Scalable RSA Modulus Generation with a Dishonest Majority

Muthu Venkitasubramaniam

Ligero Inc. \& University of Rochester

Megan Chen, Carmit Hazay, Yuval Ishai, Yuriy Kashnikov, Daniele Micciancio, Tarik Riviere, abhi shelat, Ruihan Wang

What is an RSA Modulus?

$$
\mathrm{N}=\mathrm{p} \cdot \mathrm{q}
$$

Biprime - product of exactly two primes

Why? RSA History

- 1977 - RSA Public-Key Encryption
- 1999 - Paillier Public-Key Encryption
- 2001 - CRS for UC setting
- 2018 - Verifiable Delay Functions (VDF)

Source: https://csrc.nist.gov/projects/interoperable-randomness-beacons

Verifiable Delay Functions

- [Rivest-Shamir-Wagner96] introduced Inherently Sequential functions (ISH)

$$
y=g^{2^{T}} \bmod N
$$

- 2018 - VDF constructions by Pietrzak, Wesolowski

Goal

Sample a biprime N where factorization "hidden"

USE MPC!

Desiderata

- Modulus size: 2048 bits
- Threshold: n-1 corruption
- \# Participants: > 1000
- Party Spec:
"Lightweight"
- Bandwidth: $<5 \mathrm{Mbps}$
- Security:

60-bit statistical security
128-bit computational security

Protocol Blueprint

Step 1: Design protocol for
 PASSIVE corruptions

Step 2: Upgrade security to tolerate ACTIVE corruptions

Step 1: Scalable Passive Protocol

Previous Works: Overview

Milestone	Work	Adversary	Parties	Corruption Threshold
First Work	$[$ [BF97]	Passive	$\mathrm{n}>=3$	$\mathrm{t}<\mathrm{n} / 2$
	$[$ [FMY98]	Active	n	$\mathrm{t}<\mathrm{n} / 2$
Based on OT	$[$ [GS98] $]$	Active	2	$\mathrm{t}=1$
	$[$ PCS02]	Passive	2	$\mathrm{t}=1$
	$[$ PM10 $]$	Active	3	$\mathrm{n}<\mathrm{n} / 2$
	$[\mathrm{HMRT12]}$	Active	n	$\mathrm{t}=1$
	$[$ [FOP18]	Active	2	$\mathrm{t}<\mathrm{n}$
	$[\mathrm{CCD}+20]$	Active	n	$\mathrm{t}=1$
			$\mathrm{t}<\mathrm{n}$	

Boneh-Franklin Framework [BF97]

$\mathrm{p}_{\mathrm{i}}, \mathrm{q}_{\mathrm{i}} \longrightarrow \mathrm{M} \longrightarrow 0,1$

Boneh-Franklin Framework [BF97]

$\mathrm{p}_{\mathrm{i}}, \mathrm{q}_{\mathrm{i}} \longrightarrow \mathrm{N} \longrightarrow 0,1$

Parties choose
pi, qi randomly

Boneh-Franklin Framework [BF97]

Parties choose
pi, qi randomly

$$
\mathrm{N}=\left(\sum_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}\right) \cdot\left(\sum_{\mathrm{i}} \mathrm{q}_{\mathrm{i}}\right)
$$

Boneh-Franklin Framework [BF97]

Parties choose pi, qi randomly

$$
\mathrm{N}=\left(\sum_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}\right) \cdot\left(\sum_{\mathrm{i}} \mathrm{q}_{\mathrm{i}}\right)
$$

Is N the product of two primes?

[CCD+20] Passive Protocol

Parties choose pi, qi randomly

$$
\mathrm{N}=\left(\sum_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}\right) \cdot\left(\sum_{\mathrm{i}} \mathrm{q}_{\mathrm{i}}\right)
$$

Is N the product of two primes?

[CCD+20] Passive Protocol

Parties choose pi, qi randomly

$$
\mathrm{N}=\left(\sum_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}\right) \cdot\left(\sum_{\mathrm{i}} \mathrm{q}_{\mathrm{i}}\right)
$$

Is N the product of two primes?

