
Scalable RSA Modulus

Generation with a Dishonest

Majority

Muthu Venkitasubramaniam
Ligero Inc. & University of Rochester

Megan Chen, Carmit Hazay, Yuval Ishai, Yuriy Kashnikov, Daniele Micciancio,
Tarik Riviere, abhi shelat, Ruihan Wang

What is an RSA Modulus?

Biprime - product of exactly two primes

Why? RSA History
• 1977 - RSA Public-Key Encryption

• 1999 - Paillier Public-Key Encryption

• 2001 - CRS for UC setting

• 2018 - Verifiable Delay Functions (VDF)

NIST

Randomness

Beacon

Source: https://csrc.nist.gov/projects/interoperable-randomness-beacons

• [Rivest-Shamir-Wagner96] introduced Inherently

Sequential functions (ISH)

• 2018 - VDF constructions by Pietrzak,

Wesolowski

Verifiable Delay Functions

Goal

Sample a biprime N where

factorization “hidden”

USE MPC!

Desiderata
• Modulus size: 2048 bits

• Threshold: n-1 corruption

• # Participants: > 1000

• Party Spec: “Lightweight”

• Bandwidth: < 5 Mbps

• Security: 60-bit statistical security

128-bit computational security

Step 1: Design protocol for PASSIVE

corruptions

Step 2: Upgrade security to tolerate

ACTIVE corruptions

Protocol Blueprint

Step 1: Scalable Passive Protocol

Previous Works: Overview

Milestone Work Adversary Parties

Corruption

Threshold

First Work [BF97] Passive n >= 3 t < n/2

[FMY98] Active n t < n/2

[PS98] Active 2 t = 1

Based on OT [Gil99] Passive 2 t = 1

[ACS02] Passive n t < n/2

[DM10] Active 3 t = 1

[HMRT12] Active n t < n

[FLOP18] Active 2 t = 1

[CCD+20] Active n t < n

Boneh-Franklin Framework
[BF97]

1. Candidates &

Trial division

N

2. Mult

0,1

3. Biprimality

Testing

pi, qi

Boneh-Franklin Framework
[BF97]

1. Candidates &

Trial division

N

2. Mult

0,1

3. Biprimality

Testing

pi, qi

Parties choose

pi, qi randomly

Boneh-Franklin Framework
[BF97]

1. Candidates &

Trial division

N

2. Mult

0,1

3. Biprimality

Testing

pi, qi

Parties choose

pi, qi randomly

Boneh-Franklin Framework
[BF97]

1. Candidates &

Trial division

N

2. Mult

0,1

3. Biprimality

Testing

pi, qi

Is N the product

of two primes?

Parties choose

pi, qi randomly

[CCD+20] Passive Protocol

N

2. Mult

0,1pi, qi

Is N the product

of two primes?

Parties choose

pi, qi randomly

3. Biprimality

Testing
1. Candidates &

Trial division

[CCD+20] Passive Protocol

N

2. Mult

0,1pi, qi

Is N the product

of two primes?

Parties choose

pi, qi randomly

3. Biprimality

Testing
1. PRESIEVED

CANDIDATES

[CCD+20] Passive Protocol

1. Pre-sieving

candidates

2. Mult

3. Biprimality

testing

Secure Multiplication

Secure Multiplication

Secure Multiplication

Jacobi test [BF97]

a1, b1 ∈ 𝔽

c1 cn

MUL

Secure Multiplication

a𝑛, bn ∈ 𝔽a2, b2 ∈ 𝔽 …

c2

Implementing Secure Multiplication

• Oblivious Linear Evaluation (OLE)

– Scales quadratic in # parties

• Threshold Additively Homomorphic Encryption (TAHE)
[CDN01]

– Scales linearly in # parties

• Our Approach: TAHE with verifiable
coordinator

– per-party comm. scales logarithmically in # parties

Parties’ secret shares

Key Generation

Encrypt pi

Coord. adds

Receive Enc(p) from Coord.

Multiply by qi

Coord. adds

Receive Enc(pq) from Coord.

Decrypted product

Threshold AHE with a coordinator

Pi

pi, qi

ski

EncPK(pi)

EncPK(p)

qi ⋅ EncPK(p)

EncPK(p ⋅ q)

C

∑EncPK(pi)

∑qi ⋅ EncPK(p)

p ⋅ q

Parties’ secret shares

Key Generation

Encrypt pi

Coord. adds

Receive Enc(p) from Coord.

