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Abstract. Research in post-quantum cryptography aims to develop and study algo-
rithms that can withstand classical and quantum attacks. The NIST PQC standard-
ization process, now in its third round, specifies ease of protection against side-channel
analysis as a desirable selection criterion. In this paper, we report the current status
of our work on masked hardware implementation of Saber key encapsulation mecha-
nism, a third-round NIST PQC finalist. We develop a baseline lightweight hardware
implementation of Saber and apply side-channel countermeasures. So far, one unit of
the design, the sampler, causes information leakage that is being investigated. Since
only one unit is to be revised, we provide estimates for the cost and performance of
the final design based on the current status. We expect that our protected hardware
implementation will be significantly faster than previously reported protected software
and software/hardware co-design implementations, respectively. Additionally, we
expect that applying side-channel countermeasures to our baseline design will incur
approximately 3× and 1.4× penalty in terms of the number of LUTs and latency,
respectively, in modern FPGAs.
Keywords: Post-Quantum Cryptography · lattice-based · Key Encapsulation Mech-
anism · hardware · FPGA · Side-Channel Analysis

1 Introduction
The accelerating development of post-quantum computing threatens the security of our
current public-key infrastructure, including RSA and ECC. This motivates Post-quantum
Cryptography (PQC) research and development, aiming to produce algorithms that
can withstand quantum and classical attacks. The NIST PQC standardization process,
currently in its third round, aims to coordinate the development and analysis of PQC
algorithms to eventually select algorithms to be the PQC standard.

Side-channel analysis (SCA), including Differential Power Analysis (DPA) [19], is a
significant threat to the successful deployment of cryptographic solutions. Lightweight
applications with limited or no physical security are even more susceptible to such attacks
since adversaries can easily collect side-channel information. Consequently, the NIST
PQC standardization process specifies ease of protection against side-channel attacks as a
desirable feature in candidates. Among the most urgent tasks are developing SCA-resistant
implementations of third-round finalists and assessing the comparative cost of protection
against SCA. All the range of target platforms from pure software to full hardware and
hybrid platforms need consideration since leakage patterns differ from one platform to
another. For example, architectural leakage stemming from processor architecture can
affect software, while glitches affect hardware implementations.
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NIST has selected Saber, a lattice-based key encapsulation mechanism (KEM), as
a third-round finalist in July 2020. Previous works on applying SCA countermeasures
to Saber concentrated on software [5, 6] and software/hardware co-design [10]. In this
work, we build on previous work to develop and evaluate SCA-resistant full hardware
implementations of Saber. Our design is in its final development stages, and its security
against SCA is verified except for one unit, the binomial sampler, which is being revised.
We expect that our final hardware design to be significantly faster compared to SW and
SW/HW implementations. Additionally, we expect the masked design to use approximately
3× the lookup tables (LUTs) while incurring 1.4× performance penalty compared to the
unprotected baseline design when implemented in Xilinx Artix7 FPGAs.

2 Previous Work
PQC algorithm side-channel resistance is an active research field with several open problems.
Among the most pressing short-term tasks is developing efficient countermeasures suitable
for PQC algorithms and assessing the comparative cost of protecting NIST PQC third-
round candidates. The community has made progress towards these goals. In [26], Reparaz
et al. proposed a masked implementation for ring-Learning-With-Error (ring-LWE). The
main idea is to split the secret polynomial s into two shares s0 and s1 such that s = s0 + s1.
Multiplying the shared version of s by an unshared polynomial is a linear operation so,
it can be done on each share separately. The result of the polynomial multiplication is
fed to a custom threshold decoder. The decoder uses a masked lookup table; however, to
simplify the function calculated by the table, the authors use a set of rules to simplify the
input to the lookup table. The main disadvantage of this decoder is that it increases the
decryption failure rate and has a large performance overhead due to repeated checking
of the rules. The hardware crypto-processor reported in [26] is 20 % larger than the
unprotected baseline implementation and requires 2.6× the cycles to perform decryption
compared to the unprotected design.

In [25], Reparaz et al. presented a method to develop SCA-protected ring-LWE imple-
mentations without using the custom decoder [25], utilizing the additively-homomorphic
property of ring-RWLE. In this scheme, a ciphertext mask is calculated by encrypting a
random message, then the mask is added to the ciphertext. This randomizes the ciphertext,
deprives the attacker of the ability to control ciphertext, and hampers the ability to guess
the intermediate values. This inability to guess intermediates impedes direct DPA attacks.
However, the authors do not claim theoretical first-order security since the key is not
masked.

Oder et al. investigated masked implementations for CCA2-secured ring-LWE schemes
in [24]. Many real-wold applications require the use of schemes that resists chosen-ciphertext
attacks (CCA) or adaptive chosen-ciphertext attacks (CCA2). The authors developed a
unit (MDecode) that receives the arithmetically shared polynomial coefficients, convert
them to Boolean and output the decoded version. However, their design comes at a price
of 5.7× the clock cycles compared to the unprotected design.

