Scalable RSA Modulus Generation with a Dishonest Majority

Muthu Venkitasubramaniam

Ligero Inc. & University of Rochester

Megan Chen, Carmit Hazay, Yuval Ishai, Yuriy Kashnikov, Daniele Micciancio, Tarik Riviere, abhi shelat, Ruihan Wang

What is an RSA Modulus?

$N = p \cdot q$

Biprime - product of exactly two primes

Why? RSA History

- 1977 RSA Public-Key Encryption
- 1999 Paillier Public-Key Encryption
- 2001 CRS for UC setting
- 2018 Verifiable Delay Functions (VDF)

Source: https://csrc.nist.gov/projects/interoperable-randomness-beacons

Verifiable Delay Functions

• [Rivest-Shamir-Wagner96] introduced Inherently Sequential functions (ISH)

 2018 - VDF constructions by Pietrzak, Wesolowski

Sample a biprime N where factorization "hidden"

USE MPC!

Desiderata

- Modulus size: 2048 bits
- Threshold: n-1 corruption
- **# Participants:** > 1000
- Party Spec: "Lightweight"
- **Bandwidth:** < 5 Mbps
- Security:

60-bit statistical security128-bit computational security

Protocol Blueprint

Step 1: Design protocol for PASSIVE corruptions

Step 2: Upgrade security to tolerate ACTIVE corruptions

Step 1: Scalable Passive Protocol

Previous Works: Overview

<u>د ا</u>

	A 1		Corruption
Work	Adversary	Parties	Ihreshold
[BF97]	Passive	n >= 3	t < n/2
[FMY98]	Active	n	t < n/2
[PS98]	Active	2	t = 1
[Gil99]	Passive	2	t = 1
[ACS02]	Passive	n	t < n/2
[DM10]	Active	3	t = 1
[HMRT12]	Active	n	t < n
[FLOP18]	Active	2	t = 1
[CCD+20]	Active	n	t < n
	Work [BF97] [FMY98] [PS98] [Gil99] [Gil99] [ACS02] [DM10] [HMRT12] [FLOP18] [CCD+20]	WorkAdversary[BF97]Passive[FMY98]Active[PS98]Active[Gil99]Passive[ACS02]Passive[DM10]Active[HMRT12]Active[FLOP18]Active	WorkAdversaryParties $[BF97]$ Passive $n >= 3$ $[FMY98]$ Active n $[PS98]$ Active 2 $[Gil99]$ Passive 2 $[ACS02]$ Passive n $[DM10]$ Active 3 $[HMRT12]$ Active n $[FLOP18]$ Active 2

Parties choose pi, qi randomly

[CCD+20] Passive Protocol),1 Ν p_i, q_i • • • 0 3. Biprimality Candidates & 2. Mult Testing Trial division 0 • • **D** Ľ, • 9 • • • • $N = \left(\sum_{i} p_{i}\right) \cdot \left(\sum_{i} q_{i}\right)$ Parties choose Is N the product of two primes?

pi, qi randomly

[CCD+20] Passive Protocol),1 Ν p_i, q_i • 0 • • 3. Biprimality PRESIEVED 2. Mult Testing CANDIDATES 0 • 0 • 9 • • • • $N = \left(\sum_{i} p_{i}\right) \cdot \left(\sum_{i} q_{i}\right)$ Parties choose Is N the product

pi, qi randomly

of two primes?

