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Abstract. Performance in hardware has typically played a significant role in differen-
tiating among leading candidates in cryptographic standardization efforts. Winners
of two past NIST cryptographic contests (Rijndael in case of AES and Keccak in
case of SHA-3) were ranked consistently among the two fastest candidates when
implemented using FPGAs and ASICs. Hardware implementations of cryptographic
operations may quite easily outperform software implementations for at least a subset
of major performance metrics, such as latency, number of operations per second,
power consumption, and energy usage, as well as in terms of security against physical
attacks, including side-channel analysis. Using hardware also permits much higher
flexibility in trading one subset of these properties for another. This paper presents
high-speed hardware architectures for four lattice-based CCA-secure Key Encapsula-
tion Mechanisms (KEMs), representing three NIST PQC finalists: CRYSTALS-Kyber,
NTRU (with two distinct variants, NTRU-HPS and NTRU-HRSS), and Saber. We
rank these candidates among each other and compare them with all other Round 3
KEMs based on the data from the previously reported work.

Keywords: Post-Quantum Cryptography · lattice-based · Key Encapsulation Mech-
anism · hardware · FPGA

1 Introduction
Post-Quantum Cryptography (PQC) refers to a class of cryptographic algorithms that are
resistant against all known attacks using quantum computers, and can be implemented on
traditional non-quantum computing platforms. These platforms include microprocessors,
microcontrollers, graphics processing units (GPUs), Field Programmable Gate Arrays
(FPGAs), Application-Specific Integrated Circuits (ASICs), and many others. The main
goal of PQC is to replace the existing public-key cryptography standards based on RSA
and Elliptic Curve Cryptography. These standards seem to be the most vulnerable
to quantum computing and impossible to defend using traditional approaches such as
gradually increasing key sizes [73, 16, 76, 36].

To initiate a timely transition to a new class of cryptographic schemes, in December
2016, NIST launched its PQC standardization process with the release of a "Call for
Proposals and Request for Nominations for Public-Key Post-Quantum Cryptographic
Algorithms" [63]. Sixty-nine submissions were judged complete and accepted for Round
1, which started in December 2017 [65, 1]. In January 2019, based on the initial security
analysis and preliminary software benchmarking results, 26 submissions were qualified
by NIST to Round 2. These submissions included multiple public-key encryption, key
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Figure 1: Finalists and alternate candidates qualified to Round 3 of the NIST PQC
Standardization Process

encapsulation mechanism (KEM), and digital signature schemes, with many submissions
describing more than one algorithm [66].

On July 22, 2020, NIST announced 15 candidates qualified for Round 3 of the stan-
dardization process. These candidates are summarized in Fig. 1. All Round 3 candidates
represent five diverse families: lattice-based, code-based, multivariate, symmetric-based,
and isogeny-based. Seven finalists are expected to be given priority in the standardization
process. One encryption/KEM scheme and one digital signature scheme from this group
may be selected as a PQC standard as early as 2022. Alternate candidates are treated as
backup candidates. In Round 2, alternate candidates were judged to be either insufficiently
investigated from the security point of view or were believed to lack some desired properties
related to their performance (such as small public keys, small signatures, short execution
time in software, etc.). In this paper, we focus on evaluating and contrasting the hardware
efficiency of three lattice-based KEMs: CRYSTALS-KYBER, NTRU, and Saber.

There are multiple reasons for focusing our attention on the three candidates mentioned
above. In Fig. 2, we show the relationship between the ciphertext and public-key sizes of
all Round 3 candidates. All schemes based on structured lattices - Saber, CRYSTALS-
KYBER, NTRU Prime, and NTRU - have their ciphertext and public key sizes in the range
between 512 and 2048 bytes. The only candidate better than them is an isogeny-based
SIKE, which is still considered relatively recent and not sufficiently scrutinized from the
security point of view. As a result, this scheme was qualified for Round 3 only as an
alternate candidate. The only other PKE/KEM finalist, Classic McEliece, has public-key
lengths between 0.25 and 2 Megabytes. So large public key sizes may significantly impact
the sizes of data exchanged between two parties in the key establishment phase of any
modern secure communication protocol, such as TLS, IPSec, SSH, etc. The sizes of keys
and ciphertexts used by the selected lattice-based schemes are significantly smaller than
those of the alternate code-based schemes, BIKE and HQC, and the unstructured-lattice
scheme FrodoKEM. As a result, the key establishment time and the amount of memory
required to store public-key certificates are also the most practical among all Round 3
candidates other than SIKE.

Hardware benchmarking has played a major role in all recent cryptographic stan-
dardization efforts, such as the AES, eSTREAM, SHA-3 [10, 34, 50, 51], and CAESAR
contests [19, 22]. With the emergence of commonly-accepted hardware application pro-
gramming interfaces (APIs) [41], development packages [40, 44], specialized optimization
tools [35, 29], new design methodologies based on High-Level Synthesis (HLS) [42, 43],
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Figure 2: Relation between the ciphertext and public-key sizes for Round 3 PQC Key
Encapsulation Mechanisms

and mandatory hardware implementations in the final round of the CAESAR contest [19],
the percentage of initial submissions implemented in hardware grew from 27.5% in the
SHA-3 contest [33] to 49.1% in the CAESAR competition [22, 32]. In Round 2, all AES,
all SHA-3, and all but one CAESAR candidates had at least one hardware implementation
reported by the end of the evaluation process. Unfortunately, this trend could not be
sustained in the NIST PQC standardization process. In many respects, PQC schemes are
diametrically different and at least an order of magnitude more complex to implement
compared to those evaluated in previous cryptographic contests.

