Let’s standardize garbled circuits!

Vlad Kolesnikov

Georgia Tech

Outline

* Garbled Circuits (GC)

* Applications to threshold crypto

e Simplicity and stability

 Many advanced features from basic GC properties

Functions are circuits

F(x,y) -

GC intuition: computing on encrypted values

GC intuition: computing on encrypted values

GC intuition: computing on encrypted values

GC intuition: computing on encrypted values

0 0 0
0 1 0
1 0 0

GC intuition: computing on encrypted values

0 0 0
0 1 0
1 0 0

GC intuition: computing on encrypted values

:@ 0 0 0
=
:@ 1 0 0
:@ 1 1 1

C
C

GC intuition: computing on encrypted values

:@ 0 0 0
=
:@ 1 0 0
:@ 1 1 1

C
C

GC intuition: computing on encrypted values

0 0 0
| | | |

0 1 0
=
s 1 0 0
| I | | I |
f— 1 1 1
- il

C
C

GC intuition: computing on encrypted values

0 0 0
| | | |

0 1 0
=
s 1 0 0
| I | | I |
f— 1 1 1
- il

C
C

GC intuition: computing on encrypted values

d s
C

GC intuition: computing on encrypted values

C
C

GC intuition: computing on encrypted values

C
C

GC intuition: computing on encrypted values

C
C

GC intuition: computing on encrypted values

C
C

C
C

C
C

GC intuition: computing on encrypted values

C
C

GC intuition: computing on encrypted values

GC intuition: computing on encrypted values

: b

0 0 0
0 1 0
1 0 0

GC intuition: decoding encrypted output

GC intuition: OT for transferring input labels

GC intuition: OT for transferring input labels

GC intuition: OT for transferring input labels

Applications to threshold cryptography

Of course, a number of variations are possible. Efficiency depends mostly on the size of the computed circuit.

Garbled circuits are pretty stable

Highlights of algorithmic GC advances
PVC (AO12,KM15,HKKLW19)

LR14,HKKKM14 [
MPC techniques Batfh'_? allClous

Fairplay MNPS04 ——— ALSZ15, KOS15
OT extension IKNPO3 A Malicious OT extension
100 (OT) PCG & Silent OT (BCGIKS19)
86 96 06 16 (
- |

GRR3 NPS99 1.3 €200 gates/sec (D5 gatles/sec

>

—— Stacked Garbling HK20

Yao86
GC introduced

Half-gates ZRE15 e

FreeXOR KSO8 ——

Core Garbling techniques

A sample of GC advances

Free XOR [KO5,KS08]

e [KO5] Information-theoretic garbled circuit:
* Based on secret sharing/reconstruction
* XOR gates are free (no tables)
* Wire secrets are not independent

Free XOR [KO5,KS08]

Free XOR [KSO8]
* Choose same A for entire circuit
* Show that OK to have related keys
e All XOR gates free
e Stronger encryption required
for other gates

Free XOR [KO5,KS08]

Free XOR [KSO8]
* Choose same A for entire circuit
* Show that OK to have related keys
e All XOR gates free
e Stronger encryption required
for other gates

\ P s; Ds, D s

P™s, Ds, Ds; DA

Free XOR [KO5,KS08]

Free XOR [KSO8]

* Choose same A for entire circuit
* Show that OK to have related keys

e All XOR gates free
e Stronger encryption required
for other gates

Stacked garbling [HK20]

Stacked garbling [HK20]

* Sequence of works [K18,HK20a,HK20b]

Stacked garbling [HK20]

* Sequence of works [K18,HK20a,HK20b]
* Let’s question the circuit model of computation.

Stacked garbling [HK20]

* Sequence of works [K18,HK20a,HK20b]
* Let’s question the circuit model of computation.
* But not too much..

Stacked garbling [HK20]

* Sequence of works [K18,HK20a,HK20b]

* Let’s question the circuit model of computation.
* But not too much..

* Just consider circuits with conditionals

Stacked garbling [HK20]

* Sequence of works [K18,HK20a,HK20b]

* Let’s question the circuit model of computation.
* But not too much..

* Just consider circuits with conditionals

Let CO, C1 be two arbitrary circuits. The space of circuits is
defined as follows:

Stacked garbling [HK20]

* Sequence of works [K18,HK20a,HK20b]

* Let’s question the circuit model of computation.
* But not too much..

* Just consider circuits with conditionals

Let CO, C1 be two arbitrary circuits. The space of circuits is
defined as follows:

C ;= Netlist(-) | Cond(CO, C1) | Seq(CO0, C1)

Stacked garbling [HK20]

C ;= Netlist(:) | Cond(CO, C1) | Seqg(CO, C1)

HK20: Can evaluate Cond(CO, C1) while transmitting only one branch

|dea:

* the same GC material M is used for evaluation of CO and C1.

* GC outputs a key to Eval which converts material M to a valid GC or to a random-
looking string for inactive branch

* Eval evaluates both CO, C1. One of them will produce garbage labels. They
are canceled (garbage-collected) by gadgets constructed by Garbler.