[CCD+20] Passive Protocol

1. Pre-sieving candidates

Secure Multiplication

2. Mult

Secure Multiplication

3. Biprimality testing

Secure Multiplication Jacobi test [BF97]

Secure Multiplication

 $\sum c_i = (\sum a_i) \cdot (\sum b_i)$

Implementing Secure Multiplication

- Oblivious Linear Evaluation (OLE)
 - Scales quadratic in # parties
- Threshold Additively Homomorphic Encryption (TAHE)
 [CDN01]
 - Scales linearly in # parties
- Our Approach: TAHE with verifiable coordinator
 - per-party comm. scales logarithmically in # parties

Parties' secret shares	p _i , q _i	
Key Generation	sk _i	
Encrypt pi	$Enc_{PK}(p_i)$	
Coord. adds		$\sum Enc_{PK}(p_i)$
Receive Enc(p) from Coord.	Enc _{PK} (p)	
Multiply by qi	q _i · Enc _{PK} (p)	
Coord. adds		$\sum q_i \cdot Enc_{PK}(p)$
Receive Enc(pq) from Coord.	Enc _{PK} (p · q)	
Decrypted product	$\mathbf{p} \cdot \mathbf{q}$	

	Pi	С
	РК	
Parties' secret shares	p _i , q _i	
Key Generation	sk _i	
Encrypt pi	Enc _{PK} (p _i)	
Coord. adds		$\sum Enc_{PK}(p_i)$
Receive Enc(p) from Coord.	Enc _{PK} (p)	
Multiply by qi	q _i · Enc _{PK} (p)	
Coord. adds		$\sum q_i \cdot Enc_{PK}(p)$
Receive Enc(pq) from Coord.	$Enc_{PK}(p \cdot q)$	
Decrypted product	$\mathbf{p} \cdot \mathbf{q}$	

	(P_i)	С
	РК	
Parties' secret shares	p _i , q _i	
Key Generation	sk _i	
Encrypt pi	Enc _{PK} (p _i)	
Coord. adds		$\sum Enc_{PK}(p_i)$
Receive Enc(p) from Coord.	Enc _{PK} (p)	
Multiply by qi	q _i ∙ Enc _{PK} (p)	
Coord. adds		$\sum q_i \cdot Enc_{PK}(p)$
Receive Enc(pq) from Coord.	$Enc_{PK}(p \cdot q)$	
Decrypted product	$\mathbf{p}\cdot\mathbf{q}$	

	Pi	С
	РК	
Parties' secret shares	p _i , q _i	
Key Generation	sk _i	
Encrypt pi	$Enc_{PK}(p_i)$	
Coord. adds		$\sum Enc_{PK}(p_i)$
Receive Enc(p) from Coord.	Enc _{PK} (p)	
Multiply by q _i	$q_i \cdot Enc_{PK}(p)$	
Coord. adds		$\sum q_i \cdot Enc_{PK}(p)$
Receive Enc(pq) from Coord.	Enc _{PK} (p · q)	
Decrypted product	$\mathbf{p} \cdot \mathbf{q}$	

- Jacobi Test (Dist "Miller-Rabin" test)
- GCD Test

$$\gamma^{\frac{(p-1)(q-1)}{4}} \pmod{N}$$

- Jacobi Test (Dist "Miller-Rabin" test)
- GCD Test

$\gamma^{\frac{N-\sum p_i-\sum q_i+1}{4}} \pmod{N}$

- Jacobi Test (Dist "Miller-Rabin" test)
- GCD Test

$$\left(\gamma^{\frac{N-p_1-q_1+1}{4}}\right)\left(\gamma^{\frac{-p_2-q_2}{4}}\right)\dots\left(\gamma^{\frac{-p_n-q_n}{4}}\right)\pmod{N}$$

- Jacobi Test (Dist "Miller-Rabin" test)
- GCD Test

Step 2: Compile to full security

Our Protocol

Commitment Commit to randomness

Key Setup Generate threshold keys

Generate Candidates Sample pre-sieved primes

Compute Products Use TAHE to compute candidates

Biprimality test Jacobi test

Certification Zero-knowledge proof

Verifiable Coordinator

- Coordinator performs
 only public operations
- Sign every message
- Post message on bulletin board

Modular Proof (UC-security)

Generate Beaver triples

Passive Protocol (with triples)

Certify triples

Modular Proof (UC-security)

$$\mathcal{F}_{cert-triple}$$

Passive Protocol (with triples)

 $\mathcal{F}_{cert-triple}$

Certified Beaver Triples Functionality

Realizing Certified Beaver Triples Functionality

Which TAHE to choose?