High-speed vs. lightweight. Assuming comparable technology, hardware imple-
mentations outperform software implementations using at least one, and typically multiple,
metrics, such as latency, number of operations per second, power consumption, energy
usage, and security against physical attacks. They also allow much higher flexibility in
trading one subset of these metrics for another. From the point of view of benchmarking
and ranking of candidates, such flexibility may become a curse, especially considering that
no two metrics are likely to have a simple linear dependence on each other. A practical
solution to this problem is to focus during the evaluation process on two major types of
implementations: high-speed and lightweight.

In high-speed implementations, the primary target is speed, understood as either
minimum latency (a.k.a. execution time) or the number of operations per second. For
PQC schemes, this target amounts to optimizing the implementations of major operations
involving the public and private key, respectively. For Key Encapsulation Mechanisms
(KEMs), these operations are encapsulation and decapsulation; for digital signature schemes,
signature verification and generation; for public-key encryption (PKE), encryption and
decryption. The time of key generation may also play a major role in the case when a
public-private key pair cannot be reused for security reasons. The resource utilization
is secondary. Still, hardware designers typically aim at achieving the Pareto optimality,
in which any further speed improvement comes at a disproportionate cost in terms of
resource utilization. The primary advantage of high-speed implementations is that they
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reveal the inherent potential of a given algorithm for parallelization. As long as the
resource-utilization limit is sufficiently high, this limit does not affect the ranking of
algorithms in terms of latency. Consequently, this ranking is strongly correlated with
algorithms’ features and is not substantially influenced by any additional assumptions
and technology choices. Additionally, only high-speed hardware implementations may
effectively compete with optimized software implementations targeting high-performance
processors with vector instructions (e.g., AVX2).

In lightweight implementations, the primary targets are typically minimum resource
utilization and minimum power consumption, assuming that the execution time does not
exceed a predefined maximum. Another way of formulating the goal is to achieve minimum
execution time, assuming a given maximum budget in terms of resource utilization, power
consumption, or energy usage. The maximum budget on resource utilization is related
to the cost of implementation; the budget on power assures correct operation without
overheating or devoting additional resources to cooling. The maximum energy usage affects
how long a battery-operated device can function before the next battery recharge. In the
context of the standardization process for cryptographic algorithms, the mentioned above
maximum budgets are very hard to select. Any change in these thresholds may favor
a different subset of candidates. With new standards remaining in use for decades, the
timing, cost, and power requirements of new and emerging applications are very challenging
to predict.

Additionally, changes in technology significantly affect which hardware architectures
meet particular constraints. For example, an architecture capable of accomplishing the
execution time of 0.1 seconds (or below) under a certain power or energy budget may
substantially change with the improvements in technology. As a result, most current limits
are selected arbitrarily by different designers or left undefined in their reports. Consequently,
the ranking of PQC candidates based on their lightweight implementations, especially
those developed by different groups, is extremely challenging and assumption-dependent.
These rankings have little to do with the parallelization allowed by each algorithm, as most
of the operations must be executed sequentially due to the small resource budget. The
primary feature of algorithms these implementations reveal is the number and complexity
of its distinct elementary operations. Each major operation infers an additional functional
unit, increasing resource utilization and power consumption. Additionally, lightweight
hardware implementations can outperform only software implementations targeting specific
low-cost, low-power embedded processors, such as Cortex-M4.

In the case of FPGA implementations, resource utilization is a vector, such as (#LUTs,
#flip-flops, #DSP units, #BRAMs). No single element of this vector can be expressed
in terms of other elements. As a result, imposing a resource limit implies specifying the
values of all components of this resource vector. One possible approach may be to choose
the resources of the smallest FPGA of a given low-cost FPGA family. However, FPGA
families and their resources change over time, so this limit has only a physical meaning
during the limited time, covering the evaluation period, and may lose its significance just
a few years after the standard is published and deployed. Finally, the same FPGA device
may also need to accommodate any overhead associated with countermeasures against
side-channel attacks. At the same time, this overhead or even effective countermeasures
may remain unknown at the time of the candidates’ evaluation.

As a result, in this paper, we focus on developing, benchmarking, and ranking high-speed
implementations.

Choice of Algorithms to Implement. In terms of algorithms, we focus on KEMs
with indistinguishability under chosen-ciphertext attack (IND-CCA). Our primary goal
was to implement all lattice-based IND-CCA secure KEMs described in the specifications
of PQC finalists. The submission package of NTRU describes two substantially different
KEMs : NTRU-HRSS and NTRU-HPS. As a result, we have implemented four KEMs



Viet Ba Dang, Kamyar Mohajerani and Kris Gaj 5

representing three PQC finalists. For each implemented KEM, we generated results for all
supported security levels.

2 Previous Work
Hardware and software/hardware implementations of all KEMs qualified to Round 3 of the
NIST PQC Standardization Process are summarized in Table 1. The PQC candidates are
grouped by family. All implementations are classified as either High-Speed or Lightweight.
However, the dividing line is not always very clear, and, in multiple cases, the authors
have not used these terms explicitly by themselves.

HLS-based implementations are distinguished with the superscriptH . These implemen-
tations were reported in only one paper [15]. They have been shown to give substantially
different results than implementations developed using traditional Register-Transfer Level
(RTL) methodology, in which HDL code is developed manually. Therefore, in this paper,
we focus on implementations in which a hardware part of the design was developed using
traditional RTL methodology.

NTRU Prime is the only Round 3 KEM that does not have any high-speed implemen-
tation reported to date. NTRU (as specified in Rounds 2 and 3 of the NIST process) and
HQC have no RTL implementations. Additionally, NTRU and all code-based KEMs have
not been reported to be implemented using the lightweight approach.

