
Fast veri�ed post-quantum software,
part 1: RAM subroutines

Daniel J. Bernstein
23 April 2021

“Warning to potential users: NISTPQC, despite being an important and timely
project, has produced the largest regression ever in the quality of cryptographic
software. This will not be easy to �x.”

—October 2018, https://tinyurl.com/fwu5jyce

“It’s actually a bug within SymCrypt, the core cryptographic library responsible
for implementing asymmetric crypto algorithms in Windows 10 and symmetric
crypto algorithms in Windows 8.”

—“Warning: Google Researcher Drops Windows 10 Zero-Day Security
Bomb”, June 2019, Forbes, https://tinyurl.com/y69fx3nh

“Produced signatureswere valid but leaked information on the private key. . . . The
fact that these bugs existed in the �rst place shows that the traditional develop-
ment methodology (i.e. ‘being super careful’) has failed.”

—“OFFICIAL COMMENT” within NISTPQC, September 2019, https://
tinyurl.com/y5w46bde

“Libgcrypt, wolfSSL, and Crypto++ have issued patches over the summer to �x
this bug. Maintainers of MatrixSSL �xed some issues, but the library remains
vulnerable. Oracle’s SunEC library remains open to attacks.”

—“Minerva attack can recover private keys from smart cards, cryp-
tographic libraries”, October 2019, ZDNet, https://tinyurl.com/
y6rlkov4

“Experiments show that the attack code is able to extract the secret key for all
security levels using about 230 decapsulation calls.”

—“A key-recovery timing attack on post-quantum primitives using the
Fujisaki-Okamoto transformation and its application on FrodoKEM”, June
2020, https://ia.cr/2020/743

“It looks like the FrodoKEM team also �xed the timing oracle [GJN20] badly and
caused a more serious security problem while trying to do that.”

—“OFFICIAL COMMENT” within NISTPQC, December 2020, https://
tinyurl.com/yyq4mcy2

Cryptographic software is a security disaster, even when there are no public breaks
of the cryptographic primitives that the software is supposed to be providing. This
problem isn’t speci�c to post-quantum cryptography, as the SymCrypt and Minerva
vulnerabilities show; but post-quantum cryptography makes the problem worse.

https://tinyurl.com/fwu5jyce
https://tinyurl.com/y69fx3nh
https://tinyurl.com/y5w46bde
https://tinyurl.com/y5w46bde
https://tinyurl.com/y6rlkov4
https://tinyurl.com/y6rlkov4
https://ia.cr/2020/743
https://tinyurl.com/yyq4mcy2
https://tinyurl.com/yyq4mcy2

On the defense side, there is ongoing work on cryptographic software veri�cation,
aiming to ensure that the software is as hard to break as the primitives. The success
rate of this work drops as the software complexity increases. Drivers of complexity
in cryptographic primitives, and of even more complexity in software, include (1)
performance pressure and (2) pressure to avoid quantum attacks. These drivers
interact: post-quantum cryptography has a reputation of being less e�cient than
pre-quantum cryptography, and performance pressure then prompts even more
complications aimed at improving e�ciency.

Let’s look at one important part of the attack picture, namely timing attacks, and
more speci�cally at timing attacks against a core operation used in algorithms,
namely array lookups. Array indices in cryptographic algorithms are often secret—
but RAM on most computers takes time that depends on which location in memory
is being accessed. Presumably this leaks secret information to the attacker.

Full timing attacks exploiting secret branch conditions in cryptographic algorithms
were demonstrated in the mid-1990s and were immediately appreciated as a threat.
It was not immediately appreciated that secret array indices are exploitable. Several
years passed before the �rst demonstrations of attacks exploiting cache misses. This
does not mean that the attacks were slow; consider, e.g., https://eprint.iacr.
org/2005/271 stealing a disk-encryption key in 65 milliseconds.

In the meantime the Rijndael designers had claimed that table lookups are “not
susceptible to a timing attack”. NIST adopted this incorrect position, claiming in its
selection rationale that table lookups are “not vulnerable to timing attacks”. Secret
array indices in AES software continue to create security failures two decades later,
as illustrated by https://eprint.iacr.org/2019/996.

