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What is an RSA Modulus?

Biprime - product of exactly two primes



Why? RSA History
• 1977 - RSA Public-Key Encryption

• 1999 - Paillier Public-Key Encryption 

• 2001 - CRS for UC setting

• 2018 - Verifiable Delay Functions (VDF)

NIST

Randomness 

Beacon

Source: https://csrc.nist.gov/projects/interoperable-randomness-beacons



• [Rivest-Shamir-Wagner96] introduced Inherently 

Sequential functions (ISH)

• 2018 - VDF constructions by Pietrzak, 

Wesolowski

Verifiable Delay Functions



Goal

Sample a biprime N where 

factorization “hidden”

USE MPC!



Desiderata
• Modulus size: 2048 bits

• Threshold: n-1 corruption

• # Participants: > 1000

• Party Spec: “Lightweight” 

• Bandwidth: < 5 Mbps 

• Security: 60-bit statistical security

128-bit computational security



Step 1: Design protocol for PASSIVE

corruptions

Step 2: Upgrade security to tolerate

ACTIVE corruptions

Protocol Blueprint



Step 1: Scalable Passive Protocol



Previous Works: Overview

Milestone Work Adversary Parties

Corruption 

Threshold

First Work [BF97] Passive n >= 3 t < n/2

[FMY98] Active n t < n/2

[PS98] Active 2 t = 1

Based on OT [Gil99] Passive 2 t = 1

[ACS02] Passive n t < n/2

[DM10] Active 3 t = 1

[HMRT12] Active n t < n

[FLOP18] Active 2 t = 1

[CCD+20] Active n t < n



Boneh-Franklin Framework
[BF97]

1. Candidates &

Trial division

N

2. Mult

0,1

3. Biprimality

Testing

pi, qi
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[CCD+20] Passive Protocol

N

2. Mult

0,1pi, qi

Is N the product 

of two primes?
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pi, qi randomly
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Trial division



[CCD+20] Passive Protocol

N

2. Mult

0,1pi, qi

Is N the product 

of two primes?

Parties choose 

pi, qi randomly

3. Biprimality

Testing
1. PRESIEVED 

CANDIDATES



[CCD+20] Passive Protocol

1. Pre-sieving 

candidates

2. Mult

3. Biprimality

testing

Secure Multiplication

Secure Multiplication

Secure Multiplication

Jacobi test [BF97]



a1, b1 ∈ 𝔽

c1 cn

MUL

Secure Multiplication

a𝑛, bn ∈ 𝔽a2, b2 ∈ 𝔽 …

c2



Implementing Secure Multiplication

• Oblivious Linear Evaluation (OLE)

– Scales quadratic in # parties

• Threshold Additively Homomorphic Encryption (TAHE) 
[CDN01]

– Scales linearly in # parties

• Our Approach: TAHE with verifiable 
coordinator

– per-party comm. scales logarithmically in # parties



Parties’ secret shares

Key Generation

Encrypt pi

Coord. adds

Receive Enc(p) from Coord.

Multiply by qi

Coord. adds

Receive Enc( pq ) from Coord.

Decrypted product

Threshold AHE with a coordinator

Pi

pi, qi

ski

EncPK(pi)

EncPK(p)

qi ⋅ EncPK(p)

EncPK(p ⋅ q)

C

∑EncPK(pi)

∑qi ⋅ EncPK(p)

p ⋅ q



Parties’ secret shares

Key Generation

Encrypt pi

Coord. adds

Receive Enc(p) from Coord.

Multiply by qi

Coord. adds

Receive Enc( pq ) from Coord.

Decrypted product

Threshold AHE with a coordinator

Pi

pi, qi

ski

EncPK(pi)

EncPK(p)

qi ⋅ EncPK(p)

EncPK(p ⋅ q)

C

PK

∑EncPK(pi)

∑qi ⋅ EncPK(p)

p ⋅ q



Parties’ secret shares

Key Generation

Encrypt pi

Coord. adds

Receive Enc(p) from Coord.

Multiply by qi

Coord. adds

Receive Enc( pq ) from Coord.

Decrypted product

Threshold AHE with a coordinator

Pi

pi, qi

ski

EncPK(pi)

EncPK(p)

qi ⋅ EncPK(p)

EncPK(p ⋅ q)

C

PK

∑EncPK(pi)

∑qi ⋅ EncPK(p)

p ⋅ q



Parties’ secret shares

Key Generation

Encrypt pi

Coord. adds

Receive Enc(p) from Coord.

Multiply by qi

Coord. adds

Receive Enc( pq ) from Coord.

Decrypted product

Threshold AHE with a coordinator

Pi

pi, qi

ski

EncPK(pi)

EncPK(p)

qi ⋅ EncPK(p)

EncPK(p ⋅ q)

C

PK

∑EncPK(pi)

∑qi ⋅ EncPK(p)

p ⋅ q



Parties’ secret shares

Key Generation

Encrypt pi

Coord. adds

Receive Enc(p) from Coord.

Multiply by qi

Coord. adds

Receive Enc( pq ) from Coord.

Decrypted product

Threshold AHE with a coordinator

Pi

pi, qi

ski

EncPK(pi)

EncPK(p)

qi ⋅ EncPK(p)

EncPK(p ⋅ q)

C

PK

∑EncPK(pi)

∑qi ⋅ EncPK(p)

p ⋅ q



Parties’ secret shares

Key Generation

Encrypt pi

Coord. adds

Receive Enc(p) from Coord.

Multiply by qi

Coord. adds

Receive Enc( pq ) from Coord.