In Tables 2–5, we summarize major results for hardware and software/hardware imple-
mentations of KEMs. Most of the implemented schemes are KEMs with indistinguishability
under the chosen-ciphertext attack (IND-CCA). Some are PKEs with indistinguishability
under the chosen-plaintext attack (IND-CPA). If an IND-CPA-secure PKE is reported,
this fact is marked with a superscript cpa. All mentioned above tables have the same fields.
The first two columns contain a reference to the publication and the name of the algorithm
variant, respectively. The superscript z next to the publication reference indicates the
implementation using Zynq-7000 SoC FPGA. The implementations targeting Artix-7 and
Zynq-7000 are grouped together because the programmable logic of both families is realized
using the same technological process and composed of the same basic building blocks.

Table 1: Reported Hardware Implementations of KEMs qualified to Round 3
Algorithms High-Speed Lightweight

Lattice-based
CRYSTALS-KYBER [15]H ,[80], [47], [81] [11], [12]∗, [3], [30]
FrodoKEM [45], [15]H , [24] [11], [12]∗
NTRU [15]H –
NTRU Prime – [58]
Saber [15]H , [24], [57], [74], [83] [30]

Isogeny-based
SIKE [53], [60], [27] [60]

Code-based
BIKE [46], [67], [68] –
Classic McEliece [79],[78], [15]H –
HQC [69]H –
H design developed using the High-Level Synthesis (HLS) approach

* extended version of [11]
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The type of implementation is indicated in the third column, with HW standing for
hardware and SW/HW standing for software/hardware. Among the software/hardware
implementations, we specify the embedded processors used with the following notation:
RV represents a RISC-V processor with the RV32IM ISA, i.e., RISC-V with the base 32-bit
integer ISA and the standard Integer Multiplication and Division extension. c represents a
custom processor, and A9 a hard processor of the Zynq-7000 SoC FPGA family, namely
ARM Cortex-A9. Unlike the first two options, this processor operates with a frequency
significantly higher than the maximum clock frequency of programmable logic. At the same
time, the transfer of control and data between the processor and the hardware accelerator
contributes a non-negligible transfer overhead to all reported execution times.

The next column, Max. Freq., corresponds to the maximum clock frequency in MHz.
The next five columns are used to report FPGA resource utilization, described as a vector
(LUT, FF, Slice, DSP, BRAM), where the subsequent fields represent the number of
look-up tables, flip-flops, slices, DSP units, and 36 kbit Block RAMs. For the last of
these values, BRAM, 0.5 represents the use of an 18-kbit block RAM. In the case of
KEMs, the remaining six columns are used to show the execution time of Key Generation,
Encapsulation, and Decapsulation, expressed in clock cycles and µs, respectively. In
the cases when only results for the IND-CPA PKE are reported, the last two columns
represent the sum of the execution times of Encryption and Decryption. This convention
is used because the most popular transformations between an IND-CPA-secure PKE and
the corresponding IND-CCA-secure KEM involve both the Decryption and Encryption
operations on the receiver’s side. Additionally, these two operations dominate the total
Decapsulation time. For all execution times, the value in µs can be obtained by dividing
the corresponding number of clock cycles by the maximum clock frequency in MHz.

In Tables 2 and 3, we summarize implementations targeting Xilinx Artix-7 FPGAs
and related Xilinx Zynq-7000 SoC FPGAs. For security level 1, five candidates - Classic
McEliece, CRYSTALS-Kyber, FrodoKEM, SIKE, and Saber - have implementations of
all three operations reported. The preliminary implementations of BIKE focused on key
generation only [46, 4]. For security level 5, the results are missing for Classic McEliece.

For most KEMs, the time of decapsulation is longer than the time of encapsulation.
Table entries are ordered according to the time of decapsulation in µs (and, if needed,
according to the decapsulation time in clock cycles).

The ranking of candidates listed in Tables 2 and 3 is very challenging to determine based
on available results. First, it may be unfair to compare pure hardware implementations
with software/hardware implementations. Secondly, it is hard to compare lightweight
implementations with high-speed implementations, as they are optimized with different
primary metrics in mind. Third, software/hardware implementations based on different
processors are very challenging to compare with one another. Finally, even for imple-
mentations using exactly the same type of implementation (software/hardware) and the
same type of processor (RISC-V), such as those reported in [30], the comparison may be
unintentionally biased. In the specific case of [30], significantly different hardware support
was provided for algorithms that can take advantage of the Number Theoretic Transform -
Kyber and NewHope - vs. the algorithm that cannot - Saber. An additional, relatively
minor factor is that several results for Classic McEliece concern their IND-CPA-secure
PKEs rather than IND-CCA-secure KEMs.

Taking all these factors into account, almost the only ranking that is quite clear from
Tables 2 and 3 is the ranking of candidates that have results available for pure hardware
implementations, developed using the RTL methodology, targeting high-speed. In this
specific category, the ranking for security level 1 is: 1. Kyber, 2. Classic McEliece, 3.
FrodoKEM, 4. SIKE, and 5. BIKE. At level 3, the ranking remains the same, even though
the implementation of Classic McEliece is parameterized for low resource usage. At level
5, only Kyber and SIKE have high-speed pure hardware implementations reported. For
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decapsulation, Kyber outperforms SIKE by a factor of over 200.
In Table 4, we summarize implementations targeting Xilinx Virtex-7 FPGAs. Unfortu-

nately, the only conclusion that can be drawn from these tables is an advantage of Classic
McEliece over SIKE in terms of all performance metrics other than the number of LUTs
and flip-flops.

All results reported in Table 5 were obtained using the same SoC FPGA, Zynq Ultra-
Scale+. Only Saber and NTRU Prime are implemented in pure hardware. Additionally,
their implementations are of different types, high-speed and lightweight, respectively.

