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Abstract

Constructing an efficient CCA-secure KEM is generally done by first constructing a passively-
secure PKE scheme, and then applying the Fujisaki-Okamoto (FO) transformation. The original
FO transformation was designed to offer security in a single user setting. A stronger notion,
known as multi-user security, considers the attacker’s advantage in breaking one of many user’s
ciphertexts. Bellare et al. (EUROCRYPT 2020) showed that standard single user security implies
multi-user security with a multiplicative tightness gap equivalent to the number of users.

In order to achieve multi-user security in the random oracle model, it is a common design
paradigm to “domain separate” the random oracles of each user by including his public key as an
input to the hash function. We are not aware of any formal security analysis of this technique,
but it was at least informally thought to be more secure. This design principle was carried over
into the FO transformations used by several schemes in the NIST post-quantum standardization
effort – notably the lattice-based schemes Kyber and Saber, which are two of the four third
round KEM finalists.

In this work, we formally analyze domain separation in the context of the FO transformation
in the multi-user setting. We first show that including the public key in the hash function is
important for the tightness of the security reductions in the ROM and the QROM. At the same
time, we show that including the entire public key into the hash function is unnecessarily wasteful
– it is enough to include just a small (e.g. 32 byte) unpredictable part of the key to achieve the
same security. Reducing the input of the hash function results in a very noticeable improvement
in the running time of the lattice-based KEMs. In particular, using this generic transform results
in a 2X - 3X speed-up over the current (Round 3) key generation and encapsulation procedures
in Kyber, and up to a 40% improvement in the same functions in Saber.
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1 Introduction
Security definitions for public key encryption (PKE) schemes are generally stated in the single-user
setting. In this setting, one party publishes its public key, which allows other parties to send it
encrypted messages of their choice. For practical applications, however, this was shown to not
be enough. In particular, Håstad showed [Hås88] that if there are multiple receivers, each with a
different public key, and a sender encrypts the same message to all of them, then for certain RSA
parameter settings everyone will be able to recover the message.

Håstad’s simple attack against the basic RSA cryptosystem demonstrated that schemes can
be secure in the single user setting, but completely broken in the multi-user one. Luckily, Bellare
et al. [BBM00] showed that for CPA and CCA-secure schemes, security in the single-user setting
implies security (with a multiplicative loss in the number of parties) in the multi-user setting as
well .

Constructing an efficient Key Encapsulation Mechanism (KEM) with security against chosen-
ciphertext attacks (CCA) is generally done by first constructing a passively-secure PKE scheme,
and then applying the Fujisaki-Okamoto (FO) transformation [FO99, FO13, HHK17]. To achieve
multi-user security in the random oracle model, it is a common design paradigm to use “domain
separation” so that in the random oracle model, the parties all appear to be using different random
functions. The simple way of achieving this in the context of the FO transformation is to always
include the public key as an additional input to the cryptographic hash function that is being
modeled as a random oracle. The other stated reason for including the public key in the hash is
an informally-defined notion of making the KEM “contributory” – that is, both parties affect the
shared key.

For classical schemes based on the hardness of the discrete logarithm problem, including the
public key as an extra input to the hash function has virtually no effect on the running time of the
full protocol. The reason is that the key is short (e.g. 32 bytes), and the hash function contributes
a negligible amount of computation compared to the much more expensive group operations such as
exponentiation. So even if unnecessary for practical security, adding the public key into the hash
function does not have any measurable negative effects on the scheme.

The above-mentioned domain separation technique was carried over to schemes in the ongoing
NIST post-quantum standardization process. For example, Kyber and Saber use the above-described
method with the explicit purpose of protecting against multi-user attacks. Even though it was at
least informally thought to be more secure, we are not aware of any formal security analysis of it.

1.1 Our Results

In this paper we formally analyze domain separation in the context of the FO transformation. Our
results are twofold. First, we observe that there are good reasons for including the public key into
the hash. We show that hashing the public key results in a tighter reduction when converting a
CPA-secure scheme into a CCA-secure one, than if one were to directly apply the hybrid argument
from [BBM00] to the FO transformation. And for schemes that additionally have a small correctness
error, the tightness in the reduction is potentially even more improved. We additionally give a proof
in the QROM which is significantly tighter that what one would trivially obtain from [BBM00].
This proof also appears to use (but in a different way) the fact that each party uses a different
random function.

Our second, and main, result is that even though there are reasons to hash the public key,
hashing the entire public key (as is currently done) is unnecessarily wasteful. The sizes of public keys
in lattice-based schemes (≈ 1KB) are noticeably larger than the 32 byte keys used in the discrete

2



log setting; so the hash function that takes the public key as input is now approximately an order of
magnitude slower. At the same time, the underlying lattice-based CPA-secure scheme is significantly
more computationally efficient than its discrete logarithm counterpart. When compounded, these
two properties result in the hash function being a very significant contributor to the total running
time of the resulting CCA-secure scheme.

Our new variant of the FO transformation, FO 6⊥ID(pk),m, transforms a passively secure PKE scheme
into an actively secure KEM. It resembles the FO variant FO 6⊥m of [HHK17]: It also uses “implicit
rejection” and the only difference to FO 6⊥m is that it feeds a small (e.g. 32 byte), unpredictable part
of the public key into the hash function. (FO 6⊥m does not include any part of pk in the hash function.)
Compared to feeding the whole public-key into the hash function, this significantly reduces the
running time of the scheme. In the ROM we prove that multi-user CPA-security of PKE tightly
implies multi-user CCA-secure KEM. As an additional result, we give a reduction for multi-user
security in the QROM which is tighter than the previously-known results which stem from the
generic Bellare et al. result [BBM00].

Instantiating our transformation FO 6⊥ID(pk),m with the CPA-secure Kyber PKE scheme, the key
generation and encryption of Kyber is reduced by 30-56% and 47-66%, respectively; and the security
of the CCA-scheme in the ROM and QROM is improved as in Figure 1. So we are now in the
same situation with lattice schemes as we are in the discrete logarithm setting. There is no longer a
theory vs. practice trade-off required for achieving multi-user security – hashing the (partial) public
key leads to tighter security reductions and is computationally very cheap to implement.

1.2 Impact on Concrete Security

In the Fujisaki-Okamoto transform, a hash function F (modeled as a random oracle) is mainly used
to derive the PKE randomness and the symmetric KEM key from a random message m. In the
following table, we define three variants of the “implicit rejection” Fujisaki-Okamoto transformation,
depending on which parts of pk it includes in the hash function F.

Transformation Use of F

FO 6⊥m [HHK17] F(m)
FO 6⊥ID(pk),m (§ 3) F(ID(pk),m)
FO 6⊥pk,m (§ 3) F(pk,m)

The formal definitions of FO 6⊥ID(pk),m and FO 6⊥pk,m are given in Figure 5 of Section 3. FO 6⊥m was formally
analyzed in [HHK17]. We remark that [HHK17] also considered a variant (called FO 6⊥m,c) where the
ciphertext c is included in F. Follow-up work [BHH+19] showed that hashing c is not necessary so
we do not further consider it here.

