiates the execution of any combination 
of 32 parallel GIFT-128 algorithms. Similarly, done indicates the completion 
of any combination of 32 parallel gift algorithms. In Figure 2, each row 
represents one instance of the algorithm. The value of the aggregate done 
signal is shown on the bottom row. 

– Because control is bitsliced, the parallel versions of the Boolean programs do 
not have to take the same amount of time steps. Furthermore, each of the 
parallel versions can start and end independently. In Figure 2, four instances 
start at the same time. But each instances takes a different amount of time 
steps to complete. At macro-level, however, the PSP function is executed 8 
times to complete all 4 instances of the algorithms. Constant time over the 
aggregate is achieved using a simple loop: 

while (*done != 0xF) 
gift128(P, K, ld, C, &done); 
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– Within the PSP function, additional load/store operations are used as a 
result of register spilling. These load/store operations cannot be exploited 
for side-channel leakage because they store a single bit from an aggregate of 
32 parallel algorithms. 

320 320
state_in state_out

ld done

ascon12

reset o_valid

wage_aead

i_mode

i_dom_sep

i_valid

i_data

i_padding

o_ready

o_data
6464

2

void ascon12(MDTYPE state_in[320],
             MDTYPE ld,
             MDTYPE state_out[320],
             MDTYPE *done);

void wage_aead(MDTYPE reset,
               MDTYPE i_mode,
               MDTYPE i_dom_sep[2],
               MDTYPE i_valid,
               MDTYPE i_data[64],
               MDTYPE i_padding,
               MDTYPE *o_valid,
               MDTYPE *o_ready,
               MDTYPE o_data[64]);

Fig. 3: Ascon-p12 permutation interface and WAGE-AE-128 interface examples 

Processing of AEAD Implementations: In our experiments with Ascon-128, 
ACE-AE-128, WAGE-AE-128, and GIFT-COFB, we investigated both stand-alone 
permutations as well as AEAD implementations. Both implementations used the 
same methodology to create a PSP implementation. However, the AEAD ver-
sions are considerably more complex in terms of processing, as they go through 
independent initialization, AD processing, message processing and finalization 
phases. 

Figure 3 illustrates the interfaces for a typical permutation (Ascon-p12) and 
a typical AEAD implementation (WAGE-AE-128) analyzed in our experiments. 
Because a PSP implementation processes a sequential version of the original 

12RTL design, a wide interface such as 320 bits for the case of Ascon-p , does 
not pose a significant challenge. 

A PSP design offers parallelism on the order of the wordlength of the target 
processor. This manifests itself in two areas. First, the inputs of a PSP function 
must be transposed in the same manner as a bitslice function. This transposition 
can be performed before any processing starts, at the cost of extra storage. In our 
experiments, we account separately for the overhead caused by this transposition. 
Second, we need to keep all parallel algorithm instances embedded in a PSP 
function busy. We believe this may be handled by making use of a parallel mode 
of operation, such as Farfalle-like parallel modes for sponges [7]. We identify this 
as future research. 
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AEAD Implementation Code size(B) Cycles/byte 
Reference 15,709 2,751

Ascon-128 
PSP 210k 6,855 

Reference 24,439 9,305
WAGE-AE-128 

PSP 47,304 21,032 
Table 2: Overhead of complete PSP implementations of Ascon-128 and WAGE-
AE-128 when compared with reference implementation. The measurements were 
computed for processing 8B of plaintext and 8B of associated data 

4 Results 

In this section, we present the overall overhead, including cycle count, instruction 
count, and code size, of our PSP implementations of selected Round 2 candi-
dates listed in Table 1. We use the reference implementations from Round 2 
candidates2 to derive our baseline. We compare our PSP implementation with 
Usuba’s bitsliced implementation3[5] to highlight the advantage of automatic 
bitsliced code generation of the full AEAD modes when compared to the block ci-
pher or permutation. We use Texas Instrument’s MSP432P401R SimpleLink mi-
crocontroller LaunchPad development kit [14] for our experiments. It is equipped 
with a 32-bit Cortex-M4F microcontroller with a clock frequency upto 48 MHz. 
With several ultra-low operating modes and a Flash memory of 256KB, we con-
sider MSP432P401R as a representative of low-power devices that may require 
AEAD to secure its applications. We use TI’s Code Composer Studio (CCS) 
as our development environment. The measurements reported in this paper are 
computed with the MSP432P401R operating at 48 MHz. The implementations 
were also optimized for speed at compile time. 

Comparison with reference implementation: We compared the reference imple-
mentation of Ascon-128 and WAGE-AE-128 with our PSP implmentations of the 
same in Table 2. The cycles per byte for transposing input data is not included 
in these measurements. Even though, the increase in code size in our bitsliced 
implementation is not consistent across Ascon-128 and WAGE-AE-128, the lat-
ter has less than two times increase in code size. This inconsistency may stem 
from the cipher design, which requires further study. The PSP implementations 
are fully unrolled with each execution of the core function taking the longest 
critical path irrespective of the input. This adds additional overhead to PSP 
implementation in processing the same input as reference implementation. Our 
PSP implementations of both Ascon-128 and WAGE-AE-128 has less than 2.5 
times increase in cycles per byte of AEAD operation. 