3 Basic Features of Compared Algorithms
Selected features of all implemented KEMs are summarized in Table 6. All three KEMs are
based on the underlying IND-CPA public-key encryption (PKE) schemes. In CRYSTALS-
Kyber and Saber, the conversions to the corresponding IND-CCA KEMs are performed
using very similar variants of the Fujisaki–Okamoto transform [31], [38]. NTRU uses a
generic transformation from a deterministic public-key encryption scheme to construct a
KEM. The NTRU KEM transformation provides IND-CCA2 security with a tight reduction
to the well-studied OW-CPA (one-way CPA) security of the NTRU PKE [72]. The only
KEMs with no Decryption Failure in the underlying PKE are NTRU-based KEMs, NTRU-
HPS and NTRU-HRSS. Consequently, these schemes require no re-encryption during
decapsulation.

In all of these KEMs, the elementary operation is multiplication mod q. In Saber,
NTRU-HPS, and NTRU-HRSS, q is a power of two, significantly simplifying the reduction
mod q. In Kyber, q is a special prime, selected in such a way to support speeding up

Table 6: Features of lattice-based NIST Round 3 finalists in the category of KEMs
Feature CRYSTALS-Kyber Saber NTRU-HPS NTRU-HRSS

Underlying
problem

Module-LWE:
Module Learning

with Errors

Mod-LWR:
Module Learning
with Rounding

Shortest Vector
Problem

Shortest Vector
Problem

Degree n Power of 2 Power of 2 Prime Prime

Modulus q Prime Power of 2 Power of 2
with q/8− 2 ≤ 2n/3

Power of 2
with q > 8

√
2(n+ 1)

Other major
parameters

k: the lattice
dimension as a
multiple of n,

η: noise parameter

l: number of
polynomials per vector,
p, T : other moduli,
µ: parameter of CBD

w:
Fixed weight
for f and r

N/A

Hash-based
functions

SHA3-256,
SHA3-512,
SHAKE128,
SHAKE256

SHA3-256,
SHA3-512,
SHAKE128

SHA3-256 SHA3-256

Sampling

Integers are sampled
from a centered

binomial distribution
(CBD)

Integers are sampled
from a centered

binomial distribution
(CBD)

Fixed-weight and variable
-weight polynomials are

sampled from a
uniform distribution

Variable-weight
polynomials are sampled

from a uniform
distribution

Decryption
failures Yes Yes No No

Polynomial Rings Zq[x]/(xn + 1) Zq[x]/(xn + 1)

R/q:
Zq[x]/(xn − 1)

S/q:
Zq[x]/(Φn)∗

S/3:
Z3[x]/(Φn)∗

R/q:
Zq[x]/(xn − 1)

S/3:
Z3[x](x− 1)/(xn − 1)

#Polynomial
Multiplications
in Encapsulation

k2 + k l2 + l 1 in R/q 1 in R/q

#Polynomial
Multiplications
in Decapsulation

k2 + 2k l2 + 2l
1 in R/q
1 in S/q
1 in S/3

1 in R/q
1 in S/q
1 in S/3

∗ Φn = (xn − 1)/(x− 1) irreducible in Zq[x]
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Table 7: Parameter sets of investigated algorithms. Notation: Sk - Secret Key, Pk - Public
key, Ct - Ciphertext.

Algorithm Parameter
Set

Security
Level

Degree
n

Modulus
q

Sk Size
[bytes]

Pk Size
[bytes]

Ct Size
[bytes]

Kyber Kyber512 1 256 3329 1,632 800 768
NTRU-HPS ntruhps2048677 1* 677 211 1,235 931 931
NTRU-HRSS ntruhrss701 1* 701 213 1,452 1,138 1,138
Saber LightSaber-KEM 1 256 213 1,568 672 736
Kyber Kyber768 3 256 3329 2,400 1,184 1,088
NTRU-HPS ntruhps4096821 3* 821 212 1,592 1,230 1,230
Saber Saber-KEM 3 256 213 2,304 992 1,088
Kyber Kyber1024 5 256 3329 3,168 1,568 1,568
Saber FireSaber-KEM 5 256 213 3,040 1,312 1,472
∗ assuming non-local computational models

polynomial multiplication in Zq[x]/(xn+ 1) using the Number Theoretic Transform (NTT).
All four algorithms use SHA3-256. Saber additionally employs SHA3-512 and SHAKE128.

Kyber requires the same set of hash-based algorithms as Saber, extended with SHAKE256.
NTRU-based KEMs use sampling from the uniform distribution. In Kyber and Saber, a
Centered Binomial Distribution (CBD) is employed.

There are two variants of NTRU described in the specification, the NTRU-HPS based
on Hoffstein, Pipher, and Silverman’s NTRU encryption scheme [37] and NTRU-HRSS
introduced by Hülsing, Rijnveld, Schanck, and Schwabe in [48]. The NTRU-HPS parameter
sets follow the approach to use fixed-weight sample spaces and allow several choices of
modulus q for each degree n. Meanwhile, the NTRU-HRSS allows arbitrary-weight sample
spaces but restricts q as a function of n.

In Kyber and Saber, the most time-consuming operations are matrix-by-vector and
vector-by-vector multiplications, where each element of a matrix or a vector is a polynomial
with n coefficients in Zq, and the multiplication of such polynomials is performed modulo
the reduction polynomial xn + 1. In the NTRU-based KEMs, the most time-consuming
operation is polynomial multiplication in the rings specified in Table 6.

Parameter sets of three investigated candidates are summarized in Table 7. The
specification of NTRU associates two different security categories with each parameter
set of NTRU-HPS and NTRU-HRSS. In this paper, we conservatively assumed the lower
security category based on the so-called non-local computational models (see [70], Section
5.3 Security Categories). The same computation model is implicitly assumed by the
submitters of the other investigated algorithms. We implemented three parameter sets
of NTRU-HPS and NTRU-HRSS, which are ntruhrss701, ntruhps677, and ntruhps821,
corresponding to security levels 1, 1, and 3, respectively in non-local models of computation.

