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Threshold Signature schemes: BLS vs ECDSA
BLS threshold signatures 2 of 4    [BLS’04, Boldyreva’03]
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Threshold Signature schemes: BLS vs ECDSA
ECDSA threshold signatures 2 of 4   [GG18, LN18, DKLS18, CCL+20, CMP20, GG20, …]  
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only if both 
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Applications

Great for

distributing an ECDSA key over 
several devices.

Not so great for

holding a joint custody by a large 
number of nodes over a BTC account.

Many of the nodes 
can be dishonest, 
tricky to select 
“honest subset” of 
signers. BLS-style 
would work much 
better here. Useful for blockchain “bridges”

ECDSA threshold signatures   [GG18, LN18, DKLS18, CCL+20, CMP20, GG20, …]  



New Threshold ECDSA Scheme
ECDSA threshold signatures 2 of 4  [GKSS’20] based on [LN’18] 
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Conclusion

● Robust threshold ECDSA scheme similar to “BLS style” (only little 
interaction required when signing)

● Useful when:
○ Large number of nodes
○ Nodes dishonest or prone to DDoS attacks

● Experiments: scales to ~100 nodes with <1 sec signing time

Future work:
● Setup not quite robust yet
● Protocol heavy on ZKPs