Multiply by qi

Coord. adds

Receive Enc(pq) from Coord.

Decrypted product

Threshold AHE with a coordinator

Pi

pi, qi

ski

EncPK(pi)

EncPK(p)

qi ⋅ EncPK(p)

EncPK(p ⋅ q)

C

PK

∑EncPK(pi)

∑qi ⋅ EncPK(p)

p ⋅ q

Parties’ secret shares

Key Generation

Encrypt pi

Coord. adds

Receive Enc(p) from Coord.

Multiply by qi

Coord. adds

Receive Enc(pq) from Coord.

Decrypted product

Threshold AHE with a coordinator

Pi

pi, qi

ski

EncPK(pi)

EncPK(p)

qi ⋅ EncPK(p)

EncPK(p ⋅ q)

C

PK

∑EncPK(pi)

∑qi ⋅ EncPK(p)

p ⋅ q

Parties’ secret shares

Key Generation

Encrypt pi

Coord. adds

Receive Enc(p) from Coord.

Multiply by qi

Coord. adds

Receive Enc(pq) from Coord.

Decrypted product

Threshold AHE with a coordinator

Pi

pi, qi

ski

EncPK(pi)

EncPK(p)

qi ⋅ EncPK(p)

EncPK(p ⋅ q)

C

PK

∑EncPK(pi)

∑qi ⋅ EncPK(p)

p ⋅ q

Parties’ secret shares

Key Generation

Encrypt pi

Coord. adds

Receive Enc(p) from Coord.

Multiply by qi

Coord. adds

Receive Enc(pq) from Coord.

Decrypted product

Threshold AHE with a coordinator

Pi

pi, qi

ski

EncPK(pi)

EncPK(p)

qi ⋅ EncPK(p)

EncPK(p ⋅ q)

C

PK

∑EncPK(pi)

∑qi ⋅ EncPK(p)

p ⋅ q

Parties’ secret shares

Key Generation

Encrypt pi

Coord. adds

Receive Enc(p) from Coord.

Multiply by qi

Coord. adds

Receive Enc(pq) from Coord.

Decrypted product

Threshold AHE with a coordinator

Pi

pi, qi

ski

EncPK(pi)

EncPK(p)

qi ⋅ EncPK(p)

EncPK(p ⋅ q)

C

PK

∑EncPK(pi)

∑qi ⋅ EncPK(p)

p ⋅ q

Parties’ secret shares

Key Generation

Encrypt pi

Coord. adds

Receive Enc(p) from Coord.

Multiply by qi

Coord. adds

Receive Enc(pq) from Coord.

Decrypted product

Threshold AHE with a coordinator

Pi

pi, qi

ski

EncPK(pi)

EncPK(p)

qi ⋅ EncPK(p)

EncPK(p ⋅ q)

C

PK

∑EncPK(pi)

∑qi ⋅ EncPK(p)

p ⋅ q

Parties’ secret shares

Key Generation

Encrypt pi

Coord. adds

Receive Enc(p) from Coord.

Multiply by qi

Coord. adds

Receive Enc(pq) from Coord.

Decrypted product

Threshold AHE with a coordinator

Pi

pi, qi

ski

EncPK(pi)

EncPK(p)

qi ⋅ EncPK(p)

EncPK(p ⋅ q)

C

PK

∑EncPK(pi)

∑qi ⋅ EncPK(p)

p ⋅ q

Parties’ secret shares

Key Generation

Encrypt pi

Coord. adds

Receive Enc(p) from Coord.

Multiply by qi

Coord. adds

Receive Enc(pq) from Coord.

Decrypted product

Threshold AHE with a coordinator

Pi

pi, qi

ski

EncPK(pi)

EncPK(p)

qi ⋅ EncPK(p)

EncPK(p ⋅ q)

p ⋅ q

C

PK

∑EncPK(pi)

∑qi ⋅ EncPK(p)

3. Biprimality

Testing

[BF97]’s Distributed Biprimality Test

1. Candidates &

Trial division
2. Mult

Test whether N is the product of two primes [BF97]

• Jacobi Test (Dist “Miller-Rabin" test)

• GCD Test

[BF97]’s Distributed Biprimality Test

Test whether N is the product of two primes [BF97]

• Jacobi Test (Dist “Miller-Rabin" test)

• GCD Test

[BF97]’s Distributed Biprimality Test

Test whether N is the product of two primes [BF97]

• Jacobi Test (Dist “Miller-Rabin" test)

• GCD Test

[BF97]’s Distributed Biprimality Test

Test whether N is the product of two primes [BF97]

• Jacobi Test (Dist “Miller-Rabin" test)

• GCD Test

Step 2: Compile to full security

GMW Paradigm

P1 P2

x1, r1 x2, r2

.