4 Methodology
Hardware design methodologies are developed by the industry over the period of decades.
The Register-Transfer Level (RTL) methodology is the most popular design methodology
codified by academic textbooks and supported by most industry-grade computer-aided
design tools. This methodology assumes designing/coding at a level that is manageable
for humans and easy for tools to turn into efficient hardware. The entire system is divided
into the Datapath and Controller. The Datapath is described using a hierarchical block
diagram using medium-scale components (e.g., adders, multipliers, multiplexers, registers,
and memories). The Controller is described using hierarchical algorithmic state machine
(ASM) charts or state diagrams. Indirectly, the designer specifies what happens in the
circuit in every clock cycle. Thus, the latency (the execution time of a particular major
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operation) in clock cycles is an inherent feature of the design. The tools determine the
maximum clock frequency at which the circuit can operate and the amount of hardware
resources used.

Any other approaches to hardware design are often mistrusted. In some cases, justifiably
so. For example, recent attempts at replacing RTL with High-Level Synthesis resulted
in PQC designs 2-4 orders of magnitude less efficient [15, 23]. Similarly, the use of the
software/hardware co-design for PQC led to inconclusive results disregarded by NIST at
the end of Round 2 [23, 2].

Therefore, the development of hardware implementations described in this paper follows
the traditional RTL methodology. The designers of each implementation worked very
closely with each other to ensure a consistent approach to all optimizations. Our designs
started when no pure hardware implementations of CRYSTALS-Kyber, NTRU, or Saber
were reported in the literature yet. All major designs decisions were made independently
of those made in related concurrent projects described in [81], [80], [74], and [83]. All code
was developed from scratch without using any library components or any parts of other
groups’ designs. Consequently, our designs are fully portable, well-documented, and easy
to improve and maintain.

All modules common for multiple algorithms, such as the SHA-3/SHAKE unit, were
reused. The designs for NTRU and Saber are encoded using VHDL. The design for
CRYSTALS-Kyber is encoded using Chisel [8]. We believe that in the RTL methodology,
the choice of a hardware description language has a negligible effect on the obtained
results. Functional verification of the hardware description language (HDL) code has been
performed by comparing simulation results with precomputed outputs generated by a
reference software implementation.

On top of this well-known and trusted design methodology, we define a quite straight-
forward benchmarking methodology. The primary goal is fairness, not a novelty.

All our hardware implementations assume the use of the FIFO interface defined in [28].
This interface is similar to the interface of the AXI4-Stream Protocol [5].

In terms of functionality of designed units, several options are possible: 1) separate
units for encapsulation, decapsulation, and key generation; 2) one unit supporting encap-
sulation, decapsulation, and key generation, with resource sharing; 3) one unit supporting
encapsulation and decapsulation and the second unit responsible for key generation; 4)
one unit (on the server-side) supporting key generation and decapsulation, and the second
unit (on the client-side) supporting encapsulation. None of these assumptions meet the
requirements of all applications. In this paper, we assume Scenario 1). However, whenever
possible, we also report results for Scenario 2).

Similarly, there are two major assumptions regarding support for multiple parameter
sets: 1. choice among parameters sets at the time of synthesis; 2. choice among parameters
sets at run time. The advantage of Approach 1) is the ability to determine the minimum
possible resource utilization separately for each security level. Approach 2) demonstrates
the flexibility of hardware implementation. However, it will likely require a larger amount
of resources than the implementation supporting the highest security level. In this paper,
we adopted Approach 1.

The primary design goal is speed. The speed is characterized using two primary metrics:
a) the minimum latency in time units and b) the maximum number of operations per
second. These two metrics are related. However, any particular application may have
independent requirements in terms of their values. For example, real-time applications,
such as secure communication between two autonomous vehicles, may have very strict
requirements regarding the time required to establish secure communication and thus the
total time required for encapsulation and decapsulation. At the same time, the required
number of operations per second may be very small and thus not limiting. On the other
hand, a high-traffic server may have to handle thousands of secret key establishments per
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second. Simultaneously, the time allowed for each individual transaction (and thus the
latency of decapsulation) may be quite large.

Taking into account that specific thresholds depend strongly on an application and the
state of technology, no specific values are assumed in this benchmarking effort. Instead, we
assume that both decreasing latency and increasing the number of operations per second
are worthy goals as they will broaden the range of applications that can use a new PQC
standard at a given stage of technology. For simplicity, we assume, in agreement with
most of the literature, that each design processes only one set of inputs (keys, ciphertexts,
random bits) at a time. As a result, the number of operations per second becomes a direct
inverse of latency in time units. One, however, should keep in mind an important difference
between them: duplicating a design doubles the number of operations per second, but it
does not change the latency.

When choosing between multiple potential solutions during the design-space explo-
ration, we give priority to the designs that minimize the product Latency2 ·Area and thus
maximize the ratio #Operations_per_seconds2/Area. Thus, for high-speed implementa-
tions, minimizing Latency can be accomplished at the cost of a relatively higher increase
in Area. However, the parallelization is pursued only until it gives substantial gain in
speed as compared to the area increase in LUTs.

For our target platforms, we chose representative devices of two different FPGA /
FPGA SoC families: Artix-7 and Zynq UltraScale+. Specifically, we choose the largest
devices of both families supported by free versions of Xilinx tools. For each device, we
assume that its highest speed grade is used. These assumptions led us to choosing a)
Artix-7 XC7A200T-3, with 134,600 LUTs, 365 BRAMs, and 740 DSP units, and Zynq
UltraScale+ ZU7EV-3, with 230,400 LUTs, 312 BRAMs, 96 Ultra BRAMs, and 1,728 DSP
units. Based on the previous work, summarized in Section 2, these devices are sufficient
for a vast majority of designs reported to date. Out of their resources, the number of LUTs
is the most limiting. The use of BRAMs and DSP units is typically negligible. Therefore,
for the purpose of design-space exploration, we use the number of LUTs as a measure of
the circuit Area. The maximum clock frequency is determined using binary search. Only
final results obtained after placing and routing are reported.

