Better Concrete Security for Half-Gates Garbling (in the Multi-Instance Setting)

Chun Guo, Jonathan Katz, Xiao Wang, Chenkai Weng, Yu Yu

All widely used GCs have a birthday-bound security

GC based on fix-key block cipher -> O(tC/2ⁿ)

Explicit attack

Slow

267 machine-month to break a GC with 80-bit labels, ~~ 3500\$

- Those based on standard PRFs: C hybrids in the proof, each with a PRF game -> O(tC/2ⁿ)
 No proof with optimal security (but also no attack)
- Exceptions: some RO based protocols

Attack in the multi-instance setting

- An adversary, with n garbled circuits (each garbled independently), can break one of them with probability ~tC/2ⁿ
 - t: running time
 - C: sum of all circuit sizes
- In means that switching free-XOR Delta does NOT help!

Our New Abstraction for better security

- A weaker version of Tweakable correlation robust hash
 - Tweakable, but there is a explicit bound how frequently each tweak will be used.
 - Bound = 2 for Garbling and OT extension.
- Hash function H is secure if $F_k(x, i) = H(k \oplus x, i)$ is a pseudorandom function with a **bounded-query** adversary.

Construction

- TMMO(x, i) = $E_i(\sigma(x)) \oplus \sigma(x)$
 - Friendly to batch
 - $\sigma(x)$ is orthomorphism if $\sigma(x)$ and $\sigma(x) \oplus x$ are all permutations
- Proven secure if E is an ideal cipher
 - Adv's advantage is bounded by O(u(p+q)/2ⁿ), where u is maximum number of oracle calls for any tweak

Practical performance

Hash function	NI support?	k	$\begin{array}{c} \text{Comp. sec.} \\ \text{(bits)} \end{array}$	$100 \\ \mathrm{Mbps}$	${}^2_{ m Gbps}$	localhos	it
Zahur et al.	Y	128	89	0.4	7.8	23	
SHA-3	Ν	128	125	0.27	0.27	0.28	
SHA-256	Ν	128	125	0.4	1.1	1.2	
SHA-256	Υ	128	125	0.4	2.1	2.45	
\widehat{MMO}^E	Y	128	125	0.4	7.8	15	mproved to 24 since
\widehat{MMO}^E	Y	88	86	0.63	12	15	

Table 1: Performance of different hash functions in the half-gates scheme. All reported numbers are in 10^6 AND gates per second. "NI support" indicates whether the implementation utilizes hardware-level instructions (i.e., AES-NI or SHA-NI), and "comp. sec." refers to the computational security bound assuming $C < 2^{40}$. The length of the wire labels is k.

Implementation suggestion

Always use TMMO regardless of semi-honest or malicious security

• Always randomize the start point of the tweak