.

.

m1

mk

P1 P2

x1, r1 x2, r2Commit Commit

m1

mk

ZK

ZK

.

.

.

GMW Paradigm

P1 P2

x1, r1 x2, r2Commit Commit

m1

mk

ZK

ZK

.

.

.

Our Approach

P1 P2

x1, r1 x2, r2Commit Commit

m1

mk

.

.

.

Our Approach

ZK

Our Protocol

Key Setup

Generate Candidates

Compute Products

Biprimality test

Generate threshold keys

Sample pre-sieved primes

Use TAHE to compute candidates

Jacobi test

Certification Zero-knowledge proof

Commitment Commit to randomness

Verifiable Coordinator

C

• Coordinator performs

only public operations

• Sign every message

• Post message on

bulletin board

Modular Proof (UC-security)

Generate Beaver triples

Passive Protocol

(with triples)

Certify triples

Modular Proof (UC-security)

ℱ𝑐𝑒𝑟𝑡−𝑡𝑟𝑖𝑝𝑙𝑒

Passive Protocol

(with triples)

ℱ𝑐𝑒𝑟𝑡−𝑡𝑟𝑖𝑝𝑙𝑒

Certified Beaver Triples Functionality

ℱ𝑐𝑒𝑟𝑡−𝑡𝑟𝑖𝑝𝑙𝑒

Relation 𝑅

Pi

Generate

𝑎𝑗
𝑖, 𝑏𝑗

𝑖 , 𝑐𝑗
𝑖

𝑗

𝑥,𝑤 𝑥, 𝑅 𝑥, 𝑤, 𝑎𝑗
𝑖, 𝑏𝑗

𝑖 , 𝑐𝑗
𝑖

𝑗

Realizing Certified Beaver Triples Functionality

ℱ𝑐𝑝 (commit)

Generate triples

using TAHE

ℱ𝑐𝑝 (prove)

Commit and Prove

Semi-malicious security

Which TAHE to choose?

Paillier?
• Circular choice

El Gamal?
• Inefficient decryption (discrete log)

LWE?

• Does not support all AHE operations

Ring-LWE more efficient, flexible

• Supports AHE, better parameters, packing

ZK Constraints

• Triples generation - Operations in Ring ℤ𝑄 where 𝑄

= 𝑝1 × 𝑝2 ×∙ ∙ ∙× 𝑝𝑛 and each 𝑝𝑖 is a 62-bit prime.

• Triples consumption - Linear operations modulo τ
that is a product of (a different set of) primes

• Jacobi test - Operations modulo ℤ𝑁
∗ where 𝑁 is the

2048-bit candidate modulus

Needs:

• Memory efficient (2GB RAM for prover)

• Communication efficient (sublinear)

• Transparent

Our Approach

Ligero [AHIV17] + Sigma [Sho00]

What ZK Protocol to Use?

Ligero

• Triples generation via Ring-LWE (Range Proofs)

• Triples consumption (modular arithmetic)

Sigma

• Jacobi test (knowledge of exponent)

The Proofs

Our Protocol

• Security w/ abort upto n-1 party corruptions

and the coordinator by an active adversary

– Verifiable coordinator

• Identifiable abort

• Public-verifiability [BDO14,BDD20]

Implementation

Setup

• Parties

– AWS t3.small (2 vcpu, 2GB RAM)

• Coordinator

– AWS r5dn24x.large (96 vcpu, 768 GB RAM)

• Ring LWE Parameter Selection

– FHE Standardization (based on best attacks)

• PKI

– Sign every message

Threshold AHE with Ring-LWE: Parameters

Practical Considerations

• Bandwidth filtering

– Run a throughput test and deny entry for parties with

insufficient bandwidth

• Restart with kickout

– If protocol aborts, identify and kickout failing party

– What does n-1 security imply here?

• Distributed verification

• Benchmarking

Performance Metrics

Summary

• First scalable MPC with dishonest majority

• A practical implementation of the generic

GMW paradigm

– 4-8x computation overhead

– <2x communication overhead

–Bottleneck is coordinator spec

• Modular proof

Thank You