5 Results

5.1 CRYSTALS-Kyber

In Table 8, we report our results for CRYSTALS-Kyber and compare them with previous
work.

The implementation of Kyber presented in this work outperforms the best previous
implementation, reported in [81], by approximately a factor of two in terms of the
execution time in microseconds for all major operations (key generation, encapsulation,
and decapsulation). The comparison in terms of resource utilization is less obvious,
considering that all operations are allowed to share the same resources in this work. In
[81], the resource utilization for the server side (executing key generation and decapsulation)
and the client side (executing encapsulation) are reported separately. However, based on our
design, extending the coverage of operations from the server side to include encapsulation
has negligible influence on the circuit area. Thus, it seems to be fair to compare our
resource utilization numbers with the corresponding numbers for the server unit in [81].

Previous software/hardware implementations, such as those reported in [80], [30], [3],
are clearly inferior in terms of both the latency and the product of the latency and the
number of LUTs.
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Table 8: Implementation results of different Kyber instances on various FPGAs and ASIC
technologies. S/C - denotes results for Server/Client, respectively.

Scheme Key/Encaps/Decaps
[K Cycles]

Freq.
[MHz]

Key/Encaps/Decaps
[us] LUT FF

D
SP BR

AM Device

Kyber-CCAKEM L1
Kyber R3
[this work] 2.2/3.2/4.5 220 10.0/14.7/20.5 9,457 8,543 4 4.5 Artix-7

XC7A200
Kyber R3
[81] 3.8/5.1/6.7 S/C

161/167 23.4/30.5/41.3 S/C
7412/6785

S/C
4644/3981

S/C
3/3

S/C
2/2

Artix-7
XA7A12

Kyber R2
[80] 18.6/45.9/80.0 300 61.9/153.0/267.0 - - - - ASIC

28nm
Kyber R2
[30] 150.1/193.1/204.8 - - 23,925 10,844 32 21 Zynq7000

XC7Z020
Kyber R2
[3] 710.0/971.0/870.0 59 11,993.2/16,402.0/14,695.9 1,842 1,634 34 5 Artix-7

XC7A35T
Kyber R3
[this work] 2.2/3.2/4.5 450 4.9/7.2/10.0 9,504 8,957 4 4.5 Zynq-UltraScale+

XCZU7EV
Kyber-CCAKEM L3

Kyber R3
[this work] 2.6/3.7/4.9 220 12.0/17.0/22.2 10,530 9,837 6 6.5 Artix-7

XC7A200
Kyber R3
[81] 6.3/7.9/10.0 S/C

161/167 39.2/47.6/62.3 S/C
7412/6785

S/C
4644/3981

S/C
3/3

S/C
2/2

Artix-7
XA7A12

Kyber R3
[this work] 2.6/3.7/4.9 450 5.9/8.3/10.9 10,590 10,458 6 6.5 Zynq-UltraScale+

XCZU7EV
Kyber-CCAKEM L5

Kyber R3
[this work] 3.6/4.8/5.8 220 16.2/21.7/26.4 11,623 11,131 8 8.5 Artix-7

XC7A200
Kyber R3
[81] 9.4/11.3/13.9 S/C

161/167 58.2/67.9/86.2 S/C
7412/6785

S/C
4644/3981

S/C
3/3

S/C
2/2

Artix-7
XA7A12

Kyber R2
[80] 39.7/81.6/136.5 300 132.0/272.0/455.0 - - - - ASIC

28nm
Kyber R2
[30] 349.7/405.5/424.7 - - 23,925 10,844 32 21 Zynq7000

XC7Z020
Kyber R2
[3] 2,203.0/2,619.0/2,429.0 59 37,212.8/44,239.9/9,639.1 1,842 1,634 34 5 Artix-7

XC7A35T
Kyber R3
[this work] 3.6/4.8/5.8 450 7.9/10.6/12.9 11,676 11,959 8 8.5 Zynq-UltraScale+

XCZU7EV

5.2 NTRU

Table 9: Implementation results of NTRU on Zynq UltraScale+
Design Module Freq LUT FF Slice DSP BRAM Latency

Cycles µs
Security Level 1

NTRU-HRSS701
Key Gen. 300 49,001 39,957 9,357 45 2.5 51,812 172.7
Encaps. 300 31,494 25,120 6,652 0 2.5 2,219 7.4
Decaps. 300 37,702 34,441 8,032 45 2.5 8,826 29.4

NTRU-HPS677
Key Gen. 250 41,047 39,037 7,968 45 6 48,179 192.7
Encaps. 250 26,325 17,568 4,638 0 5 3,687 14.7
Decaps. 300 29,935 19,511 5,217 45 2.5 7,522 25.1

Security Level 3

NTRU-HPS821
Key Gen. 250 50,347 44,281 10,127 45 6.5 67,157 268.6
Encaps. 250 33,698 30,551 7,370 0 5.5 4,576 18.3
Decaps. 300 38,642 33,003 7,785 45 2.5 10,211 34.0

The results of our implementations of two variants of NTRU, NTRU-HRSS (at the
security level 1) and NTRU-HPS (at the security levels 1 and 3), are summarized in
Table 9. At security level 1, NTRU-HRSS outperforms NTRU-HPS for key generation and
encapsulation. However, it slightly lags behind for decapsulation. NTRU-HRSS operates
at a higher clock frequency (except for decapsulation) but requires consistently more
resources than NTRU-HPS. With the increase in the security level, NTRU-HPS requires
more FPGA resources, with the exception of DSP units, the number of which remains the
same.
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Table 10: Comparison between the implementations of NTRU and Streamlined NTRUPrime
at the same security levels for Zynq UltraScale+

