
JP Aumasson

jp@taurusgroup.ch

Omer Shlomovits

omer@ZenGo.com

Attacks to deployed threshold signatures

NIST MPTS workshop 2020

See results’ details in https://eprint.iacr.org/2020/1052

mailto:jp@taurusgroup.ch
mailto:omer@kzencorp.com
https://eprint.iacr.org/2020/1052

Agenda

• Threshold signing theory and practice

• New attacks on threshold ECDSA production code

• Forget-and-Forgive: Reshare protocol sabotage

• Golden Shoe: Leaky share conversion

• Q&A

Threshold signature schemes (TSS)

Probably already clear thanks to previous speakers :)

(t, n) threshold signing, t < n

• Signing key represented as n shares

• Distributed key generation (DKG)

• t+1 shares necessary and sufficient to sign

• t or fewer shares “useless"

Components 🧱

• Homomorphic encryption (often Paillier)

• Verifiable threshold secret-sharing (often Shamir/Feldman)

• Zero-knowledge proofs (discrete log, range, etc.)

• Multiplicative-to-additive share conversion (“MtA”)

Among “real-world” crypto protocols, TSS are some of the
most complex and with the widest attack surface wrt failures
in subcomponents, their code, and in security proofs.

TSS security 🤝
• Standard EUF-CMA signature security

• Standard corrupted parties model (static, malicious, rushing)

• Adaptive security usually doable with some overhead

• Generally captures "real-world" risks

• Pure "network attacker” mostly captured by corruption model

• Majority: honest vs. dishonest one (security with n-1 corruptions)

• Proofs: different approaches; UC provides higher guarantees

TSS research 🔥
Tons of papers after Lindell 2017 and GG 2018 ECDSA protocols

Research challenges addressed so far:

• Deal with ECDSA’s k sharing/operation (compared to Schnorr case)

• Minimise rounds number and proofs computations

• Detect errors and imposters (“identifiable aborts")

• Maximise offline computations (presigning)

Research driven by applications, mainly blockchain wallet/custody…

In practice 💸

Shared control implementation, as an alternative and complement to
TEE-based solutions; a critical part of secure custody solutions

Multiple use cases with different requirements:

• 2-sharing between a service provider and a client

• (t, n) cold wallet within an exchange, with heterogenous systems,
possibly number of shares per party depending on the system's trust

• (t, n) Hot/warm wallet within a single organisation

In practice ₿ Ξ
Notes on real-world TSS:

• Safe reshare protocols needed for shares update

• Performance mainly driven by network latency and processing

• Offline presigning not always applicable, but a nice-to-have

• Not a replacement for reliable back-up and recovery processes :)

TSS-friendly signatures gaining adoption: Schnorr signatures now in
Bitcoin (BIP 340), BLS signatures in Ethereum 2.0, Celo, etc.

Real-world security ⚠

Examples of non-crypto issues observed:

• Crashes due to unsafe decoding

• Known vulnerabilities in dependencies

• Leverage of lower-level vulnerabilities (OS, runtime, etc.)

• Failures of “trusted” hardware

Implementation structures and language
features can amplify a protocol’s complexity

Security proofs are perhaps ~20% of what
makes a TSS deployment secure

Real-world security ☣
Implementing papers can be risky, when

• Developers are not used to the terminology and notations

• Encodings, primitives, etc. are not defined

• Papers sometimes hide/obfuscate critical requirements

Typical errors: Non-safe primes,
commitment hash not covering all values,
missing range validation mod q, lack of
public keys validation, etc.

⬅ Broken ZK factorisation proof because
“common input” was not defined in the
paper ¯_(ツ)_/¯

The attacks (

Among our most impactful attacks (responsible disclosed and fixed):

• Target TSS software used by major organisations’ wallets

• Arguably exploitable under realistic conditions

On an implementation of GG18’s threshold ECDSA, but our attacks
do not invalidate the security claims of the paper

Stress the important of input validation, and more generally of
correctness verification in a protocol’s execution

Forget & Forgive

The vulnerability was found the “Secret Re-sharing” protocol

Forget & Forgive Setup

Input: a committee of parties each holding a secret share of a secret key

Output: a new committee, each holding a new secret share of

sk

sk

The vulnerability was found the “Secret Re-sharing” protocol

Forget & Forgive Setup

Input: a committee of parties each holding a secret share of a secret key

Output: a new committee, each holding a new secret share of

sk

sk

Protocol:

1) Each old committee member secret-shares their share using Feldman VSS

2) Each new committee member verifies and sums its received shares

sk

The vulnerability was found the “Secret Re-sharing” protocol

Forget & Forgive Setup

Input: a committee of parties each holding a secret share of a secret key

Output: a new committee, each holding a new secret share of

sk

sk

Protocol:

1) Each old committee member secret-shares their share using Feldman VSS

2) Each new committee member verifies and sums its received shares

sk

Where is the problem ?