Figure 1 compares multi-user security bounds in the ROM/QROM of FO 6⊥m, FO 6⊥ID(pk),m, and
FO 6⊥pk,m. The bounds for FO 6⊥m are obtained by applying the Bellare et al. hybrid argument to
the single user CCA-bounds of [HHK17]. The bounds for FO 6⊥ID(pk),m and FO 6⊥pk,m are new bounds
obtained in this work. Our proofs in the ROM rely on techniques of [HHK17], while the ones in the
QROM also rely on techniques of [BHH+19, HKSU20, JZM19].

First we note that the bounds for FO 6⊥ID(pk),m and FO 6⊥pk,m are exactly the same (for prefixes with
sufficient min-entropy l). Hence from a security perspective, it does not seem to make much sense
to include the whole public key in the hash function. Hence in what follows we will only consider
the prefix-hash variant FO 6⊥ID(pk),m. How the bounds for FO 6⊥m and FO 6⊥ID(pk),m compare to each other,
depends on the relation between δ(n) and δ and Advn-IND-CPA and AdvIND-CPA, respectively.
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FO variant Advn-IND-CCA (ROM) Advn-IND-CCA (QROM)

FO 6⊥m [HHK17, BBM00] n · AdvIND-CPA + n · qFδ(1) n ·
√
qFAdvIND-CPA + nq2

Fδ(1)
FO 6⊥ID(pk),m (Th. 3.1+3.2) Advn-IND-CPA + qFδ(n) + n2

2l

√
qFAdvn-IND-CPA + q2

Fδ(n) + n2

2l

FO 6⊥pk,m (Th. 3.1+3.2) Advn-IND-CPA + qFδ(n)
√
qFAdvn-IND-CPA + q2

Fδ(n)

Figure 1: Multi-user security advantages Advn-IND-CCA in the ROM/QROM (simplified) for the
Fujisaki-Okamoto variants FO 6⊥m, FO 6⊥ID(pk),m, and FO 6⊥pk,m, as described in the text. Here δ(n) is the
n-user correctness error of PKE, qF is the number of (Q)ROM queries, and l is the min-entropy of
ID(pk).

• n-user correctness error δ(n). δ(n) is defined as the n-user correctness error, i.e., the
probability that one message induces a decryption error for one of n independent public-keys.
(We refer to Section 2.1 for a formal definition.) Trivial bounds are δ(1) ≤ δ(n) ≤ nδ(1).
Whereas there can exist schemes with δ(n) = δ(1), for concrete applications like Kyber and
Saber we believe that δ(n) ≈ nδ(1).

• n-user CPA advantage Advn-IND-CPA. By a hybrid argument one obtains the trivial bounds

AdvIND-CPA ≤ Advn-IND-CPA ≤ nAdvIND-CPA.

For schemes based on prime-order groups (eg., ElGamal) we actually have AdvDDH ≈
Advn-IND-CPA by the well known random self reducibility of DDH.
For Kyber we have Advn-IND-CPA = Advn-MLWE, where n-MLWE is an n-instance variant
of MLWE. While there is no known self-reduction for n-MLWE, it is quite unlikely that
distinguishing {(Ai,Ai · ~si + ~ei)}1≤i≤n from uniform is easier than just distinguishing one
sample (A1,A1 ·~s1 + ~e1). In particular, there is a reduction to n-MLWE from Module-LWE
where the number of Module-LWE samples (for the same secret) is 2n.1 And unless we are in a
regime where the number of samples is so large that the Arora-Ge [AG11] attack applies, it is
not known that seeing more samples makes the Module LWE problem any easier. Furthermore,
asymptotically, the worst-case to average-case reductions do not restrict the number of samples
of the average-case (Module)-LWE problem[Reg05, LPR10, LS15]. We therefore believe that
in practice Advn-MLWE ≈ AdvMLWE, and then the bound in our reduction is significantly tighter
than the previously known one. And independently of the relationship between MLWE and
n-MLWE, the new QROM bound for FO 6⊥ID(pk),m is also noticeably better than the one for FO 6⊥m.

1.3 Impact on Efficiency

We now measure the effect of replacing the original FO transform used in the Kyber and Saber
KEMs with our new transform FO 6⊥ID(pk),m (see Figure 5). We implemented FO 6⊥ID(pk),m on top of
the underlying CPA-secure encryption schemes in the official AVX2-optmized implementations of
Kyber and Saber, and performed benchmarks on an Intel Skylake CPU. Concretely, the numbers in
Tables 1 and 2 are the medians of the cycle counts of 10000 executions of the key generation (K),
encapsulation (E), and decpasulation (D) operations for either the original FO transform or the
new one from this work.

1The reason that it’s 2n samples instead of n is that we need an extra n samples for converting Module-LWE with
random secrets to Module-LWE with small ones. [ACPS09]
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Table 1: Median Skylake cycle counts of 10000 executions of Kyber and Saber using either the
original CCA transform or the improved transform from this work. The “original” version of Kyber
and Saber are the Round 3 submissions to the NIST post-quantum standardization process.

Kyber Saber
NIST Level Original This Work Speed-up Original This Work Speed-up

1
K 23562 12883 45% 42169 36220 14%
E 37144 16981 54% 57831 39232 32%
D 28595 28529 0% 57780 57806 0%

3
K 40487 25272 38% 74577 64180 14%
E 55726 27624 50% 95958 69304 28%
D 43553 43442 0% 95388 95301 0%

5
K 55770 38815 30% 116178 102101 12%
E 77011 40692 47% 142034 109203 23%
D 61470 61473 0% 142957 143090 0%

Table 2: Median Skylake cycle counts of 10000 executions of the 90’s variants of Kyber and Saber
using either the original CCA transform or the improved transform from this work. The “original”
version of Kyber and Saber are the Round 3 submissions to the NIST post-quantum standardization
process.

Kyber90s uSaber90s
NIST Level Original This Work Speed-up Original This Work Speed-up

1
K 13994 6224 56% 24557 17294 30%
E 23069 7894 66% 36544 22363 39%
D 16917 16959 0% 38156 38014 0%

3
K 21783 10995 50% 37511 29881 20%
E 33534 13137 61% 55436 36282 35%
D 25014 24957 0% 58395 58405 0%

5
K 31576 18834 40% 59169 50796 14%
E 46881 21404 54% 81187 57920 29%
D 36190 36165 0% 86142 86359 0%
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For the 32-byte prefix ID(pk) of the public key in Kyber and Saber one can take the seed ρ that
is already of size 32 bytes and uniformly random in these schemes. Alternatively, for Kyber, the
first 33 bytes of the bitpacked representation of the polynomial vector ~t in the public key can also
be used. This is sufficient since ~t is given in the NTT basis and contains the independently random
short error vector ~e as an additive term. It follows from a simple Fourier analysis computation as
in [ALS20, CLS16] that the first few NTT coefficient of ~e are close to uniform modulo q = 3329.
Concretely, the first 22 coefficients have more than 256 bit of entropy and they occupy 33 bytes
in the bitpacking that uses 12 bits per coefficient. Taking the prefix from ~t instead of ρ has the
advantage that this is still secure in the slightly modified but fully compatible variant of Kyber
where users re-use ρ and hence the MLWE matrix A.