Comparison with the state-of-the-art: Usuba’s open sourced bitsliced implemen-
tations of Round 2 candidates are only available for their permutations and block 
2 NIST LWC Round 2 Candidates Submissions https://csrc.nist.gov/projects/ 
lightweight-cryptography/round-2-candidates 

3 https://github.com/CryptoExperts/Tornado/tree/master/src/usuba/nist 

https://csrc.nist.gov/projects/lightweight-cryptography/round-2-candidates
https://csrc.nist.gov/projects/lightweight-cryptography/round-2-candidates
https://github.com/CryptoExperts/Tornado/tree/master/src/usuba/nist
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Code size Cycle count 
Cipher/permutation Implementation 

(B) (cycles) 
Reference 14,937 261,833

ACE permutation 
Usuba 115k 1,408,096 

ACE-AE-128 PSP 84,280 34,662 
Table 3: Code size and cycle count comparison of ACE-AE-128 PSP core im-
plementation with ACE permutation reference implementation and its Usuba 
bitsliced implementation. 

ciphers and not their AEAD modes of operations. We studied their bitsliced im-
plementation of ACE permutation. It is a fully unrolled implementation of the 
16 iterations of ACE-step and the non-linear sbox operations. When compiled 
for MSP432P401R, Usuba based ACE permutation generates 115kB of code, as 
listed in Table 3. To use this bitsliced permutation in ACE-AE-128, it will be 
used 5+l times, where l is the number of processed data in 64-bit blocks [1]. 

Our PSP core function is the bitsliced implementation of ACE-AE-128. This 
core function will be repeated called by a wrapper to provide different inputs 
such as nonce, key, plaintext, and associated data. We discuss the increase in 
code size from this wrapper below. 

Comparison of logic optimizers: An important part of automatic code generation 
is the optimizer. In the case of both the PSP code generator and the Usuba 
compiler, this optimizer should be able to compress the logic operations as much 
as possible to make the constant execution time shorter and the code size smaller. 
We take the two cipher candidates Ascon-128 and GIFT-COFB and generate 
the PSP core function of their permutations using the PSPCG and calculate the 
number of logic operations in the generated PSP code as discussed in Section 3. 
We also count the number of operations in a completely unrolled bitsliced code 
for the same permutation algorithm generated by Usuba compiler. Table 4 shows 
the number of logic operations for each of these implementations. As shown in 
this table, PSP core functions is 37% and 92% smaller in terms of logic operations 
for Ascon-p12 and GIFT-128 respectively. 

This is not a one-to-one comparison since the functions that are being com-
pared are not completely similar; the PSP core function is the building block 
of PSP program which should be called iteratively until the done output is set, 

Cipher Code Generator AND ORR EOR MVN total 
Usubac 3840 0 16128 4657 24625 

Ascon-p 12 

PSPCG 6381 6034 1669 1324 15408 
Usubac 3840 1280 14080 1360 20560 

GIFT-128 
PSPCG 756 418 262 137 1573 

Table 4: Comparison of number of instructions resulting from Usubac and 
PSPCG 
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whereas, the bitsliced unrolled code is the complete permutation. However, this 
comparison shows that the code size of a PSP implementation will be much 
smaller than a bitsliced implementation. 

Cipher AND ORR EOR MVN MOV LDR STR overhead 
ACE permutation 64 0 1168 832 11229 1469 25 86.04% 
GIFT-128 192 64 704 66 6725 2041 18 89.54% 

Table 5: Register spill of the bitsliced code generated by Usubac 

Cipher AND ORR BIC EOR ORN MVN MOV LDR STR overhead 
Ascon-p 12 1732 1296 281 808 1265 123 4904 10277 3862 77.57% 
GIFT-128 530 57 30 58 54 2 120 1415 971 77.42% 

Table 6: Register spill of the PSP code generated by PSPCG 

Comparison of register spilling: One disadvantage of bitsliced and PSP code in 
performance is the pressure they put on the register file and the overhead of 
memory access instructions which are usually considered to be among the slow 
instructions of a microprocessors. Therefore, we compare the overhead of data-
move instructions that result from compiling the generated codes from PSPCG 
and Usubac. Tables 5 and 6 show the overhead of such instructions calculated 
as the number of MOV, LDR, and STR instructions over the total number of 
instructions. The comparison shows that for both the bitsliced code and the PSP 
code, more than half of the instructions are dedicated to moving data between 
memory and register. The bitsliced code generated by Usubac has in average 
87.79% overhead for load, store, and move instructions. This number for PSP 
codes is 77.49% which is approximately 10% lower overhead than bitsliced code. 
This experiment shows that PSP has a significant memory-spill yet it is smaller 
than a bitsliced code. 

5 Conclusion 

In this paper, we addressed the execution time characteristics of AEAD ci-
phers and their proneness to timing side-channel. We evaluated the feasibility 
of automatic constant-time code generation on selected Round two candidates, 
namely ACE-AE-128, Ascon-128, GIFT-COFB, and WAGE-AE-128 by generat-
ing the PSP version of the Verilog description of the cipher which transforms 
the data- and control- flow into bitsliced format and ensures constant-time exe-
cution. Furthermore, the effects of Usuba’s bitslicing and our PSP implementa-
tion on selected candidates were studied. We analyzed our PSP code generation 
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tool, instruction count, code size, and cycle count overhead of the PSP imple-
mentation of selected Round two candidates. Our PSP implementation provides 
constant-time execution with a modest overhead, as shown for Ascon-128 and 
WAGE-AE-128. 
Acknowledgements. This research was supported in part by NSF Award 
1704176 and 1931639. 
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