Several side-channel-resistant implementations of PQC algorithms have been reported.
In [18], a side-channel resistant crypto-processor that supports NewHope-NIST, NewHope-
USENIX, and HILA5 was introduced. Masked GLP, qTESLA, and Dilithium software
were developed in [4, 22, 12].

In June 2020, a first-order SCA resistant software implementation of Saber was intro-
duced by Beirendonck et al. in [5], building on work started by Verhulst [31]. The reported
overhead of this work is 2.52× in terms of clock cycles compared to the unprotected
software. This low overhead is due to the use of power-of-two moduli and the reliance
on rounding for noise generation. A significant contribution of this work is a unit that
performs logical shifting on arithmetic shares, based on arithmetic-to-Boolean algorithms
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Table 1: Saber Notation

Notation Meaning
Zq Ring of integers mod q
Rq Quotient ring Zq[X]/[Xn + 1] where n = 256 for

Saber and all coefficients ∈ Zq
Rl×k An l × k matrix with each element ∈ R
bold lowercase letter (e.g v) polynomial vector
bold uppercase letter (e.g A) polynomial matrix
x← χ Sampling x from distribution χ
X← χ(Rl×kq ) Sampling matrix X ∈ Rl×kq , where all coefficients of

elements of X are sampled form χ
X← χ(Rl×kq , r) Same as above but here sampling is done determinis-

tically using seed r
U Uniform distribution
βµ Centered binomial distribution with parameter µ.

Samples are in the interval [µ2 ,
−µ
2 ]

≪ Integer shift left. Applied coefficient-wise when used
with polynomials and matrices

≫ Integer right left. Applied coefficient-wise when used
with polynomials and matrices

by Coron and Debraiz [8, 9]. Their binomial sampler is based on the bitsliced masked
binomial sampler by Schneider et al. [28].

In April 2021, Fritzmann et al. reported a masked SW/HW co-design that supports
Saber and Kyber. Their design is based on an open-source RISC-V implementation,
in which they added accelerators and instruction-set extensions for PQC algorithms.
The accelerators reported are used to speed up hashing, binomial sampling, polynomial
multiplication, Arithmetic-to-Boolean (A2B), and Boolean-to-Arithmetic (B2A) operations.
The authors report a 2.63× performance overhead for Saber compared to unprotected
implementations.

3 Background
3.1 Saber
Saber [29] is a Key Encapsulation Mechanism (KEM), currently a NIST PQC third round
finalist. Saber is a lattice-based scheme that depends on the hardness of the Module
Learning With Rounding (MLWR) problem.

KEMs use a public and private key pair to generate and securely exchange session keys.
Specifically, Alice first generates the key pair, keeps the private key and distributes the
public key. Bob can use Alice’s public key to generate a secrete key K and ciphertext c.
The ciphertext can now be transmitted to Alice. Alice uses her private key to decrypt
the ciphertext and generate the secret key K. In Saber, there is a small probability of
decryption failure.

Table 1 shows the notation used to describe Saber component algorithms, and Table 2
summarizes the parameters of Saber. Please note that we only list the parameters of the
Saber variant, i.e., the variant with security level 3. The parameters of the other two
variants, namely, LightSaber and FireSaber, are omitted.
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Table 2: Saber Parameters. Values listed for the Saber variant only.

Parameter Purpose Value
n The degree of polynomial ring Zq[X]/[Xn + 1] 256
l The module rank 3
q, p, T Scheme moduli 213, 210, 24

µ Centered binomial distribution parameter used for the secret
polynomials s and s′

8

F , G Hash function SHA3-256
H Hash function SHA3-512
gen Extendable output function used to generate matrix A SHAKE128

3.1.1 Saber Public Key Encryption Scheme

Three algorithms, Saber.PKE.KeyGen, Saber.PKE.Enc and Saber.PKE.Dec, constitute
the Saber.PKE scheme. Saber.PKE.KeyGen generates a public key pk and a private key
sk. Saber.PKE.Enc receives the public key pk and a 256-bit message m and produces
ciphertext c. The decryption algorithm Saber.PKE.Dec takes the private key sk and
ciphertext c and produces a message m′, which, with high probability, is equal to the
original message m. Saber.PKE.KeyGen, Saber.PKE.Enc and Saber.PKE.Dec are shown
in detail in Algorithms 1, 2 and 3.