We observe that one obtains significant speed improvements throughout all parameter sets
and variants. For example, the key generation and encapsulation of Kyber-512-90s are 56% and
66% faster, respectively, when using FO 6⊥ID(pk),m.

2 There is no speed-up in decryption since in the
original Kyber and Saber CCA transforms avoid the expensive full public key hash needed for the
re-encryption during decapsulation by pre-computing this hash during key generation and storing
it in the secret key. Our new transform also has a noticeably larger effect on Kyber than Saber
because the CPA-secure scheme underlying Kyber is more efficient than its Saber counterpart. Thus
the running time of Kyber with the original FO transform was much more dominated by hashing.

1.4 Open Problems

One of the biggest performance gaps between theory and practice that remains in FO 6⊥ID(pk),m is that
Decaps always has to compute K̃ ← F1(ID(pk), s, c) (cf. line 10 of Figure 5), independent of c being
consistent or inconsistent. Only computing K̃ for inconsistent c would give rise to a simple timing
attack that reveals whether a given c is consistent or not. It remains an open problem to prove the
security of a corresponding FO transformation with “explicit rejection” in the QROM.

2 Preliminaries
For n ∈ N, let [n] := {1, . . . , n}. For a set S, |S| denotes the cardinality of S. For a finite set S,
we denote the sampling of a uniform random element x by x $← S. The min entropy of a discrete
random variable X is defined as H∞(X) = − log(maxx Pr[X = x]).

2.1 Cryptographic Definitions

Public-Key Encryption. A public-key encryption scheme PKE = (Gen,Enc,Dec) consists of
three algorithms, and a finite message spaceM. The key generation algorithm Gen outputs a key
pair (pk, sk), where pk also defines a finite randomness space R = R(pk) as well as a ciphertext
space C. The encryption algorithm Enc, on input pk and a message m ∈M, outputs an encryption
c $← Enc(pk,m) of m under the public key pk. If necessary, we make the used randomness of
encryption explicit by writing c := Enc(pk,m; r), where r ∈ R. The decryption algorithm Dec, on
input sk and a ciphertext c, outputs either a message m = Dec(sk, c) ∈ M or a special symbol
⊥ /∈M to indicate that c is not a valid ciphertext.

2It should be mentioned again that another reason that encapsulation has a larger increase is that we removed an
additional hash of the ciphertext. This was already shown to be intuitively unnecessary in [BHH+19], and in this
work we show that it is also unnecessary in the multi-user setting.
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PKE has n-user correctness error δ(n) if for all (even unbounded) adversaries A we have

Pr
[
n-CORAPKE ⇒ 0

]
≤ δ(n) , (1)

where n-CORPKE is defined in Figure 2. For n = 1 we obtain the single-user correctness definition
δ := δ(1) of [HHK17]. Note that δ ≤ δ(n) ≤ nδ.

GAME n-COR:
01 for j ∈ [n]
02 (pkj , skj) $← Gen
03 ~sk ← (sk1, . . . , skn)
04 ~pk ← (pk1, . . . , pkn)
05 (m, j) $← A(~sk, ~pk)
06 c $← Enc(pkj ,m)
07 return Dec(skj , c) = m

Figure 2: Correctness game n-COR for PKE.

In terms of PKE’s security, we consider the following advantage functions:

Advn-OW-CPA(A) := Pr[n-OW-CPAA ⇒ 1]

Advn-IND-CPA(A) := Pr[n-IND-CPAA ⇒ 1]− 1
2 ,

where the games are defined in Figure 3.

n-OW-CPA
01 for j ∈ [n]
02 (pkj , skj) $← Gen
03 mj

$←M
04 c∗j

$← Enc(pkj ,mj)
05 ~pk ← (pk1, . . . , pkn)
06 ~c← (c∗1, . . . , c∗n)
07 (j,m′) $← A( ~pk,~c∗)
08 return m′ = mj

n-IND-CPA
09 b $← {0, 1}
10 for j ∈ [n]
11 (pkj , skj) $← Gen
12 ~pk ← (pk1, . . . , pkn)
13 b′ $← ACHAL( ~pk)
14 return b′ = b

CHAL(~m0, ~m1) // one
query
15 return Enc( ~pk, ~mb)

Figure 3: Games n-OW-CPA and n-IND-CPA for PKE.

Key Encapsulation Mechanisms. A key encapsulation mechanism KEM = (Gen,Encaps,Decaps)
consists of three algorithms and a finite key space K similar to a PKE scheme, but Encaps does not
take a message as input. The key generation algorithm Gen outputs a key pair (pk, sk), where pk
also defines a finite randomness space R = R(pk) as well as a ciphertext space C. The encapsulation
algorithm Encaps takes as input a public-key pk and outputs a key encapsulation ciphertext c and a
key k, that is (c, k) $← Encaps(pk). We write c← Encaps1(pk; r) and k ← Encaps2(pk; r), if we want
to seperate the two outputs. If necessary, we make the used randomness of encryption explicit by
writing (c, k) := Encaps(pk; r), where r ∈ R. The decapsulation algorithm Decaps, on input sk and

7



a ciphertext c, outputs either a key k = Decaps(sk, c) ∈ K or a special symbol ⊥ /∈ K to indicate
that c is not a valid ciphertext.

We say KEM has correctness error δ if

Pr[Decaps(sk,Encaps1(pk; r)) 6= Encaps2(pk; r)] ≤ δ , (2)

where the probability is taken over r $← R and (pk, sk) $← Gen.
In terms of KEM’s security, we consider the advantage function

Advn-IND-CCA(A) := Pr[n-IND-CCAA ⇒ 1]− 1
2

where the game is defined in Figure 4.

n-IND-CCA
01 b $← {0, 1}
02 for j ∈ [n]
03 (pkj , skj) $← Gen
04 (K∗j0, c∗j ) $← Encaps(pkj)
05 K∗j1

$← K
06 ~pk ← (pk1, . . . , pkn)
07 ~c← (c∗1, . . . , c∗n)
08 ~Kb ← (K∗1b, . . . ,K∗nb)
09 b′ $← A( ~pk,~c, ~Kb)
10 return b = b′

Figure 4: Game n-IND-CCA for KEM.

3 Fujisaki-Okamoto Transformation with Prefix Hashing
Let PKE be a public-key encryption scheme with message spaceM and randomness space R and
let ID : PK → {0, 1}γ be a fixed-output length function. Let F : {0, 1}∗ → {0, 1}k ×R be a hash
function and define F1(X) as the first k bits of F(X). We build KEM = FO 6⊥ID(pk),m[PKE, ID,F] =
(Gen′,Encaps,Decaps) as described in Figure 5. Our construction is essentially FO 6⊥m of [HHK17]
with the difference that we feed ID(pk) into the hash function F for domains separation. Note
that with the identity function ID(pk) = pk we recover FO 6⊥ID(pk),m = FO 6⊥pk,m also mentioned in the
introduction.