Scheme Module Freq
[MHz] LUT FF Slices DSP BRAM Latency

cycles us

NTRU-HPS821
Key Gen. 250 50,347 44,281 10,127 45 6.5 67,157 268.6
Encaps. 250 33,698 30,551 7,370 0 5.5 4,576 18.3
Decaps. 300 38,642 33,003 7,785 45 2.5 10,211 34.0

Streamlined
NTRUPrime

[59]

Key Gen. 271.6 5,935 3,204 1,068 12 8.5 1,289,959 4,749.5
Encaps. 271.6 4,570 2,843 844 8 7.5 119,250 439.1
Decaps. 271.6 5,117 2,958 902 8 7.0 260,307 958.4

Table 11: Implementation results of Saber on Zynq UltraScale+

Design Module Freq LUT FF Slice DSP BRAM Latency
Cycles µs

Security Level 1

LightSaber
Key Gen. 370 23,557 14,190 3,844 0 1.5 1,607 4.3
Encaps. 370 24,199 14,457 3,984 0 1.5 2,153 5.8
Decaps. 370 24,655 14,879 4,364 0 1.5 2,794 7.6

Security Level 3

Saber
Key Gen. 370 20,496 13,939 3,634 0 1.5 2,709 7.3
Encaps. 370 21,069 14,074 3,503 0 1.5 3,735 10.1
Decaps. 370 21,342 14,233 3,816 0 1.5 4,682 12.7

Security Level 5

FireSaber
Key Gen. 370 19,752 14,358 3,321 0 1.5 4,895 13.2
Encaps. 370 20,696 13,949 3,455 0 1.5 5,867 15.9
Decaps. 370 20,868 14,237 3,460 0 1.5 7,128 19.3

In NTRU-HPS, the maximum clock frequency for the key generation and encapsulation
is limited by the sort-based sampling unit. This unit is not a part of the decapsulation
core. Consequently, decapsulation can be performed at a 50 MHz higher clock frequency.

In Table 10, we compare our implementation of NTRU-HPS with the lightweight
implementation of Streamlined NTRU Prime, reported in [59]. Both variants have the
same security level. In both implementations, key generation is implemented separately.
In this comparison, NTRU outperforms NTRU Prime by a factor of 17.6, 24.0, and 28.1
for key generation, encapsulation, and decapsulation, respectively. At the same time, it
uses significantly more FPGA resources, e.g., about 8.5x more LUTs for key generation
and about 7.4x, 7.6x more LUTs for encapsulation and decapsulation unit, respectively.

5.3 Saber
The results of our implementations of Saber at the security levels 1, 3, and 5, targeting
Zynq UltraScale+, are summarized in Table 11. This table demonstrates three clear
advantages of Saber: 1) the resource utilization stays almost the same, independently of
the security level, 2) the maximum clock frequency is independent of the security level, 3)
implementations use no DSP units and a very small number of BRAMs. Only latency is
affected considerably by using higher security levels.

The comparison with the best implementations of Saber reported in the literature to
date is shown in Table 12 and Figs 12–14. In Table 12, our implementations are marked
in bold.

The designs with the terms x2 and x4 in the name are obtained by unrolling the
polynomial multiplication unit by 2 and 4 times, respectively. These designs offer significant
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Table 12: Implementation results of Saber and comparison with related works on ZynqUl-
trascale+ platform

Design Key/Encaps/Decaps
[K Cycles]

Freq
[MHz]

Key/Encaps/Decap
[us] LUT FF Slices

D
SP BR

AM
Security Level 1

LightSaber x4 0.9/1/1.3 310 2.9/3.3/4.2 65,890 28,230 10,404 0 1.5
LightSaber x2 1.1/1.4/1.8 345 3.2/4.1/5.2 39,423 21,467 6,610 0 1.5
LightSaber 1.6/2.2/2.8 370 4.3/5.8/7.6 24,688 14,785 4,309 0 1.5
Unified Saber [83] 0.5/0.7/1 100 5.2/6.6/9.9 34,886 9,858 — 85 6.0
Unified Saber [74] 2.8/4/5 150 18.4/26.9/33.6 24,979 10,732 — 0 2.0

Security Level 3
Saber x4 1.3/1.5/1.9 310 4.3/4.8/6 48,895 27,715 7,726 0 1.5
Saber x2 1.8/2.2/2.8 345 5.2/6.5/8.1 32,099 21,037 5,294 0 1.5
Saber 2.7/3.7/4.7 370 7.3/10.1/12.7 21,352 14,232 3,763 0 1.5
Unified Saber [83] 0.9/1.4/1.7 100 9.4/14.0/16.8 34,886 9,858 — 85 6.0
Saber [74] 5.5/6.6/8 250 21.8/26.5/32.1 25,079 10,750 — 0 2.0
Unified Saber [74] 5.5/6.6/8 150 36.4/44.1/53.6 24,979 10,732 — 0 2.0

Security Level 5
FireSaber x4 2/2.1/2.6 310 6.5/6.9/8.5 38,268 27,677 6,348 0 1.5
FireSaber x2 2.9/3.4/4.1 345 8.4/9.8/11.9 25,760 21,035 4,239 0 1.5
FireSaber 4.9/5.9/7.1 370 13.2/15.9/19.3 20,383 14,239 3,408 0 1.5
Unified Saber [83] 1.5/1.8/2.3 100 15.3/18.1/23 34,886 9,858 — 85 6.0

improvements in latency at the cost of a substantial increase in the number of LUTs,
flip-flops, and slices. Overall, they are inferior in terms of the metric Latency2 ·Area. As
a result, they are not taken into account in other comparisons presented in this paper.
In Figs 12–14, the implementation described in [83] is denoted as Saber-Tsinghua, the
implementation from [74] as Saber-U.Birmingham, and our design as Saber-TW. Based on
these figures and Table 12, our implementation is clearly the fastest and the smallest in
terms of the number of LUTs, and maintains this advantage for all Saber operations.