[CCD+20] Passive Protocol

1. Pre-sieving candidates
2. Mult
3. Biprimality testing

Secure Multiplication

Secure Multiplication

Secure Multiplication Jacobi test [BF97]

Secure Multiplication

$$
\sum c_{i}=\left(\sum a_{i}\right) \cdot\left(\sum b_{i}\right)
$$

Implementing Secure Multiplication

- Oblivious Linear Evaluation (OLE)
- Scales quadratic in \# parties
- Threshold Additively Homomorphic Encryption (TAHE) [CDN01]
- Scales linearly in \# parties
- Our Approach: TAHE with verifiable coordinator
- per-party comm. scales logarithmically in \# parties

Threshold AHE with a coordinator

Parties' secret shares $\quad \mathrm{p}_{\mathrm{i}}, \mathrm{q}_{\mathrm{i}}$
Key Generation $\quad \mathrm{sk}_{\mathrm{i}}$
Encrypt $\mathrm{p}_{\mathrm{i}} \quad \operatorname{Enc}_{\mathrm{PK}}\left(\mathrm{p}_{\mathrm{i}}\right)$
Coord. adds
Receive Enc(p) from Coord.
Multiply by qi
$q_{i} \cdot \operatorname{Enc}_{\mathrm{PK}}(\mathrm{p})$
$\sum \operatorname{Enc}_{\mathrm{PK}}\left(\mathrm{p}_{\mathrm{i}}\right)$

Coord. adds

$\sum q_{i} \cdot E n c_{P K}(p)$
Receive Enc(pq) from Coord.
Decrypted product
$\operatorname{Enc}_{\mathrm{PK}}(\mathrm{p} \cdot \mathrm{q})$
p•q

Threshold AHE with a coordinator

Parties' secret shares

Key Generation $\quad \mathrm{sk}_{\mathrm{i}}$

Encrypt $\mathrm{p}_{\mathrm{i}} \quad \operatorname{Enc}_{\mathrm{PK}}\left(\mathrm{p}_{\mathrm{i}}\right)$
Coord. adds
Receive Enc(p) from Coord.
Multiply by qi_{i}
Coord. adds
Receive Enc(pq) from Coord.
Decrypted product
p•q
$\sum \operatorname{Enc}_{\mathrm{PK}}\left(\mathrm{p}_{\mathrm{i}}\right)$
$E n_{P_{K}}(p)$
$q_{i} \cdot \operatorname{Enc}_{P K}(p)$
$\sum q_{i} \cdot E \operatorname{Enc}_{P K}(p)$
$\operatorname{Enc}_{P K}(p \cdot q)$

Threshold AHE with a coordinator

	P_{i}
Parties' secret shares	$\mathrm{p}_{\mathrm{i}}, \mathrm{q}_{\mathrm{i}}$
Key Generation	sk_{i}
Encrypt p_{i}	$\operatorname{Enc}_{\mathrm{PK}}\left(\mathrm{p}_{\mathrm{i}}\right)$

Coord. adds
Receive Enc(p) from Coord.
$E \operatorname{Enc}_{\mathrm{PK}}(\mathrm{p})$
Multiply by q_{i}
$q_{i} \cdot E n c_{P K}(p)$
$\sum q_{i} \cdot E \operatorname{Enc}_{\mathrm{PK}}(\mathrm{p})$
Receive Enc(pq) from Coord.
Decrypted product
$\operatorname{Enc}_{P K}(p \cdot q)$
p•q

Threshold AHE with a coordinator

Coord. adds
Receive Enc(p) from Coord.
$E N C_{P K}(p)$
Multiply by q_{i}
$q_{i} \cdot E n c_{P K}(p)$
$\sum q_{i} \cdot E \operatorname{Enc}_{\mathrm{PK}}(\mathrm{p})$
Receive Enc(pq) from Coord.
Decrypted product
$\operatorname{Enc}_{\mathrm{PK}}(\mathrm{p} \cdot \mathrm{q})$
$\mathrm{p} \cdot \mathrm{q}$

Threshold AHE with a coordinator

Coord. adds
Receive Enc(p) from Coord.

Multiply by qi_{i}
$q_{i} \cdot$ Enc $_{P K}(p)$
$\sum \operatorname{Enc}_{\mathrm{PK}}\left(\mathrm{p}_{\mathrm{i}}\right)$

Coord. adds
Receive Enc(pq) from Coord.
Decrypted product
$\operatorname{Enc}_{\mathrm{PK}}(\mathrm{p} \cdot q)$
$\mathrm{p} \cdot \mathrm{q}$

Threshold AHE with a coordinator

Coord. adds
Receive Enc(p) from Coord.
$\operatorname{Enc}_{\mathrm{PK}}(\mathrm{p})$
Multiply by $q_{i} \quad q_{i} \cdot$ Enc $_{P K}(p)$
Coord. adds
Receive Enc(pq) from Coord.
Decrypted product
$\operatorname{Enc}_{\mathrm{PK}}(\mathrm{p} \cdot \mathrm{q})$
p•q