We remark that computing K̃ in line 10 of Decaps(sk, c) is only required in case c is inconsistent.
We still recommend to always compute K̃ because otherwise the system might be prone to a simple
side-channel attack.

We now state the two main theorems about KEM’s security in the ROM and QROM, respectively.
In the concrete security statements we will use the following terms

• n-user correctness error δ(n)

• Min entropy l of ID(pk), i.e., l := H∞(pk), where (pk, sk) $← Gen

• Bit-length λ of the secret seed s ∈ {0, 1}λ

• Max. number of (Q)ROM queries qF
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Gen′
01 (pk, sk) $← Gen
02 s $← {0, 1}λ
03 sk ′ := (sk, s)
04 return (pk, sk ′)

Encaps(pk)
05 m $←M
06 (K, r) ←
F(ID(pk),m)
07 c← Enc(pk,m; r)
08 return (K, c)

Decaps((sk, s), c)
09 m′ ← Dec(sk, c)
10 K̃ ← F1(ID(pk), s, c)
11 (K, r)← F(ID(pk),m′)
12 if m′ = ⊥ or Enc(pk,m′; r) 6=
c

return K̃
13 else return K

Figure 5: KEM = FO 6⊥ID(pk),m[PKE, ID,F] built from PKE, F, and ID.

• Max. number of decapsulation queries qDecaps

Theorem 3.1 (n-IND-CPA of PKE ROM=⇒ n-IND-CCA of KEM). For any adversary A against the
n-IND-CCA security of KEM there exists an adversary B against n-IND-CPA of PKE (with roughly
the same running time) such that

Advn-IND-CCA
KEM (A) ≤ 2Advn-IND-CPA

PKE (B) + 2qF
|M|

+ n2

2l + qF
2λ + (qF + qDecaps)δ(n).

The proof of Theorem 3.1 is given in Section 4.

Theorem 3.2 (n-IND-CPA of PKE QROM=⇒ n-IND-CCA of KEM). For any quantum adversary A
against the n-IND-CCA security of KEM there exists a quantum adversary B against n-IND-CPA of
PKE (with roughly the same running time) such that Advn-IND-CCA

KEM (A) ≤

4
√
qFAdvn-IND-CPA

PKE (B) + 4qF

√
n

|M|
+ n2

2l + 2qF

√
n

2λ + 32(qF + qDecaps)2δ(n) .

The proof of Theorem 3.2 is given in Section 5.

4 Proof of Theorem 3.1
Proof. Let A be an adversary and consider the games given in Figure 6.
Game G0. This is the original n-IND-CCA game.∣∣∣∣Pr[G0 ⇒ 1]− 1

2

∣∣∣∣ = Advn-IND-CCA(A) .

Game G1. In game G1 an abort condition COLL is introduced, which aborts if there is a collision
in the public-key identifiers ID(pkj). In case there no collision in the identifiers, we are able to
identity each identifier ID(pkj) with a unique index j. This allows us to internally simulate

F(ID(pkj)), A) :=
{

(Hj(m),Gj(m)) A = m

Kj(s, c) A = (s, c)
,

where Gj and Hj are internal random oracles. (This implicitly assumes that the two spacesM and
{0, 1}k × C are disjoint.) Since the two games are identical until COLL happens, we have by the
birthday bound ∣∣∣Pr[G0 ⇒ 1]− Pr[G1 ⇒ 1]

∣∣∣ ≤ Pr[COLL] ≤ n2

2l ,
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GAMES G0 - G4
01 for j ∈ [n]
02 (pkj , skj) $← Gen
03 sj

$← {0, 1}λ
04 m∗j

$←M
05 INIT← true
06 (r∗j ,K∗j0)← F(m∗j )
07 INIT← false
08 r∗j

$← R; K∗j0 $← {0, 1}k //G4
09 K∗j1

$← {0, 1}k
10 c∗j ← Enc(pkj ,m∗j ; r∗j )
11 ~pk ← (pk1, . . . , pkn)
12 ∃i, j ∈ [n] s.t. ID(pki) = ID(pkj) //G1-
G4
13 COLL := true //G1-G4
14 abort //G1-G4
15 ~c∗ ← (c∗1, . . . , c∗n)
16 ~K∗0 ← (K00, . . . ,Kn0);
17 ~K∗1 ← (K01, . . . ,Kn1)
18 b $← {0, 1}
19 b′ $← ADecaps,F( ~pk, ~c∗, ~K∗b )
20 return b′ = b

Decaps(j, c 6= c∗j ) //G0-G2

21 m′ := Dec(skj , c)
22 (K, r)← F(ID(pkj),m′)
23 if m′ = ⊥ or Enc(pkj ,m′; r) 6= c
24 (K, r)← F(ID(pkj), sj , c) //G0-G1
25 K := K′j(sj , c) //G2
26 return K

Decaps(j, c 6= c∗j ) //G3-G4

27 if ∃K s. th. (c,K) ∈ LDj

28 return K
29 K $← K
30 LDj

:= LDj ∪ {(c,K)}
31 return K

F(id, A)
32 if ∃j ∈ [n] : id = ID(pkj) //G1-G4
33 if A ∈M //G1-G4
34 m := A //G1-G4
35 (K, r) := (Hj(m),Gj(m)) //G1-G4
36 if A ∈ {0, 1}λ × C //G1-G4
37 (s, c) := A //G1-G4
38 K := Kj(s, c) //G1-G4
39 if K undefined: K $← K
40 if r undefined: r $← R
41 return (K, r)

Gj(m) // Internal random oracle
42 r $← R
43 if m = m∗j and ¬INIT defined //G4
44 QUERY := true //G4
45 abort //G4
46 return r

Kj(s, c) // Internal random oracle
47 K $← K
48 LKj

:= LKj ∪ {(s, c,K)}
49 if s = sj //G2-G4
50 BAD := true //G2-G4
51 abort //G2-G4
52 return K

Hj(m) // Internal random oracle
53 K $← K
54 if m = m∗j and ¬INIT defined //G4
55 QUERY := true //G4
56 abort //G4
57 c′ := Enc(pkj ,m; Gj(m)) //G3-G4
58 if ∃K ′ such that (c′,K ′) ∈ LDj //G3-
G4
59 K := K ′ //G3-G4
60 else //G3-G4
61 LDj

:= LDj
∪ {(c′,K)} //G3-G4

62 return K

Figure 6: Games G0 - G4 for the proof of Theorem 3.1. K′j ,Hj ,Gj ,Kj are internal random oracles
not accessible by the adversary. We assume wlog that F is only queried once on each value A.

where l = H∞(ID(pk)) is the min entropy of pk for (pk, sk) $← Gen.
Game G2. In game G2 we modify the Decaps oracle in lines 24 and 25 such that for an invalid
ciphertext the key is defined as K′j(sj , c), where K′j is an independent internal random oracle. This
remains unnoticed to adversary A unless it queries

Hj(sj , ·)

for some j ∈ [n]. Since the seeds sj ∈ {0, 1}λ are uniformly random and information-theoretically
hidden from the adversary, we have by the union bound∣∣∣Pr[G1 ⇒ 1]− Pr[G2 ⇒ 1]

∣∣∣ ≤ qF
2λ .
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Game G3. In game G3 we simulate the decapsulation oracle Decaps(j, ·) without knowledge of
the secret key by patching the random oracles Hj in lines 57-61. Note that if PKE was perfectly
correct, then the random oracle patching is also perfectly correct and therefore two games would
look identical in A’s view.