Algorithm 1 Saber.PKE.KeyGen() [29]
Require: None
Ensure: (pk := (seedA, b), s)

1: seedA ← U({0, 1}256)
2: A = gen(seedA) ∈ Rl×lq

3: r = U({0, 1}256)
4: s = βµ(Rl×1

q ; r)
5: b = ((AT s + h) mod q � (εq − εp) ∈ Rl×1

p

Algorithm 2 Saber.PKE.Enc [29]
Require: (pk := (seedA, b),m ∈ R2; r)
Ensure: c := (cm, b′)

1: A = gen(seedA) ∈ Rl×lq

2: if r not specified then
3: r = U( { 0,1 } 256)
4: end if
5: s′ = βµ(Rl×1

q ; r)
6: b′ = ((AT s′ + h) mod q)� (εq − εp) ∈ Rl×1

p

7: v′ = bT (s′ mod p) ∈ Rp
8: cm = (v′ + h1 − 2εp−1m mod p)� (εq − εT ) ∈ RT

3.1.2 Saber Key Encapsulation Mechanism

Built on top of Saber.PKE, Saber Key Encapsulation Mechanism (KEM) generates a
session key for two communicating parties. The first party uses the public key to generate
a secret key and ciphertext transmitted to the receiver. The receiver uses her private key
to decapsulate the secret key from the ciphertext.
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Algorithm 3 Saber.PKE.Dec [29]
Require: (s, c := (cm, b′))
Ensure: m′

1: v = bT (s mod p) ∈ Rp
2: m′ = ((v− 2εp−εT cm + h2) mod p)� (εp − 1) ∈ R2

Three algorithms are used in Saber.KEM. Saber.KEM.KeyGen generates a public key
pk and a private key sk. Saber.KEM.Encaps takes the public key and produces a secret
key K and ciphertext c. Saber.KEM.Decaps takes the ciphertext and the private key and
generates the secret key K with high probability. Saber.KEM.KeyGen, Saber.KEM.Encaps
and Saber.KEM.Decaps are shown in detail in Algorithms 4, 5 and 6.

Algorithm 4 Saber.KEM.KeyGen [29]
Require: None
Ensure: (pk := (seedA, b), sk := (z, pkh, pk, s))

1: (seedA, b, s) = Saber.PKE.KeyGen()
2: pk = (seedA, b)
3: pkh = F(pk)
4: z = U( { 0,1 } 256)

Algorithm 5 Saber.KEM.Encaps [29]
Require: (pk := (seedA, b))
Ensure: (c,K)

1: m = U( { 0,1 } 256)
2: (K̂, r) = G(F(pk),m)
3: c = Saber.PKE.Enc(pk, m; r)
4: K = H(K̂, c)

3.2 Side-channel Analysis Countermeasures
3.2.1 Masking

Generally, there are two approaches to mitigate leakage from cryptographic devices. The
first tries to break the statistical dependence between the intermediate values processed
in the implementation and the unshared secret values. This method is called masking.
Masking is a well-researched countermeasure, which is a solid basis to construct provably
secure systems assuming that certain assumptions hold. The other method, called hiding,
strives to make the device’s power consumption independent of the intermediate values
that it processes. This independence is usually achieved by trying to design devices with
constant or random power consumption. Hiding has been attempted using the Dynamic
Dual Rail [30] techniques, in which two copies of a circuit calculate complementary data
so that the sum of their power consumption is constant. However, this method requires
the complementary paths to be balanced, which is a challenging task.

In this work, we concentrate on masking countermeasures. Two components define a
masking scheme: 1) the method used to split the data into shares, 2) the method used to
perform computations on these shares.

For example, in Boolean masking, each variable x is split into n shares x0, x1, . . . , xn−1
such that

⊕
xi = x. A commonly used way to achieve this is by generating n − 1

random masks m0,m1, . . . ,mn−2, setting x0 = m0, x1 = m1, . . . , xn−2 = mn−2, followed
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Algorithm 6 Saber.KEM.Decaps [29]
Require: (sk := (z, pkh, pk, s))
Ensure: K

1: m′ = Saber.PKE.Dec(s, c)
2: (K̂ ′, r′) = G(pkh,m′)
3: c′ = Saber.PKE.Enc(pk,m′; r′)
4: if c = c′ then
5: K = H(K̂, c)
6: else
7: K = H(z, c)
8: end if

by computing xn−1 = x ⊕ m0 ⊕ m1 ⊕ · · · ⊕ mn−2. On the other hand, in arithmetic
masking, a variable a is split into n shares a0, a1, . . . , an−1 such that

∑
ai mod q = a.

This can be achieved by generating n − 1 random masks a0, a1, . . . , an−2 and setting
a0 = m0, a1 = m1, . . . , an−2 = mn−2, followed by computing an−1 = (a−m0−m1−mn−2)
mod q.

The function to be masked is also split into component functions. The computation
should be performed such that all intermediate values are statistically independent of the
unshared sensitive variables.

For linear functions, performing the calculation on shares is trivial. The same function
is duplicated, with each instance taking one share of each input variable and producing
one share of each output variable. Non-linear functions require much more work to make
sure the implementation is correct and secure.

