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Agenda

• Threshold signing theory and practice


• New attacks on threshold ECDSA production code


• Forget-and-Forgive: Reshare protocol sabotage 


• Golden Shoe: Leaky share conversion


• Q&A 



Threshold signature schemes (TSS)

Probably already clear thanks to previous speakers :)


(t, n) threshold signing, t < n


• Signing key represented as n shares


• Distributed key generation (DKG)


• t+1 shares necessary and sufficient to sign


• t or fewer shares “useless"



Components 🧱

• Homomorphic encryption (often Paillier)


• Verifiable threshold secret-sharing (often Shamir/Feldman)


• Zero-knowledge proofs (discrete log, range, etc.)


• Multiplicative-to-additive share conversion (“MtA”)


Among “real-world” crypto protocols, TSS are some of the 
most complex and with the widest attack surface wrt failures 
in subcomponents, their code, and in security proofs.



TSS security 🤝 
• Standard EUF-CMA signature security


• Standard corrupted parties model (static, malicious, rushing)


• Adaptive security usually doable with some overhead


• Generally captures "real-world" risks


• Pure "network attacker” mostly captured by corruption model


• Majority: honest vs. dishonest one (security with n-1 corruptions)


• Proofs: different approaches; UC provides higher guarantees  



TSS research 🔥
Tons of papers after Lindell 2017 and GG 2018 ECDSA protocols


Research challenges addressed so far:


• Deal with ECDSA’s k sharing/operation (compared to Schnorr case)


• Minimise rounds number and proofs computations 


• Detect errors and imposters (“identifiable aborts")


• Maximise offline computations (presigning)


Research driven by applications, mainly blockchain wallet/custody…



In practice 💸

Shared control implementation, as an alternative and complement to 
TEE-based solutions; a critical part of secure custody solutions


Multiple use cases with different requirements:


• 2-sharing between a service provider and a client


• (t, n) cold wallet within an exchange, with heterogenous systems, 
possibly number of shares per party depending on the system's trust


• (t, n) Hot/warm wallet within a single organisation



In practice ₿ Ξ
Notes on real-world TSS:


• Safe reshare protocols needed for shares update


• Performance mainly driven by network latency and processing


• Offline presigning not always applicable, but a nice-to-have


• Not a replacement for reliable back-up and recovery processes :) 


TSS-friendly signatures gaining adoption: Schnorr signatures now in 
Bitcoin (BIP 340), BLS signatures in Ethereum 2.0, Celo, etc.



Real-world security ⚠

Examples of non-crypto issues observed:


• Crashes due to unsafe decoding


• Known vulnerabilities in dependencies


• Leverage of lower-level vulnerabilities (OS, runtime, etc.) 


• Failures of “trusted” hardware

Implementation structures and language 
features can amplify a protocol’s complexity


Security proofs are perhaps ~20% of what 
makes a TSS deployment secure 



Real-world security ☣
Implementing papers can be risky, when


• Developers are not used to the terminology and notations 


• Encodings, primitives, etc. are not defined


• Papers sometimes hide/obfuscate critical requirements


Typical errors: Non-safe primes, 
commitment hash not covering all values, 
missing range validation mod q, lack of 
public keys validation, etc.


⬅  Broken ZK factorisation proof because 
“common input” was not defined in the 
paper   ¯\_(ツ)_/¯



The attacks (

Among our most impactful attacks (responsible disclosed and fixed):


• Target TSS software used by major organisations’ wallets  


• Arguably exploitable under realistic conditions


On an implementation of GG18’s threshold ECDSA, but our attacks 
do not invalidate the security claims of the paper


Stress the important of input validation, and more generally of 
correctness verification in a protocol’s execution 



Forget & Forgive



The vulnerability was found the “Secret Re-sharing” protocol
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Where is the problem ? 

The vulnerability was found the “Secret Re-sharing” protocol

Forget & Forgive Setup
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If at least one share is invalid, then return



For simplicity, wlog, assume the new committee is the same as the old committee 

Forget & Forgive Vulnerability 

• A party receiving an invalid share —> will abort the protocol, keeping its old share 


• A party receiving valid shares —> will finish the protocol, overwriting the old share

Protocol: 

1) Each old committee member secret-shares their  share using Feldman VSS


2) Each new committee member verifies and sums its received shares. 


3) Each committee member overwrites the old secret share with the new share
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If at least one share is invalid, then return



An attacker will divide the committee by sending valid shares to a subset, 
and invalid shares to the other subset.
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Forget & Forgive Vulnerability 

From the security release:  

It allows for a malicious actor to cause a new committee member to 
abort the protocol, unable to write a valid share to disk. The other 
participants would continue as normal and overwrite their share data
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• Example exploitation scenarios: 


• Money lock


• Money loss (in case the key is not backed up)


• Money extortion (if attacker gets enough reshare iterations )

Forget & Forgive Exploit 
• The adversary model allows for  corrupted parties, however the attack 

can be mounted by a single party


• In some cases, even a network adversary that corrupts selected 
messages can mount such attack

t



From the security release:  

a final round has been added to the re-sharing protocol where the new 
committee members send ACK messages to members of both the old and 
new committees. Each participant must receive ACK messages from n 
members of the new committee (excluding themselves) before they save any 
data to disk.
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• The requirement of a “Blame phase” was observed in classical works on DKG


• The [GG18] protocol assumes a dishonest majority, therefore,  a single party can abort 
the resharing protocol (no robustness) 



Golden Shoe



Golden Shoe Setup
• [GG18] MtA  2-party share conversion
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Protocol: 


- Paillier cryptosystem  


- For security against malicious adversaries, need for ZK proofs.


- In all zk proofs, the prover must use an RSA group (modulus ), not knowing 
the group order, as well as two group elements, , not knowing the relation 
between them
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• In the library attacked, the two methods got mixed: The verifier generates the 
parameters and sends them to the prover, however, the prover does not check them!


• Classical case of missing input sanitisation, as in web applications
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•  are crucial to the proof. Specifically “Zero knowledge requires 
that discrete logs of , relative to each other modulo  exist (i.e. that 

,  generate the same group)


• During KeyGen, a malicious verifier can pick ANY  and send them 
to all  parties. 


• We focus on a range proof (due to its relative simplicity). Proving that a 
Paillier ciphertext encrypts a bound secret . 
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• In the first step the prover uses the parameters  to produce a 
Pedersen commitment in a group of unknown order :  
and send  to the verifier. 
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• In the first step the prover uses the parameters  to produce a 
Pedersen commitment in a group of unknown order :  
and send  to the verifier. 


• Assume the verifier picks  : we are left with 


• {Option 1}: pick  and pick very large  such that  is computed 
over the integers => solve for  by trial and error


• {Option 2}: Choose  to be a composite with small prime factors => use 
Polling Hellman and field seive on each factor 

N, h1, h2
z = hxi

1 hρ
2 mod N

z

h2 = 1 z = hxi
1 mod N

h1 = 2 N hxi
1
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N
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Wait, there’s more! 
See results’ details in https://eprint.iacr.org/2020/1052


• Lather, Rinse, Repeat - in the paper


• Baby Shark - threshold EdDSA, currently in responsible 
disclosure

Thank you! Questions? 

jp@taurusgroup.chomer@zengo.com
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