The only bad case happens if Gj is queried on some m which induces a correctness error, that is
Dec(skj ,Enc(pkj ;m; Gj(m))) 6= m. More concretely, define the sets

BADj := {m ∈M | m 6= m′,where c← Enc(pkj ;m; Gj(m));m′ ← Dec(skj , c)}

Define the event CORR to be the event that A makes an (implicit) query to Gj(m) for some
m ∈ BADj . Since there are at most (qF + qDecaps) explicit and implicit queries to Gj , we have

Pr[CORR] ≤ (qF + qDecaps)δ(n) .

We now claim that ∣∣∣Pr[G2 ⇒ 1]− Pr[G3 ⇒ 1]
∣∣∣ ≤ Pr[CORR] .

Let us analyze why G2 and G3 are identical conditioned on ¬CORR. Consider a query
Decaps(j, c) and define m′ := Dec(skj , c) and c′ := Enc(pkj ,m′; Gj(m′)).

• Case 1: m′ = ⊥. Hj cannot be called on m′ = ⊥ and hence the KEM key of K =
Decaps(skj , c) = K′j(c) in G2 is identically distributed as (c,K) ∈ LDj in G3.

• Case 2: m′ 6= ⊥ ∧ c 6= c′. Both games return a uniform random key K. The only way
for A to detect a difference between the two games is if it makes a query Hj(m) such that
Enc(pkj ,m; Gj(m)) = c. (In G3, Hj(m) would return the same key K as in Decaps(j, c),
whereas in G2 the two keys would be independent.) Since c 6= c′ we also have m 6= m′. But
such a query Hj(m) would internally involve the query Gj(m) for m ∈ BADj .

• Case 3: m′ 6= ⊥∧c = c′. In game G2, Decaps(j, c) returns K = Hj(m′), whereas G3 first picks
a uniform K and patches Hj(m) to match K for all m that deterministically encrypt to the
same c, i.e., all m satisfying Enc(pkj ,m; Gj(m)) = c. The only way for A to detect a difference
between the two games is to query Hj on some value m 6= m′ that also deterministically
encrypts to the same c. But this also implies that Gj(m) was queried for some m ∈ BADj .

Game G4. In game G4 we abort on queries of the form Hj(m∗j ) or Gj(m∗j ), in which case the event
QUERY holds true. We use the flag INIT to avoid triggering QUERY in Line 06. We have by
the difference lemma, ∣∣∣Pr[G3 ⇒ 1]− Pr[G4 ⇒ 1]

∣∣∣ ≤ Pr[QUERY] . (3)

Note that in G4 bit b is independent of the view of the adversary. We thus have∣∣∣Pr[G4]⇒ 1
∣∣∣ = 1

2 .

We claim that
Pr[QUERY] ≤ 2 ·

(
Advn-IND-CPA

PKE (B) + qF
|M|

)
. (4)

Summing up the inequalities yields the claimed bound, concluding the proof of the theorem.
We show (4) by giving an adversary B against the n-IND-CPA security of PKE. Adversary B

from the n-IND-CPA challenger n public-keys and a left-or-right challenge encryption oracle. The
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reduction samples ~K∗ $← ({0, 1}k)n and message vectors ~m0
$←Mn and ~m1

$←Mn and sends them
to the LoR challenge oracle to obtain ~c∗ ← Enc( ~pk, ~mb). The reduction calls A on ( ~pk, ~c∗, ~K∗)
simulating its view in G4. On a query Hj(mj,b′) the reduction sends the n-IND-CPA challenge the
bit b′, if no such query happens, the reduction just samples a uniform bit b′ instead.

Since ~m1−b is information-theoretically hidden from A the probability that it queries either
Gj(mj,1−b) or Hj(mj,1−b) is bounded by qF/ |M|. Assume that this is not the case. We have

Advn-IND-CPA
PKE (B) + qF

|M|
≥
∣∣∣∣Pr
[
b = b′

]
− 1

2

∣∣∣∣
=
∣∣∣∣Pr[QUERY] + 1

2 Pr[¬QUERY]− 1
2

∣∣∣∣
= 1

2 Pr[QUERY] ,

which proves (4).

5 Proof of Theorem 3.2
Before we give the proof of Theorem 3.2, we recall some standard quantum notation for the
reader’s convenience. The presentation of notation and already known results closely follows the
presentations given in [HKSU20] and [Höv21, Section 1.3]. Readers that are already familiar with
standard quantum notation and helper theorems in the context of the FO transformation can skip
to Lemma 5.5.
Qubits. For simplicity, we will treat a qubit as a vector |ϕ〉 ∈ C2, i.e., a linear combination
|ϕ〉 = α · |0〉+ β · |1〉 of the two basis states (vectors) |0〉 and |1〉 with the additional requirement
to the probability amplitudes α, β ∈ C that |α|2 + |β|2 = 1. The basis {|0〉, |1〉} is called standard
orthonormal computational basis. The qubit |ϕ〉 is said to be in superposition. Classical bits can be
interpreted as quantum bits via the mapping (b 7→ 1 · |b〉+ 0 · |1− b〉).
Quantum Registers. We will treat a quantum register as a collection of multiple qubits, i.e.
a linear combination |ϕ〉 :=

∑
x∈{0,1}n αx · |x〉, where αx ∈ C, with the additional restriction that∑

x∈{0,1}n |αx|2 = 1. As in the one-dimensional case, we call the basis {|x〉}x∈{0,1}n the standard
orthonormal computational basis. We say that |ϕ〉 =

∑
x∈{0,1}n αx · |x〉 contains the classical query x

if αx 6= 0.
Measurements. Qubits can be measured with respect to a basis. In this paper, we will only consider
measurements in the standard orthonormal computational basis, and denote this measurement by
Measure(·), where the outcome of Measure(|ϕ〉) for a single qubit |ϕ〉 = α · |0〉+ β · |1〉 will be 0
with probability |α|2 and 1 with probability |β|2, and the outcome of measuring a qubit register
|ϕ〉 =

∑
x∈{0,1}n αx · |x〉 will be x with probability |αx|2. Note that the amplitudes collapse during a

measurement, this means that by measuring α · |0〉 + β · |1〉, α and β are switched to one of the
combinations in {±(1, 0), ±(0, 1)}. Likewise, in the n-dimensional case, all amplitudes are switched
to 0 except for the one that belongs to the measurement outcome and which will be switched to 1.
Quantum oracles and quantum Adversaries. Following [BDF+11, BBC+98], we view a
quantum oracle |O〉 as a mapping

|x〉|y〉 7→ |x〉|y ⊕ O(x)〉 ,
where O : {0, 1}n → {0, 1}m, and model quantum adversaries A with access to O by a sequence U1,
|O〉, U2, · · · , |O〉, UN of unitary transformations. We write A|O〉 to indicate that the oracles are
quantum-accessible (contrary to oracles which can only process classical bits).
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Quantum random oracle model. We consider security games in the quantum random oracle
model (QROM) as their counterparts in the classical random oracle model, with the difference that
we consider quantum adversaries that are given quantum access to the (offline) random oracles
involved, and classical access to all other (online) oracles.