Masked implementations are typically analyzed in a theoretical model introduced by
Ishai, Sahai, and Wagner [17] called the probing model. A circuit is secure in the d-probing
model if an adversary with d probing needles that can be used to read any d signals in the
circuit cannot gain any information about the intermediate value. For example, if we split
a variable into d+ 1 Boolean shares, an attacker having access to up to d shares does not
learn anything about the original unshared value.

It was shown in the literature that security against d-probing attack is related to
security against the dth-order SCA attack. However, in hardware implementations, signal
delays vary, causing glitches. Glitches are temporary changes in a digital signal before it
stabilizes at the end of a clock cycle. This phenomenon occurs due to asymmetric delays in
combinational paths. It was shown in [20, 21] that glitches can depend on unshared data
causing leakages in CMOS technology, which is the primary technology used to realize
hardware circuits.

3.2.2 Domain Oriented Masking

Domain Oriented Masking (DOM) [15] introduced by Gross et al., provides security
against SCA attacks in the presence of glitches. It also allows building circuits that can
be synthesized for an arbitrary protection order. Similar to classical Boolean masking,
variables are split into shares. For example, x is split into x0 and x1 such that x = x0⊕x1.

DOM uses the concept of share domains, where every share of each variable is associated
with a domain. For example, x0 and y0 can be associated with Domain0.

In DOM, calculations are done so that data in different domains are kept independent
of each other. In case data from two domains must be combined, steps are taken to
preserve this independence. Linear functions are trivial to calculate since they require
shares from each domain to be used separately. In non-linear functions, however, shares
from different domains must be mixed.
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4 Methodology
To study the impact of applying SCA countermeasures on the hardware implementations of
Saber, we start by developing a baseline lightweight hardware implementation. This allows
us to reuse components from the unprotected design, enabling meaningful comparison
and evaluation of the cost of protection. At the same time, some components remain
unchanged in the protected implementations. We choose a lightweight implementation
because LW applications are especially vulnerable to SCA attacks. In many cases, LW
applications have limited or no physical security, allowing easy collection of side-channel
information by adversaries. We utilize the Register-Transfer-Level (RTL) methodology to
construct our hardware. RTL provides granular control over operations, which simplifies
countermeasure application. Additionally, hardware implementations provide performance
and power efficiency, which are helpful in many applications. We primarily use VHDL for
hardware description, except for the SHA-3 core, which is written using Chisel.

The baseline Saber implementation is then protected against DPA using masking
countermeasures, adapting protection schemes to hardware when necessary. Furthermore,
we design flexible hardware that has performance and area trade-offs. This results in a
highly configurable implementation that can be adapted to a wide range of applications.

Finally, we benchmark our design on widely used state-of-the-art FPGA devices to
quantify the resource utilization and performance to evaluate the effect of applying the coun-
termeasures on Saber. The results are compared to masked software and software/hardware
co-design implementations of Saber.

5 Baseline Lightweight Saber Implementation
The datapath of our hardware implementation of Saber, capable of performing encapsulation
and decapsulation, is shown in Figure 1. The figure omits control signals for clarity. The
design uses a FIFO-based interface with one input port and one output port. This
facilitates connecting the design as an accelerator to processors using interfaces such
as AXI stream [2] and similar interfaces. We use memory to store all data, including
the public and private keys. We choose a memory width of 16 bits to read/write one
polynomial coefficient in one clock cycle since the largest coefficient size is 13 bits, and
our lightweight units for polynomial arithmetic receive/produce at most one coefficient
in one clock cycle. All data kept in memory is in byte-string format. This allows data
to be kept in a compact, memory-saving form. We utilize width converters to perform
unpacking byte-strings into polynomials before feeding them into arithmetic units and
packing the resulting polynomials into byte-strings before memory write-back on the fly.
The central control unit takes care of implementing the sequence of operations needed to
perform encapsulation and decapsulation. The user of the core uses pre-defined opcodes
to select one of the two operations.

Data flow from memory to arithmetic units and back to memory, or from memory to
SHA3/Sampling units and back to memory. The combination of this simple data flow
and utilizing width converters simplify our control logic since width converters adjust the
width of data with minimal control signals from the central controller, and the simple data
flow minimizes control signals to the datapath.

The general operation of the core is as follows: the core pulls input data via the din port
and interprets the first word as an opcode to select between encapsulation or decapsulation.
If encapsulation was selected, the core loads the public key and the random message from
the input port and computes the ciphertext and the secret key. If the operation specified
in the opcode is decapsulation, the core loads the public key, the private key, and the
ciphertext and computes the secret key. In both cases, the dout port is used to output
results. Below, we discuss the major units used in the design in detail.
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Figure 1: Lightweight Saber Datapath

5.1 Polynomial Arithmetic Units
One of the most intensively used operations in Saber and lattice-based algorithms is
polynomial multiplication. Our design goal is to minimize resource utilization which comes
at the expense of clock cycles.