* Material reuse (novel general idea; works for other protocols as well)

| °
I S

O ‘o O
\ 7
O

Stacked garb

o—

Stacked garb

o—

| °
I S

1¥)){®] {1

®1i%

{1 %1 1%) 1¥1] 1¥)] {8148]

¥ {91 {8] {1 %] 1¥)/1%1])

Stacked garbling [HK20]
0~ =

{1 %1 1%) 1¥1] 1¥)] {8148]

¥ {91 {8] {1 %] 1¥)/1%1])

Stacked garbling [HK20]
0~ =

Stacked garbling [HK20]

4

€9 €9 €3 €3 CH C <o €

Stacked garbling [HK20]

9 N N N N N N N

COGPEITIEIEILO WY

o
N
N/
L
a0
=
O
S
(O
a0
S
Q
V4
@
(O
)
N

o
N
N/
L
a0
=
O
S
(O
a0
S
Q
V4
@
(O
)
N

Stacked garbling [HK20]

{1 %1% 1% 1®]| {#1|1%) ¥

Stacked garbling [HK20]

{1 %1% 1% 1®]| {#1|1%) ¥

Stacked garbling [HK20]

{1 %1% 1% 1®]| {#1|1%) ¥

9] [®1{¥)] %] %] %1% {#]

Stacked garbling [HK20]

{1 %1% 1% 1®]| {#1|1%) ¥

i3 (L2 el i @

OR ¥ {®]{¥ i#]

Stacked garbling [HK20]

i3 B[2] b i

11 {®11%] ¥

i3 (L2 el i @

#)
Z|
#l
=
e
®

Stacked garbling [HK20]

i3 B[2] b i

11 {®11%] ¥

9] [®1{¥)] %] %] %1% {#]

i3 (L2 el i @

#)
Z|
#l
=
e
®

Stacked garbling [HK20]

i3 B[2] b i

11 {®11%] ¥

%] 818 ® @

i3 (L2 el i @

i

#)
Z|
#l
=
e
®

i

%] 818 ® @

%]
3 8 =
D = =

> =
= =
(4 oo = |
O w
. = x) ¢
S 8 S
oﬂ =

b @

i3 (L2 el i @

Stacked garbling [HK20]

Stacked garbling [HK20]

%] 1®1|4E] %

For each branch, if it is active, Bob gets a good output
label, otherwise he gets garbage output label.

Stacked garbling [HK20]

191 1[91{%] {#]

For each branch, if it is active, Bob gets a good output
label, otherwise he gets garbage output label.

He can’t tell which is which (requires that GC material
and labels look random — achieved by half-gates
scheme)

Stacked garbling [HK20]

For active branch, Bob gets a valid label,
otherwise he gets garbage output label.

We need to obliviously discard garbage.
Key idea: Bob is deterministic and Alice can emulate him and predict the possible garbage keys
Then Alice constructs a MUX gadget which collects garbage.

GC is basic

* It is a simple object; it is not a protocol

e Standardizing just GC gives cryptographic object with clean security
properties.

* Optional OT/GC usage standardization makes is a secure MPC
standard

GC standardization

* Don’t need full generality of GC (such a version of BHR)
* Half-gates with free XOR is a de-facto standard

* Fix the underlying cipher used for encryption

* Important features (incomplete list):
e GCis projective (a label corresponds to a wire value)
e Labels and GC material look random (required for SGC)
* Perfect correctness (e.g. via point-and-permute)

* Half-gates meets all these requirements

GC standardization

GC is very stable.
Standardizing basic GC

* Not likely to hinder future algorithmic enhancements

* Will greatly aid in Threshold crypto (mandate of this group),
* and be a catalyst for MPC development and adoption.

So let’s go!

	Let’s standardize garbled circuits!
	Outline
	Functions are circuits
	GC intuition: computing on encrypted values
	GC intuition: computing on encrypted values
	GC intuition: computing on encrypted values
	GC intuition: computing on encrypted values
	GC intuition: computing on encrypted values
	GC intuition: computing on encrypted values
	GC intuition: computing on encrypted values
	GC intuition: computing on encrypted values
	GC intuition: computing on encrypted values
	GC intuition: computing on encrypted values
	GC intuition: computing on encrypted values
	GC intuition: computing on encrypted values
	GC intuition: computing on encrypted values
	GC intuition: computing on encrypted values
	GC intuition: computing on encrypted values
	GC intuition: computing on encrypted values
	GC intuition: computing on encrypted values
	GC intuition: decoding encrypted output
	GC intuition: OT for transferring input labels
	GC intuition: OT for transferring input labels
	GC intuition: OT for transferring input labels
	Applications to threshold cryptography
	Garbled circuits are pretty stable
	Highlights of algorithmic GC advances
	A sample of GC advances
	Free XOR [K05,KS08]
	Free XOR [K05,KS08]
	Free XOR [K05,KS08]
	Free XOR [K05,KS08]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	Stacked garbling [HK20]
	GC is basic
	GC standardization
	GC standardization

