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Outline

• Garbled Circuits (GC)
• Applications to threshold crypto
• Simplicity and stability
• Many advanced features from basic GC properties



Functions are circuits
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GC intuition: decoding encrypted output
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Applications to threshold cryptography
Key 𝑘𝑘

𝑘𝑘𝐴𝐴 𝑘𝑘𝐵𝐵

MPC
𝑧𝑧 = 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘𝐴𝐴⊕𝑘𝑘𝐵𝐵(𝑦𝑦)

𝑦𝑦

𝑧𝑧

Of course, a number of variations are possible.  Efficiency depends mostly on the size of the computed circuit.



Garbled circuits are pretty stable



Highlights of algorithmic GC advances
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A sample of  GC advances



Free XOR [K05,KS08]

• [K05] Information-theoretic garbled circuit:
• Based on secret sharing/reconstruction
• XOR gates are free  (no tables)
• Wire secrets are not independent XOR
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Free XOR [KS08]
• Choose same  Δ for entire circuit

• Show that OK to have related keys
• All XOR gates free
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Stacked garbling [HK20]

• Sequence of works [K18,HK20a,HK20b]
• Let’s question the circuit model of computation.
• But not too much..
• Just consider circuits with conditionals

Let C0, C1 be two arbitrary circuits. The space of circuits is 
defined as follows: 

C ::= Netlist(·) | Cond(C0, C1) | Seq(C0, C1)



Stacked garbling [HK20]

C ::= Netlist(·) | Cond(C0, C1) | Seq(C0, C1)

HK20: Can evaluate Cond(C0, C1) while transmitting only one branch
Idea: 

* the same GC material M is used for evaluation of C0 and C1.
* GC outputs a key to Eval which converts material M to a valid GC or to a random-
looking string for inactive branch
* Eval evaluates both C0, C1. One of them will produce garbage labels.  They 
are canceled (garbage-collected) by  gadgets constructed by Garbler.
* Material reuse (novel general idea; works for other protocols as well)
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For each branch, if it is active, Bob gets a good output 
label, otherwise he gets garbage output label.
He can’t tell which is which (requires that GC material 
and labels look random – achieved by half-gates 
scheme)
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For active branch, Bob gets a valid label, 
otherwise he gets garbage output label.

We need to obliviously discard garbage.
Key idea: Bob is deterministic and Alice can emulate him and predict the possible garbage keys
Then Alice constructs a MUX gadget which collects garbage.

MUX / garbage collector circuit



GC is basic

• It is a simple object; it is not a protocol
• Standardizing just GC gives cryptographic object with clean security 

properties.
• Optional OT/GC usage standardization makes is a secure MPC 

standard



GC standardization

• Don’t need full generality of GC (such a version of BHR)
• Half-gates with free XOR is a de-facto standard

• Fix the underlying cipher used for encryption
• Important features (incomplete list):

• GC is projective (a label corresponds to a wire value)
• Labels and GC material look random (required for SGC)
• Perfect correctness (e.g. via point-and-permute)

• Half-gates meets all these requirements



GC standardization

GC is very stable. 
Standardizing basic GC

• Not likely to hinder future algorithmic enhancements
• Will greatly aid in Threshold crypto (mandate of this group), 

• and be a catalyst for MPC development and adoption.

So let’s go!
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