We developed a flexible schoolbook multiplier and accumulation unit PolyMAC with
a configurable rolling factor ROLL, which can be set at synthesis time. We define a
multiplier with ROLL = 1 as a multiplier capable of performing n coefficient multiplications
simultaneously. Our multiplier multiplies n/ROLL coefficients in one clock cycle, and it
needs n ·ROLL clock cycles to perform the multiplication of two polynomials. Furthermore,
it needs roughly 2n clock cycles for input and output. This configuration allows us to have
a performance-area trade-off yielding a highly flexible design.

The PolyMAC unit is shown in Figure 2 and it operates as follows. The multiplier
receives the first polynomial poly1 via the di port and stores it internally in a two-
dimensional circular input buffer as shown in the left part of Figure 2. The coefficients
of poly1 are organized into columns that can rotate from left to right. PolyMAC then
receives the second polynomial poly2 one coefficient at a time via the di port and multiplies
it by all coefficients of poly1. To do the multiplication by all coefficients of poly1, the
right-most column of the input buffer is multiplied by the current poly2 coefficient, and
the result is stored in the left-most columns of the 2D circular output buffer (shown to
the right of the MAC units). The columns of the input and output buffer rotate until all
coefficients of poly1 have been multiplied. The multiplier then pulls the next coefficient of
poly2 until all coefficients are consumed. The result of the polynomial multiplication is
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Figure 2: Configurable Schoolbook Polynomial Multiplier. Input circular buffer highlighted
in green and output circular buffer highlighted in blue

stored internally, and the multiplier is ready to output the result or accept another two
polynomials to multiply and accumulate to the previous result. This is useful to implement
vector-by-vector multiplication. After any multiplication, the result can be cleared using a
control signal.

The other polynomial arithmetic operation in Saber is polynomial subtraction. This
operation is much less time-intensive and has a small effect on the overall execution time
of the algorithm. To implement this operation, we developed the PolySub unit shown in
Figure 3. PolySub instantiates a single subtractor capable of subtracting two coefficients at
a time. This unit is purely combinational. However, we use control signals for handshaking
to make sure that the unit consumes two coefficients from the source before providing the
corresponding coefficient of the result at the output. Constants h1 and h2 are added using
a simple adder at the output of the PolyMAC unit, capable of adding two coefficients
together in one clock cycle.

5.2 SHA3 Unit

We have developed a flexible SHA-3 unit that can be configured to process a configurable
number of state slices to provide performance/area trade-off. Additionally, the IO width
of the module is configurable. The core user can select between SHA3-256, SHA3-512,
and SHAKE128 functions using a command word. All of these functions are required by
Saber. This core has been written in Chisel to exploit its capability to generate highly
configurable hardware.



10 A Lightweight Implementation of Saber Resistant Against Side-Channel Attacks

Figure 3: Polynomial Subtractor

5.3 CBD Sampler
Saber.KEM.Decaps uses Centered Binomial Distribution (CBD) to sample the polynomial
vector s’. To generate one binomial sample, our sampler takes two µ/2 bit-wide uniform
samples x and y and calculates the CBD sample as HW (x)−HW (y), where HW (.) is the
Hamming weight function. Figure 4 shows the sampler unit. It receives 64 bits of uniform
randomness generated by SHA-3 and converts it into eight binomial samples in two clock
cycles.

5.4 Width Converter Unit
Saber uses many polynomial coefficient sizes. For example, polynomials with coefficient
sizes of eq, ep, and eT are used. To avoid designing separate packing and unpacking units
for each size, we developed a flexible width converter with arbitrary input and output
width. This unit is essentially an asymmetric FIFO. In Figure 1, width converters are
labeled conv(WI,WO) where WI and WO are the input width and output width (in bits) ,
respectively.

Figure 5 shows the internal structure of this unit. We use asymmetric RAM to briefly
store the input data and allow it to be read via the output port. Control logic is needed
to keep track of pointers to locations for the next read and write and the number of bits
stored in the width converter. Utilizing such a unit simplifies data packing and unpacking
since the central controller delegates this task to the width converters and only enables
the proper width converters for the current transaction. At the inputs of polynomial
arithmetic units, we instantiated width converters to convert from memory width to the
coefficient sizes processed by the unit. At the output, we instantiate width converters to
pack the data into the memory words on the fly.

5.5 Other Units
The ciphertext verification is done using a comparator that compares two memory locations
in two clock cycles. If the contents of the two locations are not equal, we set a flag to
indicate the inequality. Regardless of the comparison outcome, we go through all the
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Figure 4: CBD Sampler

Figure 5: Width Converter

ciphertext c and the re-encryption ciphertext c′ to make sure that our implementation
runs in constant time, which is necessary to resist timing attacks. The left-shift operations,
which are used for rounding, are free in hardware.