We will now recall some QROM theorems that we will use during our proof of Theorem 3.2.

Lemma 5.1 (Simulating Quantum Random Oracles [Zha12]). A quantum random oracle can be
perfectly simulated by a 2q-wise independent function for any adversary making at most q (quantum)
queries.

Lemma 5.2 (Generic Distinguishing Problem with Bounded Probabilities [HKSU20] ). Let X be a
finite set, and let λ ∈ [0, 1]. For any (unbounded, quantum) algorithm A issuing at most q quantum
queries to F ,

|Pr[GDPBAλ,0 ⇒ 1]− Pr[GDPBAλ,1 ⇒ 1]| ≤ 8 · λ · (q + 1)2 , (5)

where games GDPBλ,b (for bit b ∈ {0, 1}) are defined in Figure 7.

GAME GDPBλ,b
01 (λx)x∈X ← A1
02 if ∃x ∈ X s.t. λx > λ
03 return 0
04 if b = 1
05 for all x ∈ X
06 F (x)← Bλx

07 else
08 F := 0
09 b′ ← A|F〉2
10 return b′

Figure 7: Generic distinguishing games GDPBλ,b with bounded maximal Bernoulli parameter
λ ∈ [0, 1].

Oneway to Hiding with semi-classical oracles. In [AHU19], Ambainis et al. defined
semi-classical oracles that return a state that was measured with respect to one of the input registers.
To any subset S ⊂ X, one can associate the following “semi-classical” oracle OSC

S : Intuitively, OSC
S

collapses states taken from HX×Y to a state that contains only elements of either S or X \ S. To
be more precise, OSC

S takes as input a quantum state |ψ, 0〉 such that |ψ〉 ∈ HX ⊗HY . OSC
S first

measures the X-register with respect to the projectors M1 :=
∑
x∈S |x〉 〈x| and M0 :=

∑
x/∈S |x〉 〈x|,

and then initialises the last register to |b〉 for the measured bit b. Consequently, |ψ, 0〉 collapses to
either a state |ψ′, 1〉 such that the X-register of |ψ′〉 only contains elements of S, or a state |ψ′, 0〉
such that the X-register of |ψ′〉 only contains elements of X \ S.

To a quantum-accessible oracle O and a subset S ⊂ X, one can furthermore associate oracle
O \ S which first queries OSC

S and then O. Let FIND denote the event that OSC
S ever returns a state

|ψ′, 1〉. Unless FIND occurs, the outcome of O \ S is independent of the values O(x) for all x ∈ S,
which is why O \ S is also called a “punctured” oracle.

We will now restate several “semi-classical one-way to hiding” theorems from [AHU19]. While
[AHU19] consider adversaries that might execute parallel oracle invocations, and therefore differ-
entiate between query depth d and number of queries q, we use the upper bound q ≥ d for the

13



sake of simplicity. Theorem 5.3 is a simplification of [AHU19, Thm. 1: “Semi-classical O2H”], and
Equation (7) (Equation (8)) of Theorem 5.4 is a simplification of [AHU19, Thm. 2: “Search in
semi-classical oracle”] ([AHU19, Cor. 1]).

Theorem 5.3 Let S ⊂ X be random. Let O1,O2 ∈ Y X be random functions such that O1(x) =
O2(x) for all x ∈ X \ S, and let z be a random bitstring. (S, O1, O2, and z may have an arbitrary
joint distribution.) For i ∈ {1, 2}, let

pi := Pr[1← A|Oi〉(z)] ,

and let
pFIND := Pr[b← A|O1\S〉(z) : FIND] .

For all quantum algorithms A with binary output, issuing at most q queries, we have that

|p1 − p2| ≤ 2 ·
√

(q + 1) · pFIND . (6)

Theorem 5.4 Let S ⊂ X be random, let O be a random function, and let z be a random bitstring.
(S, O, and z may have an arbitrary joint distribution.) Let

pFIND := Pr[b← A|O\S〉(z) : FIND] .

Then, for all quantum algorithms A with binary output issuing at most q queries, we have that

pFIND ≤ 4q · Pr[x← B(z) : x ∈ S] , (7)

where B is the algorithm that, on input z, chooses i $← {1, · · · , q}, runs A|O〉 until (just before) the
i-th query, measures its query input register in the computational basis and outputs the measurement
outcome.

If S := {x1, . . . , xn} for x1, . . . , xn
$← X, and S and z are independent, we have that

pFIND ≤
4qn
|X|

. (8)

We will now prove an additional helper lemma.

Lemma 5.5 (QROM Multi-User PRF). For i, j ∈ [n], let pi, pj ∈ {0, 1}γ arbitrarily subject to
pi 6= pj, when i 6= j. Define ~p := (p1, . . . , pn). Let H,H1, . . . ,Hn be independent random oracles with
H : {0, 1}γ × {0, 1}λ ×X → Y ′ and Hi : X → Y ′, then for all quantum algorithms A issuing at most
q quantum queries to H and arbitrarily many queries to Hi with i ∈ [n], we have∣∣∣Pr

[
A|H〉,H(p1,s1,·),...,H(pn,sn,·)(~p) = 1

]
− Pr

[
A|H〉,H1,...,Hn(~p) = 1

]∣∣∣ ≤ 4q
√
n

2λ

where the probabilities are taken over H,H1, . . . ,Hn and s1, . . . sn
$← {0, 1}λ, and the internal

randomness of A.

Proof. The proof follows from combining [AHU19, Theorem 1] with [AHU19, Corollary 1], the overall
proof idea is very similar to the one of [BHH+19, Corollary 1]. The adversary’s goal is to distinguish
quantum access to H and additional classical access to (H(p1, s1, ·), ...,H(pn, sn, ·)) from quantum
access to H and additional classical access to a collection (H1, ...,HN ) of independent random oracles.
This is the same as distinguishing (H,H(p1,s1,·) 7→H1(·), . . . ,H(pn,sn,·) 7→Hn(·)) from (H,H1, ...,Hn), and
the set of differences between these oracles is S := {(pj , sj)}j∈[n] × X . According to [AHU19,
Theorem 1], the distinguishing advantage is at most 2√q · pFIND, and since S is independent of the
collection (H1, ...,Hn), we can apply [AHU19, Corollary 1] to obtain that pFIND ≤ 4q · n2λ .
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With these results at hand, we can finally proceed to the proof of Theorem 3.2. Its overall
structure is very similar to recent QROM proofs of IND-CCA security: We first change the game
such that the decapsulation oracle can be simulated without knowledge of the collection of secret
keys, which is achieved as usual by plugging encryption into the random oracle, and then apply
one-way to hiding to argue key indistinguishability. For the sake of completeness, we also show how
to modify the proof such that it accommodates schemes that are only n-OW-CPA secure, at the
price of an additional loss of √q.

