
Damian Straszak

Robustness for Dishonest Majority
in Threshold ECDSA

Based on Threshold ECDSA for Decentralized Asset Custody

Joint work with: Adam Gągol, Jędrzej Kula and Michał Świętek

Threshold Signature schemes: BLS vs ECDSA
BLS threshold signatures 2 of 4 [BLS’04, Boldyreva’03]

Key generation

Signing message m

s1 s2 s3 s4

Private Data
(specific to
each node)

Public Data

Verification of shares (uses public
data)

Signature(m) = Combine(s1, s4)

Signature “shares”
generated
non-interactively.

Setup

Threshold Signature schemes: BLS vs ECDSA
ECDSA threshold signatures 2 of 4 [GG18, LN18, DKLS18, CCL+20, CMP20, GG20, …]

Signing message m

Private Data
(specific to
each node)

Public Data

Setup

Select a subset of 2 signers

2 of 2 signing protocol

Key generation

s
Signature correct
only if both
participants honest!

Applications

Great for

distributing an ECDSA key over
several devices.

Not so great for

holding a joint custody by a large
number of nodes over a BTC account.

Many of the nodes
can be dishonest,
tricky to select
“honest subset” of
signers. BLS-style
would work much
better here. Useful for blockchain “bridges”

ECDSA threshold signatures [GG18, LN18, DKLS18, CCL+20, CMP20, GG20, …]

New Threshold ECDSA Scheme
ECDSA threshold signatures 2 of 4 [GKSS’20] based on [LN’18]

Key generation

Signing message m

r1 r2 r3 r4

Private Data
(specific to
each node)

Public Data

Verification round 1

Signature(m) = Combine(s1, s4)

Setup

s1 s2 s4

Verification round 2

Conclusion

● Robust threshold ECDSA scheme similar to “BLS style” (only little
interaction required when signing)

● Useful when:
○ Large number of nodes
○ Nodes dishonest or prone to DDoS attacks

● Experiments: scales to ~100 nodes with <1 sec signing time

Future work:
● Setup not quite robust yet
● Protocol heavy on ZKPs