6 Masked Saber Implementation
Contrary to encapsulation, the decapsulation process utilizes the long-term private key,
which makes it vulnerable to side-channel analysis. We implement a masked full hardware
implementation of Saber.KEM.Decaps based on our lightweight hardware design. We adopt
ideas from the masked software implementation reported in [5] and the hardware-software
co-design reported in [11] and adapt these schemes for our lightweight hardware design.
The data flow of the masked Saber.KEM.Decaps adapted from [5] is shown in Figure 6.
All operations that are dependent on the private key are highlighted in grey. SCA attacks
could target any intermediate value processed in these units.

Polynomial multiplication of an unshared polynomial by a shared polynomial is a
linear operation when utilizing arithmetic masking. The multiplication can be done by
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performing it for each share separately.
Figure 7 depicts the datapath of our masked Saber design. We highlight operations

that can be done separately for each of the two shares in green and blue. Hashing using
SHA-3, CBD sampling, and rounding include non-linear operations and both shares mix
at some stage in these operations. We highlight these units in red. Eventually, these units
produce two shares of data that can be safely consumed in destination domains. In Figure
7, data generally flows from the two memories inward through linear polynomial arithmetic
units, then through non-linear rounding units in the center of the figure, and back to main
memories. Also, data can flow from the memories to the SHA-3/Sampling units in the
middle of the figure and back to memory.

The linear units in the masked design are the same units used in the baseline design.
We duplicated these units for each of the two shares. However, non-linear units were
re-implemented. We perform constant addition of h1 and h2 constants to one of the shares
only.

In the following subsections, we describe the hardware implementation of the primary
units of the protected design in detail.

Figure 6: Masked Saber Decapsulation Data Flow [5]
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Figure 7: Protected Saber Datapath
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6.1 Polynomial Arithmetic Units
Polynomial multiplication is done using the approach used previously by Reparaz et al. in
[26]. Since polynomial multiplication is linear for arithmetic masking, secret polynomials
are split into two arithmetic shares (coefficient-wise). For a polynomial s, two polynomials
s0 and s1 are generated such that s = s0 + s1. Now, multiplication of the shared version
of s is by another unshared polynomial w is performed as w ∗ s0 + w ∗ s1. Polynomial
addition/subtraction of an unshared polynomial is performed on only one share.

6.2 SHA3 Unit
We utilize Domain-Oriented Masking (DOM) [16] to develop a first-order protected
implementation of our SHA3 core based on [3]. As the input the Keccak core comes
from a uniformly random distribution, we can use uncorrelated state bits to provide for
the randomness required for the non-linear χ operation [3].

6.3 CBD Sampler
As shown in Figure 6 the CBD sampler in Saber must be protected against SCA. This
sampler should securely compute a CBD sample as the difference between the Hamming
weights of two uniform samples x and y as discussed previously. The masked sampler
takes Boolean shares from SHAKE as input. However, the subsequent operations (i.e.,
polynomial multiplication) use arithmetic shares. We implemented a masked CBD sampler
based on ideas from [11], which introduces accelerators for the bitsliced sampler described
in [28].

Figure 8 depicts our sampler design which computes eight samples in parallel. An
adder tree is used to compute HW (x) + z, where x and z are in the form of Boolean shares.
The tree comprises an array of half adders that use DOM AND gates to compute the
carry. The first adder tree is used to compute HW (y) since its z input is set to a shared
representation of zero. The negation of HW (y) is subsequently computed by evaluating
its 2’s complement. Another adder tree takes the negation of HW (y) and x and computes
HW (x) − HW (y). Since the result produced by the adder tree is in Boolean shares, a
final B2A conversion is performed. The B2A conversion uses the same algorithm as [11]
which is originally introduced in [7]. To implement the secure addition required for the
B2A conversion, we chose to utilize the protected ripple carry adder (RCA) described in
[27] which uses Threshold Implementation (TI) [23]. RCA uses fewer resources at the
expense of delay. We use this adder in the B2A algorithm and also to negate HW (y).

6.4 Masked Logical Shifting
In Saber, noise is introduced into MLWR samples by truncating LSB bits. This operation
is free in unprotected hardware. However, in the masked implementation of Saber, this is
not as straightforward. This is because the input to this operation consists of arithmetic
shares produced by polynomial arithmetic units. However, the logical shift is a Boolean
operation. The most direct solution to this issue is applying A2B conversion, performing
the logic shift on Boolean shares, and using B2A conversion to convert the shares back to
arithmetic shares. Many algorithms for B2A and A2B conversion exist. Goubin’s B2A
conversion [14] is efficient. However, the A2B algorithm proposed in [14] is not as efficient.
Coron proposed a table-based method for A2B conversion that can be more efficient than
Goubin’s method in some cases [8]. A bug in Coron’s A2B algorithm was later fixed by
Debraiz in [9].

Since the LSB bits are discarded in Saber, it is not efficient to perform all the calculations
to convert them into Boolean. [5] exploited this fact to produce an efficient masked logic
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Figure 8: Masked CBD Sampler

shift unit based on [8] and [9]. The authors call this algorithm A2A since it accepts and
produces arithmetic shares. This algorithm, adapted from [5] is listed in Algorithm 7.

