
Classic McEliece on the ARM Cortex-M4 (extended abstract of 
ia.cr/2021/492) 

Ming-Shing Chen 

mschen@crypto.tw 

Ruhr University Bochum, Bochum, Germany 

Tung Chou 

blueprint@crypto.tw 

Academia Sinica, Taipei, Taiwan 

April 23, 2021 

This paper presents a constant-time implementation of Classic McEliece tailored for stm32f4-Discovery. 
The implementation follows the 3rd-round specification. There is no data cache on stm32f4-Discovery, 
but our implementation does not take advantage of this: our implementation does not use secret-dependent 
memory indices, so it is constant-time even on M4 devices with data caches. 

As shown in Table 1, for the level-1 parameter sets mceliece348864* (which means mceliece348864 
and mceliece348864f), our implementation takes 582 199 cycles for encapsulation and 2 706 681 cycles 
for decapsulation. The encapsulation time is more than 80 times faster, and our decapsulation time is 
more than 17 times faster than the corresponding numbers of FrodoKEM, which is often considered as the 
most conservative lattice-based scheme submitted to the NIST Post-quantum Cryptography Standardization 
Process (while Classic McEliece is considered the most convervative code-based scheme). For the level-3 
parameter sets mceliece460896*, our implementation takes 1 081 335 cycles for encapsulation and 6 535 186 
cycles for decapsulation. We note that the cycle counts in Table 1, along with all other cycles counts for our 
implementation are measured at the maximum frequency 168 Mhz of the device unless specified otherwise. 

In addition to encapsulation and decapsulation for all level-1 and level-3 parameter sets, our implemen-
tation is also able to carry out key generation for mceliece348864 and mceliece348864f on the device, 
which takes 2 146 932 033 cycles (12.8 seconds) and 1 430 811 294 cycles (8.5 seconds), respectively. Our im-
plementation is also able to carry out decapsulation for the level-5 parameter sets mceliece6688128* and 

parameter set level decapsulation encapsulation key generation 

mceliece348864f 1 
2 706 681 582 199 

1 430 811 294 
mceliece348864 1 2 146 932 033 
mceliece460896* 3 6 535 186 1 081 335 
mceliece6688128* 5 7 412 111 
mceliece8192128* 5 7 481 747 

Table 1: Cycle counts for encapsulation and decapsulation in our implementation. We use * to mean both 
the “non-f” parameter set (simply removing *) and the corresponding “f” parameter set (replacing * by f). 
Note that a non-f parameter set and the corresponding f parameter set share the same encapsulation and 
decapsulation algorithms. The cycle counts for encapsulation and key generation are average numbers of 
100 measurements. All the cycle counts are measured at the maximum frequency 168 MHz. 

1 

ia.cr/2021/492
mailto:blueprint@crypto.tw
mailto:mschen@crypto.tw


mceliece8192128* on the development board. We have not implemented decapsulation for mceliece6960119*, 
but we do not see any reason why it cannot run on the device. 

The reason why we are able to perform encapsulation and key generation (for some parameter sets) is 
because we are able store the public key in the 1MB of flash memory on the device, and the amount of 
SRAM required to perform the operations turns out to be much smaller than the size of the public key. 

Our current implementation is not able to carry out encapsulation for the level-5 parameter sets and 
key generation for the level-3 and level-5 parameter sets. As one might have expected, this is due to the 
size limit of SRAM and flash memory on stm32f4-Discovery. However, the reader should be aware that 
this does not mean that the operations cannot be carried out on all M4 platforms. For example, we believe 
that all the three operations of all the 10 parameter sets can be carried out on some of the “Giant Gecko” 
microcontrollers manufactured by Silicon Labs, where 512KB of SRAM and 2MB of flash memory are 
available. The optimization techniques presented in this paper are expected to be useful for implementing 
Classic McEliece on such larger devices. 

2 


