
Let’s standardize garbled circuits!

Vlad Kolesnikov
Georgia Tech

Outline

• Garbled Circuits (GC)
• Applications to threshold crypto
• Simplicity and stability
• Many advanced features from basic GC properties

Functions are circuits

OR

AND
𝐹𝐹 𝑥𝑥,𝑦𝑦 →

GC intuition: computing on encrypted values

OR

AND

GC intuition: computing on encrypted values

OR

AND

GC intuition: computing on encrypted values

OR

AND

a b

GC intuition: computing on encrypted values

OR

AND

a b

a b a˄b

0 0 0

0 1 0

1 0 0

1 1 1

GC intuition: computing on encrypted values

OR

AND

a b

a b a˄b

0 0 0

0 1 0

1 0 0

1 1 1

GC intuition: computing on encrypted values

OR

AND

a b

a b a˄b

0 0 0

0 1 0

1 0 0

1 1 1

GC intuition: computing on encrypted values

OR

AND

a b

a b a˄b

0 0 0

0 1 0

1 0 0

1 1 1

GC intuition: computing on encrypted values

OR

AND

a b

a b a˄b

0 0 0

0 1 0

1 0 0

1 1 1

GC intuition: computing on encrypted values

OR

AND

a b

a b a˄b

0 0 0

0 1 0

1 0 0

1 1 1

GC intuition: computing on encrypted values

OR

AND
a

a

b

b

a b

ba

a b

a b a˄b

0 0 0

0 1 0

1 0 0

1 1 1

GC intuition: computing on encrypted values

OR

AND
a

a

b

b

a b

ba

a b

a b a˄b

0 0 0

0 1 0

1 0 0

1 1 1

GC intuition: computing on encrypted values

OR

AND
a

a

b

b

a b

ba

a b

a b a˄b

0 0 0

0 1 0

1 0 0

1 1 1

GC intuition: computing on encrypted values

OR

AND
a

a

b

b

a b

ba

a b

a b a˄b

0 0 0

0 1 0

1 0 0

1 1 1

GC intuition: computing on encrypted values

OR

AND
a

a

b

b

a b

a b

a b a˄b

0 0 0

0 1 0

1 0 0

1 1 1

GC intuition: computing on encrypted values

OR

AND
a

a

b

b

a b

a b

a b a˄b

0 0 0

0 1 0

1 0 0

1 1 1

GC intuition: computing on encrypted values

OR

AND
a

a

b

b

a b

a b

a b a˄b

0 0 0

0 1 0

1 0 0

1 1 1

GC intuition: computing on encrypted values

OR

AND

a b

a b a˄b

0 0 0

0 1 0

1 0 0

1 1 1

GC intuition: decoding encrypted output

OR

AND

0

1

GC intuition: OT for transferring input labels

OR

AND

a b

GC intuition: OT for transferring input labels

OR

AND

a b

GC intuition: OT for transferring input labels

OR

AND

a b

Applications to threshold cryptography
Key 𝑘𝑘

𝑘𝑘𝐴𝐴 𝑘𝑘𝐵𝐵

MPC
𝑧𝑧 = 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘𝐴𝐴⊕𝑘𝑘𝐵𝐵(𝑦𝑦)

𝑦𝑦

𝑧𝑧

Of course, a number of variations are possible. Efficiency depends mostly on the size of the computed circuit.

Garbled circuits are pretty stable

Highlights of algorithmic GC advances

Yao86
GC introduced

96 06 1686

OT extension IKNP03
100 (OT)

Fairplay MNPS04

FreeXOR KS08
4

GRR3 NPS99 1.3

FleXOR KMR14

Half-gates ZRE15

1.2

1.2

JustGarble BHKR13
4

LR14,HKKKM14
Batched malicious

10

PVC (AO12,KM15,HKKLW19)

20*

KK13 OT extension
3

Core Garbling techniques

MPC techniques

200 gates/sec 5M gates/sec

Stacked Garbling HK20

b

ALSZ15, KOS15
Malicious OT extension

PCG & Silent OT (BCGIKS19)

A sample of GC advances

Free XOR [K05,KS08]

• [K05] Information-theoretic garbled circuit:
• Based on secret sharing/reconstruction
• XOR gates are free (no tables)
• Wire secrets are not independent XOR