Paillier?

- Circular choice
- El Gamal?
- Inefficient decryption (discrete log)

LWE?

• Does not support all AHE operations

Ring-LWE ------> more efficient, flexible

• Supports AHE, better parameters, packing

ZK Constraints

- Triples generation Operations in Ring \mathbb{Z}_Q where $Q = p_1 \times p_2 \times \cdots \times p_n$ and each p_i is a 62-bit prime.
- Triples consumption Linear operations modulo τ that is a product of (a different set of) primes
- Jacobi test Operations modulo \mathbb{Z}_N^* where N is the 2048-bit candidate modulus

What ZK Protocol to Use?

Needs:

- Memory efficient (2GB RAM for prover)
- Communication efficient (sublinear)
- Transparent

Our Approach Ligero [AHIV17] + Sigma [Sho00]

The Proofs

Ligero

- Triples generation via Ring-LWE (Range Proofs)
- Triples consumption (modular arithmetic)

Sigma

• Jacobi test (knowledge of exponent)

Our Protocol

 Security w/ abort upto n-1 party corruptions and the coordinator by an active adversary

- Verifiable coordinator

- Identifiable abort
- Public-verifiability [BDO14,BDD20]

Implementation

Setup

- Parties
 - AWS t3.small (2 vcpu, 2GB RAM)
- Coordinator
 - AWS r5dn24x.large (96 vcpu, 768 GB RAM)
- Ring LWE Parameter Selection
 FHE Standardization (based on best attacks)
- PKI
 - Sign every message

Threshold AHE with Ring-LWE: Parameters

Parameter	Notation	Value
Security parameter	κ	128
Number of parties	N	1024
Gaussian parameter	σ	8
Degree/Packing Factor	n	2^{16}
Ciphertext Modulus Size	Q	1302 bits
Plaintext Modulus Size	P	558 bits
Maximum number of bits for τ	$max_bits(\tau)$	175 bits

Table 1: Ring-LWE choice of parameters.

Practical Considerations

- Bandwidth filtering
 - Run a throughput test and deny entry for parties with insufficient bandwidth
- Restart with kickout
 - If protocol aborts, identify and kickout failing party
 - What does n-1 security imply here?
- Distributed verification
- Benchmarking

Performance Metrics

Parties	Passive ($\mu \pm \sigma$ s)	Active ($\mu \pm \sigma$ s)	Registration (s)	# Runs (passive/active)
2	20.5 ± 0.9	594.3 ± 1.1	0.3	20 / 10
5	52.4 ± 3.7	785.9 ± 5.5	0.8	20 / 10
10	53.3 ± 1.9	788.5 ± 3.3	0.8	20 / 10
20	56.6 ± 2.3	797.7 ± 6.6	0.8	20 / 11
50	67.9 ± 6.6	808.8 ± 8.6	1.0	20 / 16
100	91.4 ± 5.3	832.3 ± 5.5	3.9	20/9
200	133.5 ± 12.2	884.4 ± 14.2	1.0	15/9
500	219.8 ± 5.9	970.0 ± 6.1	0.9	9/6
700	279.7 ± 4.9	1069.8 ± 9.8	61.4	5/5
1000	352.0 ± 14.0	1429.2 ± 0.0	1.6	3/1
2000	817.8 ± 0.0	2966.8 ± 0.0	2.0	1/1
4046	684.2 ± 0.0	4580.7 ± 0.0	158.7	1 / 1

Summary

- First scalable MPC with dishonest majority
- A practical implementation of the **generic GMW paradigm**
 - 4-8x computation overhead
 - <2x communication overhead</p>
 - -Bottleneck is coordinator spec
- Modular proof

Thank You