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Outline

* Garbled Circuits (GC)

* Applications to threshold crypto

e Simplicity and stability

 Many advanced features from basic GC properties



Functions are circuits

F(x,y) -
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GC intuition: decoding encrypted output
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Applications to threshold cryptography

Of course, a number of variations are possible. Efficiency depends mostly on the size of the computed circuit.



Garbled circuits are pretty stable



Highlights of algorithmic GC advances
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A sample of GC advances



Free XOR [KO5,KS08]

e [KO5] Information-theoretic garbled circuit:
* Based on secret sharing/reconstruction
* XOR gates are free (no tables)
* Wire secrets are not independent
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* Show that OK to have related keys
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e Stronger encryption required
for other gates
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Free XOR [KO5,KS08]

Free XOR [KSO8]

* Choose same A for entire circuit
* Show that OK to have related keys

e All XOR gates free
e Stronger encryption required
for other gates
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* Sequence of works [K18,HK20a,HK20b]

* Let’s question the circuit model of computation.
* But not too much..

* Just consider circuits with conditionals

Let CO, C1 be two arbitrary circuits. The space of circuits is
defined as follows:

C ;= Netlist(-) | Cond(CO, C1) | Seq(CO0, C1)



Stacked garbling [HK20]

C ;= Netlist(:) | Cond(CO, C1) | Seqg(CO, C1)

HK20: Can evaluate Cond(CO, C1) while transmitting only one branch

|dea:

* the same GC material M is used for evaluation of CO and C1.

* GC outputs a key to Eval which converts material M to a valid GC or to a random-
looking string for inactive branch

* Eval evaluates both CO, C1. One of them will produce garbage labels. They
are canceled (garbage-collected) by gadgets constructed by Garbler.

* Material reuse (novel general idea; works for other protocols as well)
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For each branch, if it is active, Bob gets a good output
label, otherwise he gets garbage output label.

He can’t tell which is which (requires that GC material
and labels look random — achieved by half-gates
scheme)




Stacked garbling [HK20]

For active branch, Bob gets a valid label,
otherwise he gets garbage output label.

We need to obliviously discard garbage.
Key idea: Bob is deterministic and Alice can emulate him and predict the possible garbage keys
Then Alice constructs a MUX gadget which collects garbage.



GC is basic

* It is a simple object; it is not a protocol

e Standardizing just GC gives cryptographic object with clean security
properties.

* Optional OT/GC usage standardization makes is a secure MPC
standard



GC standardization

* Don’t need full generality of GC (such a version of BHR)
* Half-gates with free XOR is a de-facto standard

* Fix the underlying cipher used for encryption

* Important features (incomplete list):
e GCis projective (a label corresponds to a wire value)
e Labels and GC material look random (required for SGC)
* Perfect correctness (e.g. via point-and-permute)

* Half-gates meets all these requirements



GC standardization

GC is very stable.
Standardizing basic GC

* Not likely to hinder future algorithmic enhancements

* Will greatly aid in Threshold crypto (mandate of this group),
* and be a catalyst for MPC development and adoption.

So let’s go!
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