Threshold AHE with a coordinator

Coord. adds
Receive Enc(p) from Coord.
$\operatorname{Enc}_{\mathrm{PK}}(\mathrm{p})$
$q_{i} \cdot \operatorname{Enc}_{\mathrm{PK}}(\mathrm{p})$
Coord. adds
$\sum q_{i} \cdot E n c_{P K}(p)$
Receive Enc(pq) from Coord.
Decrypted product
$\operatorname{Enc}_{\mathrm{PK}}(\mathrm{p} \cdot \mathrm{q})$
p•q

Threshold AHE with a coordinator

	P_{i}	
Parties' secret shares	$\mathrm{P}_{\mathrm{i}}, \mathrm{q}_{\mathrm{i}}$	
Key Generation	sk_{i}	
Encrypt p_{i} Coord. adds	$\operatorname{Enc}_{\mathrm{PK}}\left(\mathrm{p}_{\mathrm{i}}\right)$	$\sum \mathrm{Enc}_{\mathrm{PK}}\left(\mathrm{p}_{\mathrm{i}}\right)$

Receive $\operatorname{Enc}(p)$ from Coord. $\quad E n c_{P K}(p)$
Multiply by $\mathrm{qi}_{\mathrm{i}} \quad \mathrm{q}_{\mathrm{i}} \cdot \operatorname{Enc}_{\mathrm{PK}}(\mathrm{p})$
Coord. adds

$\operatorname{Enc}_{\mathrm{PK}}(\mathrm{p} \cdot \mathrm{q})$

Decrypted product
p•q

Threshold AHE with a coordinator

	P_{i}	
	PK_{i}	
Parties' secret shares	$\mathrm{p}_{\mathrm{i}}, \mathrm{q}_{\mathrm{i}}$	
Key Generation	sk_{i}	
Encrypt p_{i} Coord. adds	$\operatorname{Enc}_{\mathrm{PK}}\left(\mathrm{p}_{\mathrm{i}}\right)$	$\sum \mathrm{Enc}_{\mathrm{PK}}\left(\mathrm{p}_{\mathrm{i}}\right)$

Receive $\operatorname{Enc}(p)$ from Coord. $\quad E n c_{P K}(p)$
Multiply by $\mathrm{q}_{\mathrm{i}} \quad \mathrm{q}_{\mathrm{i}} \cdot \operatorname{Enc}_{\mathrm{PK}}(\mathrm{p})$
Coord. adds

```
                                \sumq}\mp@subsup{q}{i}{}\cdotEn\mp@subsup{c}{PK}{}(p
```

Receive Enc(pq) from Coord.
Decrypted product
p•q

[BF97]'s Distributed Biprimality Test

Test whether N is the product of two primes [BF97]

- Jacobi Test (Dist "Miller-Rabin" test)
- GCD Test

[BF97]'s Distributed Biprimality Test

$$
\gamma^{\frac{(p-1)(q-1)}{4}}(\bmod N)
$$

Test whether N is the product of two primes [BF97]

- Jacobi Test (Dist "Miller-Rabin" test)
- GCD Test

[BF97]'s Distributed Biprimality Test

$$
\gamma^{\frac{N-\sum p_{i}-\sum q_{i}+1}{4}}(\bmod N)
$$

Test whether N is the product of two primes [BF97]

- Jacobi Test (Dist "Miller-Rabin" test)
- GCD Test

[BF97]'s Distributed Biprimality Test

$$
\left(\gamma^{\frac{N-p_{1}-q_{1}+1}{4}}\right)\left(\gamma^{\frac{-p_{2}-q_{2}}{4}}\right) \ldots\left(\gamma^{\frac{-p_{n}-q_{n}}{4}}\right)(\bmod N)
$$

Test whether N is the product of two primes [BF97]

- Jacobi Test (Dist "Miller-Rabin" test)
- GCD Test

Step 2: Compile to full security

GMW Paradigm

$\mathrm{x}_{1}, \mathrm{r}_{1}$
m_{1}
m_{k}

GMW Paradigm

Commit $\mathrm{x}_{1}, \mathrm{r}_{1} \quad$ Commit $\mathrm{x}_{2}, \mathrm{r}_{2}$
$\mathrm{m}_{1} \xrightarrow{\mathrm{ZK}}$
$\mathrm{m}_{\mathrm{k}} \mathrm{ZK}$

Our Approach

Commit χ_{1}, r_{1}
Commit

$$
\frac{\mathrm{m}}{\vdots}
$$

$$
\mathrm{m}_{\mathrm{k}} \mathrm{ZK}
$$

Our Approach

Commit X, r_{1}
Commit
m_{1}
.
m_{k}
ZK

Our Protocol

Commitment Commit to randomness

Key Setup Generate threshold keys

Generate Candidates Sample pre-sieved primes

Compute Products
Use TAHE to compute candidates

Biprimality test Jacobi test

Certification Zero-knowledge proof

Verifiable Coordinator

Modular Proof (UC-security)