We want to add a remark: As usual, the simulation of the decapsulation oracle deals with potential
decryption failure by replacing random oracle G with a modification G′ such that G′(ID(pkj), ·)
only samples “good” randomness with respect to pkj . (The notion of “good” randomness will be
explained during the proof.) Remark that this step might turn out to be difficult to prove without
the hashing of public-key identifiers, as we would then have to modify G such that it only samples
“good” randomness with respect to all public keys at once, which would diminish the potential range
further with each user.

Proof. GAMES G0 - G6
11 for j ∈ [n]
12 (pkj , skj) $← Gen
13 m∗j

$←M
14 c∗j ← Enc(pkj ,m∗j ; G(ID(pkj),m∗j ))
15 K∗j0 := H(ID(pkj),m∗j )
16 K∗j1

$← {0, 1}n

17 ~pk ← (pk1, . . . , pkn)
18 ∃i, j ∈ [n] s.t. ID(pki) = ID(pkj) //G1-
G6
19 COLL := true //G1-G6
20 abort //G1-G6
21 ~c∗ ← (c∗1, . . . , c∗n)
22 ~K∗0 ← (K00, . . . ,Kn0)
23 ~K∗1 ← (K01, . . . ,Kn1)
24 b $← {0, 1}
25 b′ $← ADecaps 6⊥

m,|G〉,|H〉( ~pk, ~c∗, ~K∗b )
26 return b′ = b

G(id,m)
27 if ∃j ∈ [n] : id = ID(pkj)
28 return Gj(m) //G1-G2,G6
29 return G′j(m) //G3-G5
30 return G0(id,m)

H(id,m)
31 if ∃j ∈ [n] : id = ID(pkj) //G1-G6
32 return Hj(m) //G1-G6
33 return H0(id,m)

Hj(m) // Internal Random Oracle
34 return H1

j (m) //G0-G3
35 return H2

j (Enc(pkj ,m; Gj(m))) //G4-
G6

Decaps 6⊥m(j, c 6= c∗j ) //G5-G6

36 return H2
j (c)

Decaps 6⊥m(j, c 6= c∗j ) //G0-G4

37 m′ := Dec(skj , c)
38 if Enc(pkj ,m′; G(ID(pkj),m′)) = c
39 K := H(ID(pkj),m′)
40 else
41 K := H(ID(pkj), sj , c)
42 K := H3

j (c) //G2-G4
43 return K

Figure 8: Games G0 - G6 for the proof of Theorem 3.2. (Hij)i∈[1,3],j∈[0,n] and (Gj)j∈[0,n] are internal
random oracles not directly accesible to the adversary. |G〉 and |H〉 denotes that the adverary A has
quantum access to the random oracles. G′j denotes the modification of random oracle Gj which only
samples “good” randomness (a more detailed explanation is given during the proof).
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Game G0. This is the original n-IND-CCA game. We have∣∣∣∣Pr[G0 ⇒ 1]− 1
2

∣∣∣∣ = Advn-IND-CCA
KEM (A) .

Game G1. Game G1 differs from G0 in that the game aborts on a public-key identifier collision.
We can now identify every public-key identifier ID(pkj) with its index j (as in the ROM proof).
This allows us to simulate the random oracles, when called on such an identifier, via

H(ID(pkj),m) := Hj(m)

and
G(ID(pkj),m) := Gj(m) ,

where Hj and Gj are fresh independent oracles.
Since the latter is only a conceptual change, we have∣∣∣Pr[G0 ⇒ 1]− Pr[G1 ⇒ 1]

∣∣∣ ≤ Pr[COLL] ≤ n2

2l .

Game G2. This game differs from G1 in that we substitute H(ID(pkj), sj , c) with H3
j (c), where H3

j

is an internal independent random oracle for every j ∈ [n]. With a straightforward reduction, we
can apply Lemma 5.5 to obtain∣∣∣Pr[G1 ⇒ 1]− Pr[G2 ⇒ 1]

∣∣∣ ≤ 2qH

√
n

2λ .

Game G3. This game switches the random oracle G to an oracle which samples only “good”
randomness, meaning that no decryption failure of proper encryptions can possibly occur anymore.
For fixed (pk, sk) ∈ supp (Gen) and m ∈M, let

Rbad(pk, sk,m) := {r ∈ R : Dec(sk,Enc(pk,m; r)) 6= m}

and
δ(pk, sk,m) := |Rbad(pk, sk,m)|

|R|
.

The modified oracle G can now be defined as follows: We will still let G coincide with G0
anywhere but on (ID(pkj))j ×M. Whereas for any index j, however, G(ID(pkj), ·) was defined until
this game by as an oracle Gj which has range R, we now replace each Gj with a random oracle G′j
that has range R \Rbad(pkj , skj ,m)) instead.

We will now argue that distinguishing game G2 from G3 can be reduced to distinguishing the
GDPB games (see Lemma 5.2). Consider the quantum distinguisher B = (B1,B2) given in Figure 9,
running either in game GDPBλ,0 or in game GDPBλ,1, where λ := δ(n). B perfectly simulates game
G2 if run in game GDPBλ,1, and game G3 if run in GDPBλ,0.

Since for any i ∈ [n] and m ∈M, we have that δ(pki, ski,m) ≤ δ( ~pk, ~sk), applying Lemma 5.2
yields ∣∣∣Pr[G2 ⇒ 1]− Pr[G3 ⇒ 1]

∣∣∣ ≤ 8(qG + qH + qDecaps + 1)2δ(n) .

Game G4. In this game, we modify the random oracle Hj(m) such that it returns H2
j (Enc(pkj ,m; Gj(m)))

instead of H1
j (m). Here, H1

j and H2
j are independent internal random oracles (j ∈ [n]). Since we use

the modified G that only samples “good” randomness, the mapping Enc(pkj , ·; Gj(·)) is injective for
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B1
44 for j ∈ [n]
45 (pkj , skj) $← Gen
46 for m ∈M
47 λ(j,m) := δ(pkj , skj ,m)
48 return ((λ(j,m)))j∈[n],m∈M

B|F 〉2
49 pick 2q-wise independent hash f
50 for j ∈ [n]
51 (pkj , skj) $← Gen
52 m∗j

$←M
53 c∗j ←
Enc(pkj ,m∗j ; G(ID(pkj),m∗j ))
54 K∗j0 := H(ID(pkj),m∗j )
55 K∗j1

$← {0, 1}n

56 ~pk ← (pk1, . . . , pkn)
57 ∃i, j ∈ [n] s.t. ID(pki) = ID(pkj)
58 COLL := true
59 abort
60 ~c∗ ← (c∗1, . . . , c∗n)
61 ~K∗0 ← (K00, . . . ,Kn0)
62 ~K∗1 ← (K01, . . . ,Kn1)
63 b $← {0, 1}
64 b′ $← ADecaps 6⊥

m,|G〉,|H〉( ~pk, ~c∗, ~K∗b )
65 return b′ = b

G(id,m)
66 if ∃j ∈ [n] : id = ID(pkj)
67 return Gj(m)
68 return G0(id,m)