Decrypted product

Threshold AHE with a coordinator

Pi

pi, qi

ski

EncPK(pi)

EncPK(p)

qi ⋅ EncPK(p)

EncPK(p ⋅ q)

C

PK

∑EncPK(pi)

∑qi ⋅ EncPK(p)

p ⋅ q



Parties’ secret shares

Key Generation

Encrypt pi

Coord. adds

Receive Enc(p) from Coord.

Multiply by qi

Coord. adds

Receive Enc( pq ) from Coord.

Decrypted product

Threshold AHE with a coordinator

Pi

pi, qi

ski

EncPK(pi)

EncPK(p)

qi ⋅ EncPK(p)

EncPK(p ⋅ q)

C

PK

∑EncPK(pi)

∑qi ⋅ EncPK(p)

p ⋅ q



Parties’ secret shares

Key Generation

Encrypt pi

Coord. adds

Receive Enc(p) from Coord.

Multiply by qi

Coord. adds

Receive Enc( pq ) from Coord.

Decrypted product

Threshold AHE with a coordinator

Pi

pi, qi

ski

EncPK(pi)

EncPK(p)

qi ⋅ EncPK(p)

EncPK(p ⋅ q)

C

PK

∑EncPK(pi)

∑qi ⋅ EncPK(p)

p ⋅ q



Parties’ secret shares

Key Generation

Encrypt pi

Coord. adds

Receive Enc(p) from Coord.

Multiply by qi

Coord. adds

Receive Enc( pq ) from Coord.

Decrypted product

Threshold AHE with a coordinator

Pi

pi, qi

ski

EncPK(pi)

EncPK(p)

qi ⋅ EncPK(p)

EncPK(p ⋅ q)

p ⋅ q

C

PK

∑EncPK(pi)

∑qi ⋅ EncPK(p)



3. Biprimality

Testing

[BF97]’s Distributed Biprimality Test

1. Candidates &

Trial division
2. Mult

Test whether N is the product of two primes [BF97]

• Jacobi Test (Dist “Miller-Rabin" test)

• GCD Test
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Step 2: Compile to full security



GMW Paradigm
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Our Protocol

Key Setup

Generate Candidates

Compute Products

Biprimality test

Generate threshold keys

Sample pre-sieved primes

Use TAHE to compute candidates

Jacobi test

Certification Zero-knowledge proof

Commitment Commit to randomness



Verifiable Coordinator

C

• Coordinator performs 

only public operations

• Sign every message

• Post message on 

bulletin board



Modular Proof (UC-security)

Generate Beaver triples

Passive Protocol

(with triples)

Certify triples



Modular Proof (UC-security)

ℱ𝑐𝑒𝑟𝑡−𝑡𝑟𝑖𝑝𝑙𝑒

Passive Protocol

(with triples)

ℱ𝑐𝑒𝑟𝑡−𝑡𝑟𝑖𝑝𝑙𝑒



Certified Beaver Triples Functionality

ℱ𝑐𝑒𝑟𝑡−𝑡𝑟𝑖𝑝𝑙𝑒

Relation 𝑅

Pi

Generate

𝑎𝑗
𝑖, 𝑏𝑗

𝑖 , 𝑐𝑗
𝑖

𝑗

𝑥,𝑤 𝑥, 𝑅 𝑥, 𝑤, 𝑎𝑗
𝑖, 𝑏𝑗

𝑖 , 𝑐𝑗
𝑖

𝑗



Realizing Certified Beaver Triples Functionality

ℱ𝑐𝑝 (commit)

Generate triples 

using TAHE

ℱ𝑐𝑝 (prove)

Commit and Prove

Semi-malicious security



Which TAHE to choose?

Paillier? 
• Circular choice

El Gamal? 
• Inefficient decryption (discrete log)

LWE?

• Does not support all AHE operations

Ring-LWE more efficient, flexible

• Supports AHE, better parameters, packing



ZK Constraints

• Triples generation - Operations in Ring ℤ𝑄 where 𝑄

= 𝑝1 × 𝑝2 ×∙ ∙ ∙× 𝑝𝑛 and each 𝑝𝑖 is a 62-bit prime. 

• Triples consumption - Linear operations modulo τ
that is a product of (a different set of) primes

• Jacobi test - Operations modulo ℤ𝑁
∗ where 𝑁 is the 

2048-bit candidate modulus



Needs:

• Memory efficient (2GB RAM for prover)

• Communication efficient (sublinear)

• Transparent

Our Approach

Ligero [AHIV17] + Sigma [Sho00]

What ZK Protocol to Use?



Ligero

• Triples generation via Ring-LWE (Range Proofs)

• Triples consumption (modular arithmetic)

Sigma

• Jacobi test (knowledge of exponent)

The Proofs



Our Protocol

• Security w/ abort upto n-1 party corruptions 

and the coordinator by an active adversary

– Verifiable coordinator 

• Identifiable abort 

• Public-verifiability [BDO14,BDD20]



Implementation



Setup

• Parties

– AWS t3.small (2 vcpu, 2GB RAM)

• Coordinator

– AWS r5dn24x.large (96 vcpu, 768 GB RAM)

• Ring LWE Parameter Selection

– FHE Standardization (based on best attacks)

• PKI

– Sign every message



Threshold AHE with Ring-LWE: Parameters



Practical Considerations

• Bandwidth filtering

– Run a throughput test and deny entry for parties with 

insufficient bandwidth

• Restart with kickout

– If protocol aborts, identify and kickout failing party

– What does n-1 security imply here?

• Distributed verification

• Benchmarking



Performance Metrics



Summary

• First scalable MPC with dishonest majority

• A practical implementation of the generic 

GMW paradigm

– 4-8x computation overhead

– <2x communication overhead

–Bottleneck is coordinator spec

• Modular proof 



Thank You