𝑠𝑠1
𝑠𝑠1 ⊕ Δ

𝑠𝑠2
𝑠𝑠2 ⊕ Δ

𝑠𝑠1 ⊕ 𝑠𝑠2
𝑠𝑠1 ⊕ 𝑠𝑠2 ⊕ Δ

Free XOR [K05,KS08]
Free XOR [KS08]
• Choose same Δ for entire circuit

• Show that OK to have related keys
• All XOR gates free
• Stronger encryption required

for other gates

XOR
𝑠𝑠1

𝑠𝑠1 ⊕ Δ
𝑠𝑠2

𝑠𝑠2 ⊕ Δ

𝑠𝑠1 ⊕ 𝑠𝑠2
𝑠𝑠1 ⊕ 𝑠𝑠2 ⊕ Δ

Free XOR [K05,KS08]
Free XOR [KS08]
• Choose same Δ for entire circuit

• Show that OK to have related keys
• All XOR gates free
• Stronger encryption required

for other gates

XOR
𝑠𝑠3

𝑠𝑠3 ⊕ Δ

𝑠𝑠1 ⊕ 𝑠𝑠2 ⊕ 𝑠𝑠3
𝑠𝑠1 ⊕ 𝑠𝑠2 ⊕ 𝑠𝑠3 ⊕ Δ

XOR
𝑠𝑠1

𝑠𝑠1 ⊕ Δ
𝑠𝑠2

𝑠𝑠2 ⊕ Δ

𝑠𝑠1 ⊕ 𝑠𝑠2
𝑠𝑠1 ⊕ 𝑠𝑠2 ⊕ Δ

Free XOR [K05,KS08]
Free XOR [KS08]
• Choose same Δ for entire circuit

• Show that OK to have related keys
• All XOR gates free
• Stronger encryption required

for other gates

XOR

AND
𝑠𝑠4

𝑠𝑠4 ⊕ Δ

𝑠𝑠5
𝑠𝑠5 ⊕ Δ

𝑠𝑠3
𝑠𝑠3 ⊕ Δ

𝑠𝑠1 ⊕ 𝑠𝑠2 ⊕ 𝑠𝑠3
𝑠𝑠1 ⊕ 𝑠𝑠2 ⊕ 𝑠𝑠3 ⊕ Δ

XOR
𝑠𝑠1

𝑠𝑠1 ⊕ Δ
𝑠𝑠2

𝑠𝑠2 ⊕ Δ

𝑠𝑠1 ⊕ 𝑠𝑠2
𝑠𝑠1 ⊕ 𝑠𝑠2 ⊕ Δ

Stacked garbling [HK20]

Stacked garbling [HK20]

• Sequence of works [K18,HK20a,HK20b]

Stacked garbling [HK20]

• Sequence of works [K18,HK20a,HK20b]
• Let’s question the circuit model of computation.

Stacked garbling [HK20]

• Sequence of works [K18,HK20a,HK20b]
• Let’s question the circuit model of computation.
• But not too much..

Stacked garbling [HK20]

• Sequence of works [K18,HK20a,HK20b]
• Let’s question the circuit model of computation.
• But not too much..
• Just consider circuits with conditionals

Stacked garbling [HK20]

• Sequence of works [K18,HK20a,HK20b]
• Let’s question the circuit model of computation.
• But not too much..
• Just consider circuits with conditionals

Let C0, C1 be two arbitrary circuits. The space of circuits is
defined as follows:

Stacked garbling [HK20]

• Sequence of works [K18,HK20a,HK20b]
• Let’s question the circuit model of computation.
• But not too much..
• Just consider circuits with conditionals

Let C0, C1 be two arbitrary circuits. The space of circuits is
defined as follows:

C ::= Netlist(·) | Cond(C0, C1) | Seq(C0, C1)

Stacked garbling [HK20]

C ::= Netlist(·) | Cond(C0, C1) | Seq(C0, C1)

HK20: Can evaluate Cond(C0, C1) while transmitting only one branch
Idea:

* the same GC material M is used for evaluation of C0 and C1.
* GC outputs a key to Eval which converts material M to a valid GC or to a random-
looking string for inactive branch
* Eval evaluates both C0, C1. One of them will produce garbage labels. They
are canceled (garbage-collected) by gadgets constructed by Garbler.
* Material reuse (novel general idea; works for other protocols as well)