The �rst announcement of secret array indices in allegedly constant-time NISTPQC
software was https://groups.google.com/a/list.nist.gov/g/pqc-forum/
c/mtGmXNlMi7o/m/Qs3cw8DIAgAJ in December 2017. In a fantasy world where
the public cryptographic community has endless resources for cryptanalysis, there
would be papers analyzing exactly how much is leaked by each secret array index in
each software package published for each NISTPQC submission, and one could hope
that three or four years would be enough time for the analysis to stabilize. In the
real world, cryptanalysts are overloaded. An easy Round2 break wasn’t published
until 2020: https://eprint.iacr.org/2020/241. The occasional cryptanalysts
writing timing-attack papers can easily �nd secret branch conditions to exploit—
consider, e.g., the aforementioned June 2020 attack exploiting the use of memcmp in
the o�cial Frodo software—and don’t need to bother studying array indices. So we
don’t know how easy it is to exploit the secret array indices in NISTPQC software.

What we do know is that secret array indices add complications and errors into
security analyses. For example, in response to demonstrated attacks exploiting
cache misses created by secret array indices, OpenSSL deployed “scatter-gather”
code from Intel where the secret part of an array index was only a position within
a cache line. Intel and OpenSSL both claimed that this code was constant-time—but
this claim was incorrect, and years later https://eprint.iacr.org/2016/224
presented a complete attack. It is interesting to note that “scatter-gather” code saves
only about 6% compared to true constant-time code, illustrating the performance

https://eprint.iacr.org/2005/271
https://eprint.iacr.org/2005/271
https://eprint.iacr.org/2019/996
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/mtGmXNlMi7o/m/Qs3cw8DIAgAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/mtGmXNlMi7o/m/Qs3cw8DIAgAJ
https://eprint.iacr.org/2020/241
https://eprint.iacr.org/2016/224

pressure mentioned above.

How should we act when we see that security analysis is complicated and don’t
know what the results of a thorough security analysis will be? Common practice
is to wait and see, reacting only after an attack has been demonstrated. A safer
approach is to proactively eliminate the source of the complications—in this case, to
follow a rule of never using secret array indices (and, of course, never using secret
branch conditions). But how do we check whether software follows this rule? When
it doesn’t, how do we �x it? And is the resulting software fast enough for people to
happily use it?

There are now many tools, surveyed in https://neuromancer.sk/article/26,
that try to check whether software follows this constant-time rule. The SUPERCOP
benchmarking framework now includes an improved version of Moritz Neikes’s
TIMECOP and checks 712 constant-time implementations of various primitives.
This includes asm implementations, implementations using the OS binary shipment
of OpenSSL, etc. Rejection sampling is handled with minor code changes for explicit
declassi�cation. These tools are easily usable as part of the software-development
process. Other tools are harder to use but provide stronger guarantees; ongoing
work aims to combine usability and completeness.

How can algorithms with secret array indices be converted into software without
secret array indices? A safe simulation of a RAM lookup is easy—read each array
element and use arithmetic to simulate selection of the desired array element—but
has cost increasing linearly with the number of possible indices. Generic “ORAM”
techniques have better cost asymptotics but much worse constants. These costs
are only a minor issue for, e.g., a size-2 array inside a Montgomery ladder, or a
slightly larger array inside �xed-window scalar multiplication, but post-quantum
algorithms often use arrays with hundreds or thousands of elements.

There are more e�cient solutions that use sorting to simulate many parallel RAM
lookups. Having many RAM lookups to handle at once is a common situation: most
of the algorithms of interest for high-speed cryptography are highly parallelizable.
The sorting software from https://sorting.cr.yp.to takes constant time, has
automated tools verifying correctness, and is the fastest software available to sort
integer arrays in cache on Intel CPUs; there is a synergy between vectorization and
constant-time programming. On smaller CPUs, variable-time sorting software is
sometimes faster, but this constant-time software is fast enough to avoid posing
problems for the performance of post-quantum cryptography.

Sometimes a single permutation is applied to many di�erent arrays. One can view
each application of the permutation as a sorting step, but one can gain speed by
precomputing control bits for a Beneš network for the permutation. https://cr.
yp.to/papers.html#controlbits presents proofs veri�ed by HOL Light for the
correctness of a fast parallel algorithm for this precomputation.

This software is already used inside the latest software releases for Classic McEliece
(sorting and control bits), NTRU (sorting), and NTRU Prime (sorting). Ongoing work
aims for more comprehensive veri�cation, extended platform support, and DSLs to
save time in software development.

https://neuromancer.sk/article/26
https://sorting.cr.yp.to
https://cr.yp.to/papers.html#controlbits
https://cr.yp.to/papers.html#controlbits