The A2A logical shift algorithm accepts (A,R) such that x = A+R mod sm+n·k and
returns (A,R) such that x >> (n · k) = A+ R mod 2m, which is the shifted version of
x in arithmetic shares. The shifts in Saber are >> 9, >> 6 and >> 3. Our hardware
implementation of the A2A algorithm is shown in Figure 9. We use registers to store the
values of the algorithm intermediates. Since the algorithm require various synchronization
stages, we keep the register that stops glitch propagation in hardware. We adopt the
(m,n, k) values used in [5]. Specifically we set (m,n, k) = (1, 3, 3), (4, 2, 3) and (10, 1, 3) for
the >> 9, >> 6 and >> 3 shifts, respectively. The operation of this module is as follows:
first, the module is initialized and it computes the value Γ and the table T. The hardware
to compute this step is not shown in Figure 9 for simplicity. Once the module is initialized,
it can accept the shares (A,R), and return the shifted version in arithmetic shares via the
Aout and Rout ports.

7 Leakage Assessment
We performed fixed-vs-random Test Vector Leakage Assessment (TVLA) [13] to test
the first-order leakage of the design. We instantiated the design-under-test (DUT) in
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Figure 9: A2A logical shift unit

the NewAE CW305 target board, which is an Artix7-based board. The DUT power
consumption is measured at the output of the CW305’s onboard amplifier, which amplifies
the voltage drop across the onboard 0.1 Ω resistor. The DUT was clocked at 1.25 MHz, and
a USB3-based oscilloscope (Picoscope 5000) was used to collect traces at a sampling rate
of 15.6MS/s and 8-bit sample resolution. We utilized the Flexible Opensource workBench
fOr Side-channel analysis (FOBOS) [1] platform to control test-vector communication and
trace capture from the oscilloscope. The fixed traces are generated by generating fresh
sharing of a fixed private key, and the random traces are generated using a completely
random private key. The rest of the test vector consists of fixed ciphertext and public key.

The TVLA result after analyzing 100 thousand traces is shown in Figure 10. The
right-most spike is related to comparing the hash of the input ciphertext and the ciphertext
generated by the re-encryption process. This leakage does not provide any useful side-
channel information to an attacker, as discussed in [5]. However, few leakage points that
correspond to the operation of the CBD sampler exist in the figure. These points are
under investigation to identify their root cause.
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Algorithm 7 A2A Logical Shift [5]
Require: (A,R) such that x = A+R mod 2m+n·k, T, r, γ
Ensure: (A,R) such that x >> (n · k) = A+R mod 2m

/*Let A = (Ah||Al), R = (Rh, Rl) where Al, Rl the k LSB bits.*/
1: Γ←

∑n
i=1 2i·k · γ mod 2m+n·k

2: P ←
∑n−1
i=0 2i·k · r mod 2m+n·k

3: A← A− P mod 2m+n·k

4: A← A− Γ mod 2m+n·k

5: for i = 0 to n− 1 do
6: A← A+Rl mod 2m+(n−i)·k

7: Ah ← Ah + T [Al] mod 2m+(n−i−1)·k

8: A← Ah
9: R← Rh

10: end for

Figure 10: TVLA Result (100,000 traces)

8 Results and Comparison
As mentioned previously, our CBD sampler implementation causes TVLA results to exceed
the threshold, indicating leakage. We are investigating this issue, and we expect the design
of the sampler to change. However, since only one unit will be changed, we can provide
estimates for area and latency based on our current design. We expect these estimates
to be close to the fully protected design. To quantify the cost and performance of our
baseline and masked Saber designs, we benchmark them on Xilinx Artix7 FPGA. Resource
utilization in terms of lookup tables (LUTs), flip-flops (FFs), and the number of DSP units
is provided in Table 8. We also provide latency information in clock cycles, maximum
frequency, and encapsulation and decapsulation time. Saber-r8 refers to our baseline design
with PolyMAC rolling factor, ROLL, set to 8, so it can perform n/8 = 32 coefficient
multiplications in one clock cycle.

Saber-r8 has a low area footprint and requires only 6,713 LUTs and 32 DSPs. On
the other hand, Saber-r8-masked, the corresponding masked design, uses 19,783 LUTs
and 64 DSPs. That is 2.95 × the LUTs and exactly 2 × the DSP units compared to the
baseline unprotected variant. Since our baseline design has a small footprint, we decided
to duplicate the logic and process shares simultaneously in the masked design. Another
option is to use the same hardware resources and process the shares sequentially at the
expense of latency. The protected design needs twice the DSP units because it uses two
PolyMAC units, the only unit that uses DSPs.
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Our masked design performs decapsulation in 739 µs assuming keys are already loaded.
This is 1.4 × the baseline unprotected variant.