Stacked garbling [HK20]O
R

AN
D

AN
D

O
R

1

2

Stacked garbling [HK20]O
R

AN
D

AN
D

O
R

1

2

Stacked garbling [HK20]O
R

AN
D

AN
D

O
R

⊕

1

2

Stacked garbling [HK20]O
R

AN
D

AN
D

O
R

⊕

1

2

Stacked garbling [HK20]

Stacked garbling [HK20] OR

OR

AND

AND

OR

Stacked garbling [HK20] OR

OR

AND

AND

OR

Stacked garbling [HK20] OR

OR

AND

=

AND

OR

Stacked garbling [HK20] OR

OR

AND

=

AND

OR

Stacked garbling [HK20]

⊕

OR

OR

AND

=

AND

OR

Stacked garbling [HK20]

⊕

OR

OR

AND

=

AND

OR

Stacked garbling [HK20]

⊕

OR

OR

AND

=

AND

OR

Stacked garbling [HK20]

⊕

OR

OR

AND

=

AND

OR

Stacked garbling [HK20]

⊕

OR

OR

AND

=

AND

OR

Stacked garbling [HK20]

⊕

OR

OR

AND

=

AND

OR

Stacked garbling [HK20]

⊕

OR

OR

AND

=

AND

OR

Stacked garbling [HK20]

⊕

OR

OR

AND

=

AND

OR

For each branch, if it is active, Bob gets a good output
label, otherwise he gets garbage output label.

Stacked garbling [HK20]

⊕

OR

OR

AND

=

AND

OR

For each branch, if it is active, Bob gets a good output
label, otherwise he gets garbage output label.
He can’t tell which is which (requires that GC material
and labels look random – achieved by half-gates
scheme)

Stacked garbling [HK20]

OR

AND

AND

OR

For active branch, Bob gets a valid label,
otherwise he gets garbage output label.

We need to obliviously discard garbage.
Key idea: Bob is deterministic and Alice can emulate him and predict the possible garbage keys
Then Alice constructs a MUX gadget which collects garbage.

MUX / garbage collector circuit

GC is basic

• It is a simple object; it is not a protocol
• Standardizing just GC gives cryptographic object with clean security

properties.
• Optional OT/GC usage standardization makes is a secure MPC

standard

GC standardization

• Don’t need full generality of GC (such a version of BHR)
• Half-gates with free XOR is a de-facto standard

• Fix the underlying cipher used for encryption
• Important features (incomplete list):

• GC is projective (a label corresponds to a wire value)
• Labels and GC material look random (required for SGC)
• Perfect correctness (e.g. via point-and-permute)

• Half-gates meets all these requirements

GC standardization

GC is very stable.
Standardizing basic GC

• Not likely to hinder future algorithmic enhancements
• Will greatly aid in Threshold crypto (mandate of this group),

• and be a catalyst for MPC development and adoption.

So let’s go!

	Let’s standardize garbled circuits!
	Outline
	Functions are circuits
	GC intuition: computing on encrypted values
	GC intuition: computing on encrypted values
	GC intuition: computing on encrypted values
	GC intuition: computing on encrypted values
	GC intuition: computing on encrypted values
	GC intuition: computing on encrypted values
	GC intuition: computing on encrypted values
	GC intuition: computing on encrypted values
	GC intuition: computing on encrypted values
	GC intuition: computing on encrypted values
	GC intuition: computing on encrypted values
	GC intuition: computing on encrypted values
	GC intuition: computing on encrypted values
	GC intuition: computing on encrypted values
	GC intuition: computing on encrypted values
	GC intuition: computing on encrypted values
	GC intuition: computing on encrypted values
	GC intuition: decoding encrypted output
	GC intuition: OT for transferring input labels
	GC intuition: OT for transferring input labels
	GC intuition: OT for transferring input labels
	Applications to threshold cryptography
	Garbled circuits are pretty stable
	Highlights of algorithmic GC advances
	A sample of GC advances
	Free XOR [K05,KS08]
	Free XOR [K05,KS08]
	Free XOR [K05,KS08]
	Free XOR [K05,KS08]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	GC is basic
	GC standardization
	GC standardization