The vulnerability was found the “Secret Re-sharing” protocol

Forget & Forgive Setup

For simplicity, wlog, assume the new committee is the same as the old committee

Forget & Forgive Vulnerability

Protocol:

1) Each old committee member secret-shares their share using Feldman VSS

2) Each new committee member verifies and sums its received shares.

3) Each committee member overwrites the old secret share with the new share

sk

For simplicity, wlog, assume the new committee is the same as the old committee

Forget & Forgive Vulnerability

Protocol:

1) Each old committee member secret-shares their share using Feldman VSS

2) Each new committee member verifies and sums its received shares.

3) Each committee member overwrites the old secret share with the new share

sk

If at least one share is invalid, then return

For simplicity, wlog, assume the new committee is the same as the old committee

Forget & Forgive Vulnerability

• A party receiving an invalid share —> will abort the protocol, keeping its old share

• A party receiving valid shares —> will finish the protocol, overwriting the old share

Protocol:

1) Each old committee member secret-shares their share using Feldman VSS

2) Each new committee member verifies and sums its received shares.

3) Each committee member overwrites the old secret share with the new share

sk

If at least one share is invalid, then return

An attacker will divide the committee by sending valid shares to a subset,
and invalid shares to the other subset.

Forget & Forgive Vulnerability

An attacker will divide the committee by sending valid shares to a subset,
and invalid shares to the other subset.

Forget & Forgive Vulnerability

From the security release:

It allows for a malicious actor to cause a new committee member to
abort the protocol, unable to write a valid share to disk. The other
participants would continue as normal and overwrite their share data

Forget & Forgive Exploit
• The adversary model allows for corrupted parties, however the attack

can be mounted by a single party

t

Forget & Forgive Exploit
• The adversary model allows for corrupted parties, however the attack

can be mounted by a single party

• In some cases, even a network adversary that corrupts selected
messages can mount such attack

t

• Example exploitation scenarios:

• Money lock

• Money loss (in case the key is not backed up)

• Money extortion (if attacker gets enough reshare iterations)

Forget & Forgive Exploit
• The adversary model allows for corrupted parties, however the attack

can be mounted by a single party

• In some cases, even a network adversary that corrupts selected
messages can mount such attack

t

From the security release:

a final round has been added to the re-sharing protocol where the new
committee members send ACK messages to members of both the old and
new committees. Each participant must receive ACK messages from n
members of the new committee (excluding themselves) before they save any
data to disk.

Forget & Forgive Mitigation

From the security release:

a final round has been added to the re-sharing protocol where the new
committee members send ACK messages to members of both the old and
new committees. Each participant must receive ACK messages from n
members of the new committee (excluding themselves) before they save any
data to disk.

Forget & Forgive Mitigation

• The requirement of a “Blame phase” was observed in classical works on DKG

• The [GG18] protocol assumes a dishonest majority, therefore, a single party can abort
the resharing protocol (no robustness)

Golden Shoe

Golden Shoe Setup
• [GG18] MtA 2-party share conversion

Golden Shoe Setup
• Input: Alice and Bob hold multiplicative secret shares

• Output: additive secret shares , such that + =

a, b

α β α β a ⋅ b mod q

• [GG18] MtA 2-party share conversion

Golden Shoe Setup
• Input: Alice and Bob hold multiplicative secret shares

• Output: additive secret shares , such that + =

a, b

α β α β a ⋅ b mod q

Protocol:

- Paillier cryptosystem

- For security against malicious adversaries, need for ZK proofs.

- In all zk proofs, the prover must use an RSA group (modulus), not knowing
the group order, as well as two group elements, , not knowing the relation
between them

N
h1, h2

• [GG18] MtA 2-party share conversion

• must be publicly verifiable and testedN, h1, h2

Golden Shoe Vulnerability
Protocol:

- Paillier cryptosystem

- For security against malicious adversary use ZK proofs.

- In all proofs the prover must use an RSA group (modulus), not knowing the
group order, as well as two group elements, , not knowing the relation
between them

N
h1, h2

• must be publicly verifiable and testedN, h1, h2

Golden Shoe Vulnerability

• The two popular methods in the literature are:

1) A trusted party generates

2) The verifier generates and proves their validity in ZK

N, h1, h2

N, h1, h2

• must be publicly verifiable and testedN, h1, h2

Golden Shoe Vulnerability

• The two popular methods in the literature are:

1) A trusted party generates

2) The verifier generates and proves their validity in ZK

N, h1, h2

N, h1, h2

• In the library attacked, the two methods got mixed: The verifier generates the
parameters and sends them to the prover, however, the prover does not check them!