To evaluate how our designs compare to previously reported implementations of
Saber on various platforms, we listed results from [5] and [11], where SW and SW/HW
implementations were reported, and [32], where a hardware implementation is proposed.

[5] reports a masked software implementation of Saber.KEM.Decaps and benchmarking
results on STM32F407-DISCOVERY board featuring an ARM Cortex-M4 processor. The
decapsulation time reported is 2,833,348 clock cycles, 2.52× their unprotected decapsulation.
For software implementations, it is usual to report cycle count. Execution time can be
calculated after knowing the processor clock speed. However, in hardware, the critical path
of the design influences the end results, so cycle count and maximum frequency are useful.
Assuming that the masked software decapsulation in [5] runs at 168MHz, which is the
clock frequency used in the STM32F407-DISCOVERY board, protected decapsulation will
take 16,865 µs. In this case, our hardware implementation can provide a speedup of 23×.

The SW/HW design reported in [10] is based on an open-source RISC-V implementation
augmented with accelerators and instruction-set extensions that can support Saber and
Kyber. The accelerators are used to speed up hashing, binomial sampling, polynomial
multiplication, Arithmetic-to-Boolean (A2B), and Boolean-to-Arithmetic (B2A) operations.
The authors report 2.63× performance overhead for Saber decapsulation compared to
unprotected implementations. In Table 8, we list resource utilization of this SW/HW
design. It uses block RAM (BRAMs) while our design does not. However, our designs
use more DSP units. In terms of decapsulation time, the protected SW/HW design needs
15,398 µs when run at the reported maximum frequency of 58.8 MHz. Consequently, our
full hardware design, Saber-r8-masked, provides a speedup of 21×.

A breakdown of component area (in LUTs) for Saber-r8 and Saber-r8-masked is depicted
in Figure 11. The combinations of SHA3, PolyMAC, and main memory utilize 88% and
60% for baseline and masked variants, respectively. Width converters that perform packing
and unpacking occupy around 7% and 5% in the baseline and masked variants, respectively.
In Saber-r8, other components include CBD sampler, PolySub, control logic, and other
units. These units account for only 4.7%. On the other hand, in Saber-r8-masked, the CBD
sampler requires 23% of the LUTs, and other components need 12%. This breakdown shows
that further area improvements of both masked and baseline variants will benefit from
more area-efficient SHA3 and polynomial multiplication units. A smaller CBD sampler
will improve resource utilization of the masked variant.

(a) Baseline Saber-r8 (b) Masked Saber-r8

Figure 11: Resource Utilization per Unit
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Table 3: Comparison between Saber implementations in the literature and estimated results of designs in this work (TW)

Algorithm Type Platform Protection Freq Resource Utilization Latency
MHz LUTs FFs Slices DSPs BRAMs Operation Cycles us ratio

Saber-r8 [TW] HW FPGA-Artix7 unprotected 100 6,713 7,363 2,631 32 0 Encaps 46,705 467.1 -
100 Decaps 52,758 527.6 1.00

Saber-r8-masked [TW] HW Protected 100 19,783 21,576 7,143 64 0 Decaps 73,851 738.5 1.40
Saber [32] HW FPGA-UltraScale+ unprotected 100 34,886 9,858 - 85 6.0 Encaps 1,396 14.0 -

unprotected 100 Decaps 1,684 16.8 -
Saber [5] SW ARM Cortex-M4 unprotected 168 - - - - - Decaps 1,123,280 6,686.2 1.00

SW Protected 168 Decaps 2,833,348 16,865.2 2.52
Saber [11] SW/HW RISC-V+ Acc. unprotected 62.5 20,697 11,833 6,852 13 36.5 Encaps 308,430 4,934.9 -

62.5 Decaps 347,323 5,557.2 1.00
SW/HW Protected 58.8 29,889 17,152 9,641 13 52.5 Decaps 905,395 15,397.9 2.77



20 A Lightweight Implementation of Saber Resistant Against Side-Channel Attacks

9 Conclusions and Future Work
In this work, we report the status of our work on SCA-resistant hardware implementation
of Saber. We have started with a baseline lightweight hardware design and applied side-
channel countermeasures to resist DPA attacks. So far, the TVLA result exceeds the
threshold when the CBD sampler operates, indicating a leakage. This leakage is being
investigated, and we expect to revise the sampler implementation. Since only one unit
is to be changed, we provide estimates of the resource utilization of our final design.
Our masked hardware implementation is expected to offer 23× and 21× speedup over
previously reported protected software and software/hardware co-design implementations,
respectively. Also, we expect that our final design will occupy around 3× the number of
LUTs and require 1.4× the latency compared to our baseline design when benchmarked
on modern FPGAs. Future work will include investigating methods to enhance security,
reduce resource utilization, and improve the performance of hardware implementations of
Saber and other finalists in the NIST PQC standardization process.
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