Gj(m)
69 if F (j,m) = 0
70 Gj(m) := Sample(R \
Rbad(pkj , skj ,m); f(j,m))
71 else
72 Gj(m) := Sample(Rbad(pkj , skj ,m); f(j,m))
73 return Gj(m)

Figure 9: Distinguisher B = (B1,B2) for the generic distinguishing problem with bounded proba-
bilities. Oracles Decaps and H are simulated as in G2 (or equivalently G3) of Figure 8. Variable q
represents the number of all explicit and implicit queries to G.

all j ∈ [n]. Furthermore, since ID(pki) 6= ID(pkj) for all i 6= j, we have that the function h, defined
as

h(id,m) :=
{

(id,Enc(pkj ,m; Gj(m))) if exists j ∈ [n] s.t. id = ID(pkj)
(id,m) else

, (9)

is injective.
We can now rewrite H in Game G4 as

H = H2 ◦ h ,

where we define the internal random oracle H2 as

H2(id,m) :=
{

(H2
j (m) if exists j ∈ [n] s.t. id = ID(pkj)

(H0(id,m) else
.

After these changes, H = H2 ◦ h for an internal random oracle H2 and an injective function h,
therefore H is still a random oracle in G4 and hence perfectly indistinguishable from the one of G3.

Pr[G3 ⇒ 1] = Pr[G4 ⇒ 1] .
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Game G5. In this game, we start to simulate the decapsulation oracle without knowledge of the
secret keys. We modify Decaps(j, c) to return H2

j (c). Let m′ := Dec(skj , c) and consider the following
two cases:

• Case 1: The ciphertext c lies in the image of encryption, that is Enc(pkj ,m′; Gj(m′)) = c. In
this case we have

H2
j (c) = H2

j (Enc(pkj ,m′; Gj(m′)))
= (H2 ◦ h)(ID(pkj),m′)
= H(ID(pkj),m′)
= Decaps(j, c) .

Therefore the oracles in G4 and G5 are identical.

• Case 2: The ciphertext c lies not in the image of encryption, that is Enc(pkj ,m′; Gj(m′)) 6= c.
Here the adversary gets to see H3

j (c) in G4 and H2
j (c) in G5 for internal random oracles H3

j

and H2
j . In both games the adversary gets access to H2 indirectly through H(ID(pkj),m)

forcing m through the encryption algorithm. Therefore, the adversary can not access H2 for
ciphertexts lying outside the image space of encryption. Therefore no adversary can distinguish
between H3(ID(pkj), c) and H2(ID(pkj), c).

We just have shown
Pr[G4] = Pr[G5] .

Game G6. In game G6, we switch back to using the original G. With essentially the same argument
as in the game-hop from G2 to G3, we have that∣∣∣Pr[G5 ⇒ 1]− Pr[G6 ⇒ 1]

∣∣∣ ≤ 8(qG + qH + qDecaps + 1)2δ(n) .

What we have achieved so far is that the decapsulation oracle is simulatable by a reduction that
does not know the secret keys, we can now apply the one-way to hiding theorems in order to reduce
key indistinguishability to an attacker against the underlying encryption scheme.
Game G7. In this game, we decouple the oracle values on the challenge plaintexts from the values
that are used to compute the challenge ciphertexts and the challenge keys, see Figure 10. In game
G7, the adversary’s view is independent of b and

Pr[G7 ⇒ 1] = 1
2 .

We can now first apply Theorem 5.3 in order to argue that∣∣∣Pr[G6 ⇒ 1]− Pr[G7 ⇒ 1]
∣∣∣ ≤ 2

√
(q + 1) · Pr[FIND],

where Pr[FIND] denotes the probability that one of the punctured oracles G \ S or H \ S ever
collapses the input register of one of the random oracle queries to an element of S, i.e., to an element
of the form (ID(pkj),m∗j ), when used to replace oracles G and H in game G6.

It remains to upper bound Pr[FIND], which we can do either with a reduction to n-OW-CPA
or with a reduction to n-IND-CPA. For the sake of completeness, we do both. Since a n-OW-CPA
adversary does not know the challenge plaintexts, it cannot simulate the punctured oracle on its
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G6-G8
74 for j ∈ [n]
75 (pkj , skj) $← Gen
76 m∗j

$←M
77 c∗j ← Enc(pkj ,m∗j ; G(ID(pkj),m∗j )) //G6 −
G7
78 c∗j ← Enc(pkj , 0) //G8
79 K∗j0 := H(ID(pkj),m∗j )
80 K∗j1

$← {0, 1}n

81 ~pk ← (pk1, . . . , pkn)
82 ∃i, j ∈ [n] s.t. ID(pki) = ID(pkj)
83 COLL := true
84 abort
85 ~c∗ ← (c∗1, . . . , c∗n)
86 ~K∗0 ← (K00, . . . ,Kn0)
87 ~K∗1 ← (K01, . . . ,Kn1)
88 b $← {0, 1}
89 for j ∈ [n] //G7 −G8
90 G(ID(pkj),m∗j ) $← R //G7 −G8
91 H(ID(pkj),m∗j ) $← {0, 1}n //G7 −G8

92 b′ $← ADecaps 6⊥
m,|G〉,|H〉( ~pk, ~c∗, ~K∗b )

93 return b′ = b

Figure 10: Games G6 - G8. Apart from the reprogramming in lines 92-94, all oracles remain defined
as in game G6 (see Figure 8 ).

own. We therefore have to resort to Equation (7) of Theorem 5.4, thereby losing a factor linear in q,
the number of random oracle queries:

pFIND ≤ 4q · Advn-OW-CPA
PKE (BOW) , (10)

where BOW is the adversary that chooses i $← {1, · · · , q}, simulates game G6 to A until (just
before) its i-th query, measures its query input register in the computational basis to obtain a tuple
(ID(pkj),m∗j ), and outputs (j,m∗j ).

Contrarily, a n-IND-CPA reduction knows the challenge plaintexts, it can hence perfectly simulate
the puncturing. Our respective reduction BIND queries its challenge oracle CHAL on the vector
~m0 := (m∗j )j∈[n], where them∗j are defined as in game G6, and the constant zero vector ~m1 := (0)j∈[n].
It uses the response of CHAL to simulate either game G6 with punctured oracles (if the n-IND-CPA
bit is 0) or game G8 with punctured oracles (if the n-IND-CPA bit is 1), we hence have

pFIND ≤ Pr[FIND in G8] + Advn-IND-CPA
PKE (BIND) . (11)

Since in game G8, the set S is independent of A’s view, we can now apply Equation (8) of
Theorem 5.4 to argue that

Pr[FIND in G8] ≤ 4qn
|X|

. (12)

Adding the bounds yields the claimed bound in the theorem, concluding our proof.
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