• must be publicly verifiable and testedN, h1, h2

Golden Shoe Vulnerability

• The two popular methods in the literature are:

1) A trusted party generates

2) The verifier generates and proves their validity in ZK

N, h1, h2

N, h1, h2

• In the library attacked, the two methods got mixed: The verifier generates the
parameters and sends them to the prover, however, the prover does not check them!

• Classical case of missing input sanitisation, as in web applications

• are crucial to the proof. Specifically “Zero knowledge requires
that discrete logs of , relative to each other modulo exist (i.e. that

, generate the same group)

N, h1, h2
h1, h2 N

h1, h2

Golden Shoe Exploit

• are crucial to the proof. Specifically “Zero knowledge requires
that discrete logs of , relative to each other modulo exist (i.e. that

, generate the same group)

• During KeyGen, a malicious verifier can pick ANY and send them
to all parties.

N, h1, h2
h1, h2 N

h1, h2

N, h1, h2
n − 1

Golden Shoe Exploit

• are crucial to the proof. Specifically “Zero knowledge requires
that discrete logs of , relative to each other modulo exist (i.e. that

, generate the same group)

• During KeyGen, a malicious verifier can pick ANY and send them
to all parties.

• We focus on a range proof (due to its relative simplicity). Proving that a
Paillier ciphertext encrypts a bound secret .

N, h1, h2
h1, h2 N

h1, h2

N, h1, h2
n − 1

xi < B

Golden Shoe Exploit

• In the first step the prover uses the parameters to produce a
Pedersen commitment in a group of unknown order :
and send to the verifier.

N, h1, h2
z = hxi

1 hρ
2 mod N

z

Golden Shoe Exploit

• In the first step the prover uses the parameters to produce a
Pedersen commitment in a group of unknown order :
and send to the verifier.

• Assume the verifier picks : we are left with

N, h1, h2
z = hxi

1 hρ
2 mod N

z

h2 = 1 z = hxi
1 mod N

Golden Shoe Exploit

• In the first step the prover uses the parameters to produce a
Pedersen commitment in a group of unknown order :
and send to the verifier.

• Assume the verifier picks : we are left with

• {Option 1}: pick and pick very large such that is computed
over the integers => solve for by trial and error

• {Option 2}: Choose to be a composite with small prime factors => use
Polling Hellman and field seive on each factor

N, h1, h2
z = hxi

1 hρ
2 mod N

z

h2 = 1 z = hxi
1 mod N

h1 = 2 N hxi
1

xi

N

Golden Shoe Exploit

Golden Shoe Exploit
• The attack can be mounted by a single party given persistence during

KeyGen and at least one Signing :

Golden Shoe Exploit
• The attack can be mounted by a single party given persistence during

KeyGen and at least one Signing :

1. During DKG: Attacker broadcasts to all partiesN, h1, h2

Golden Shoe Exploit
• The attack can be mounted by a single party given persistence during

KeyGen and at least one Signing :

1. During DKG: Attacker broadcasts to all parties

2. During a single signature all parties send corrupted range proofs to the
attacker as part of MtA sub protocol

N, h1, h2

t

Golden Shoe Exploit
• The attack can be mounted by a single party given persistence during

KeyGen and at least one Signing :

1. During DKG: Attacker broadcasts to all parties

2. During a single signature all parties send corrupted range proofs to the
attacker as part of MtA sub protocol.

3. The attacker will learn all secret key shares

N, h1, h2

t

Golden Shoe Exploit
• The attack can be mounted by a single party given persistence during

KeyGen and at least one Signing :

1. During DKG: Attacker broadcasts to all parties

2. During a single signature all parties send corrupted range proofs to the
attacker as part of MtA sub protocol.

3. The attacker will learn all secret key shares

4. Signature will pass verification

N, h1, h2

t

Golden Shoe Exploit
• The attack can be mounted by a single party given persistence during

KeyGen and at least one Signing :

1. During DKG: Attacker broadcasts to all parties

2. During a single signature all parties send corrupted range proofs to the
attacker as part of MtA sub protocol.

3. The attacker will learn all secret key shares

4. Signature will pass verification

N, h1, h2

t

Wait, there’s more!
See results’ details in https://eprint.iacr.org/2020/1052

• Lather, Rinse, Repeat - in the paper

• Baby Shark - threshold EdDSA, currently in responsible
disclosure

Thank you! Questions?

jp@taurusgroup.chomer@zengo.com

https://eprint.iacr.org/2020/1052
mailto:jp@taurusgroup.ch
mailto:omer@kzencorp.com