Generate Beaver triples

Modular Proof (UC-security)

Certified Beaver Triples Functionality

P_{i}

Generate

$\left(a_{j}^{i}, b_{j}^{i}, c_{j}^{i}\right)_{j}$
(x, w)
$\mathcal{F}_{\text {cert-triple }}$
Relation R

$$
x, R\left(x,\left[w,\left(a_{j}^{i}, b_{j}^{i}, c_{j}^{i}\right)_{j}\right]\right)
$$

Realizing Certified Beaver Triples Functionality

Which TAHE to choose?

Paillier?

- Circular choice

El Gamal?

- Inefficient decryption (discrete log)

LWE?

- Does not support all AHE operations

Ring-LWE \longrightarrow more efficient, flexible

- Supports AHE, better parameters, packing

ZK Constraints

- Triples generation - Operations in $\operatorname{Ring} \mathbb{Z}_{Q}$ where Q $=p_{1} \times p_{2} \times \cdots \times p_{n}$ and each p_{i} is a 62-bit prime.
- Triples consumption - Linear operations modulo τ that is a product of (a different set of) primes
- Jacobi test - Operations modulo \mathbb{Z}_{N}^{*} where N is the 2048-bit candidate modulus

What ZK Protocol to Use?

Needs:

- Memory efficient (2GB RAM for prover)
- Communication efficient (sublinear)
- Transparent

Our Approach Ligero $_{\text {amwrit }}+$ Sigma

The Proofs

Ligero

- Triples generation via Ring-LWE (Range Proofs)
- Triples consumption (modular arithmetic)

Sigma

- Jacobi test (knowledge of exponent)

Our Protocol

- Security w/ abort upto n-1 party corruptions and the coordinator by an active adversary
- Verifiable coordinator
- Identifiable abort
- Public-verifiability [BDO14,BDD20]

Implementation

Setup

- Parties
- AWS t3.small (2 vcpu, 2GB RAM)
- Coordinator
- AWS r5dn24x.large (96 vcpu, 768 GB RAM)
- Ring LWE Parameter Selection
- FHE Standardization (based on best attacks)
- PKI
- Sign every message

Threshold AHE with Ring-LWE: Parameters

Parameter

Security parameter
Number of parties
Gaussian parameter
Degree/Packing Factor Ciphertext Modulus Size
Plaintext Modulus Size

Notation
κ
N
σ
n
$|Q| \quad 1302$ bits
$|P| \quad 558$ bits
Maximum number of bits for τ max_bits $(\tau) \quad 175$ bits

Table 1: Ring-LWE choice of parameters.

Practical Considerations

- Bandwidth filtering
- Run a throughput test and deny entry for parties with insufficient bandwidth
- Restart with kickout
- If protocol aborts, identify and kickout failing party
- What does $n-1$ security imply here?
- Distributed verification
- Benchmarking

Performance Metrics

Parties	Passive $(\mu \pm \sigma \mathbf{s})$	Active $(\mu \pm \sigma \mathbf{s})$	Registration (s)	\# Runs (passive/active)
2	20.5 ± 0.9	594.3 ± 1.1	0.3	$20 / 10$
5	52.4 ± 3.7	785.9 ± 5.5	0.8	$20 / 10$
10	53.3 ± 1.9	788.5 ± 3.3	0.8	$20 / 10$
20	56.6 ± 2.3	797.7 ± 6.6	0.8	$20 / 11$
50	67.9 ± 6.6	808.8 ± 8.6	1.0	$20 / 16$
100	91.4 ± 5.3	832.3 ± 5.5	3.9	$20 / 9$
200	133.5 ± 12.2	884.4 ± 14.2	1.0	$15 / 9$
500	219.8 ± 5.9	970.0 ± 6.1	0.9	$9 / 6$
700	279.7 ± 4.9	1069.8 ± 9.8	61.4	$5 / 5$
1000	352.0 ± 14.0	1429.2 ± 0.0	1.6	$3 / 1$
2000	817.8 ± 0.0	2966.8 ± 0.0	2.0	$1 / 1$
4046	684.2 ± 0.0	4580.7 ± 0.0	158.7	$1 / 1$

Summary

- First scalable MPC with dishonest majority
- A practical implementation of the generic GMW paradigm
- 4-8x computation overhead
- <2x communication overhead
- Bottleneck is coordinator spec
- Modular proof

Thank You