5.4 Comparison of Round 3 candidates
In Figs. 3–14, we illustrate the dependence between the speed of the Round 3 candidates
(in the number operations per second, which, for all considered designs, is equivalent to
the inverse of latency in time units) and their resource utilization in LUTs. All other
components of resource utilization, such as the number of BRAMs or DSP units, are
omitted for simplicity. In terms of the percentage of the total amount of FPGA resources,
the utilization of LUTs is typically the highest. However, some exceptions to this typical
scenario may occasionally occur. In the legend of these figures, TW refers to This Work.

For security level 1, the number of implementations on Artix-7 FPGAs, illustrated
in Figs. 3–5, is 9 for key generation and 10 for encapsulation and decapsulation. These
implementations represent seven candidates, including all four finalists in the category
of KEMs. Saber is the fastest for all three major operations. CRYSTALS-Kyber is
clearly the second for key generation and decapsulation. In the case of encapsulation, it is
practically tied with NTRU-HRSS. NTRU-HRSS and NTRU-HPS are about 3x slower
than Saber for decapsulation and over 30x slower for key generation. FrodoKEM is at
least two orders of magnitude slower than Saber for all three operations. However, it
can be implemented using several times fewer LUTs. Classic McEliece is more than two
orders of magnitude slower than Saber for key generation, about an order of magnitude
slower for decapsulation, and only a few times slower for encapsulation. It also always
requires more LUTs. BIKE trails Saber by more than two orders of magnitude for key
generation, one order of magnitude for encapsulation, and almost four orders of magnitude
for decapsulation. The HQC results are available only for key generation. Its performance
is comparable to that of NTRU algorithms, i.e., over 30x lower than for Saber. Overall,
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Table 13: Artix-7 results for designs proposed and documented in this work
Key Generation

Level 1 Level 3 Level 5
Algorithm Time [us] Ratio Algorithm Time [us] Ratio Algorithm Time [us] Ratio
Saber 9.5 1.00 Kyber 12.0 1.00 Kyber 16.2 1.00
Kyber 10.0 1.05 Saber 15.9 1.33 Saber 28.8 1.78
NTRU-HRSS 323.8 34.08 NTRU-HPS 516.6 43.05
NTRU-HPS 370.6 39.01

Encapsulation
Level 1 Level 3 Level 5

Algorithm Time [us] Ratio Algorithm Time [us] Ratio Algorithm Time [us] Ratio
Saber 12.7 1.00 Kyber 17.0 1.00 Kyber 21.7 1.00
NTRU-HRSS 13.9 1.09 Saber 22.0 1.29 Saber 34.5 1.59
Kyber 14.7 1.16 NTRU-HPS 35.2 2.07
NTRU-HPS 28.4 2.24

Decapsulation
Level 1 Level 3 Level 5

Algorithm Time [us] Ratio Algorithm Time [us] Ratio Algorithm Time [us] Ratio
Saber 16.4 1.00 Kyber 22.2 1.00 Kyber 26.4 1.00
Kyber 20.5 1.25 Saber 27.5 1.24 Saber 41.9 1.59
NTRU-HPS 47.0 2.87 NTRU-HPS 63.8 2.87
NTRU-HRSS 55.2 3.37

four finalists – Saber, Kyber, NTRU, and Classic McEliece – clearly outperform three
alternates – FrodoKEM, BIKE, and HQC. Based on the data from Table 4, we can clearly
establish that SIKE is much slower than the four finalists as well. Among the finalists,
Saber and Kyber perform overall much better than NTRU and Classic McEliece.

The results for the security level 5 are shown in Figs. 6–8. The majority of Round 3
candidates either do not have implementations, or these implementations have exceeded
the resources of Artix-7 FPGAs. Kyber and Saber are in a virtual tie, with Kyber slightly
ahead for all operations.

For the security level 3, we present results for both Artix-7 (in Figs 9–11) and Zynq
UltraScale+ (in Figs 12–14). In the case of Artix-7, results are reported for all four finalists
and two alternates (FrodoKEM and BIKE). In the case of Zynq UltraScale+, the graphs
cover three lattice-based finalists and one alternate candidate, NTRU Prime. For all
operations, at the security level 3, Kyber outperforms Saber by a very small factor in terms
of both speed and area. NTRU (represented at this level only by NTRU-HPS) is more than
an order of magnitude slower for key generation and 2-3 times slower for encapsulation
and decapsulation. Classic McEliece slightly exceeds the speed of NTRU for encapsulation,
but lags behind by almost an order of magnitude for decapsulation and two orders of
magnitude for key generation. FrodoKEM and BIKE are orders of magnitude slower than
finalists for encapsulation and decapsulation, and better only than Classic McEliece for
key generation. The results obtained using Zynq UltraScale+ (or UltraScale+) seem to
indicate that Streamlined NTRU Prime lags at least two orders of magnitude behind the
best two candidates for each major operation. It is possible, however, that these results
are sub-optimal and biased by the fact that the designer’s primary goal was small resource
utilization. Three Saber designs are comparable in terms of speed and resource utilization.
However, the design proposed and documented in this work is clearly the best in terms of
both the speed and the usage of LUTs.

In Tables 13 and 14, the exact numerical results are presented for the execution times of
implementations proposed and described in this paper. These results clearly indicate that
NTRU is between 30 and 50 times slower than Saber for the key generation at both level 1
and level 3. NTRU is also about 2-4 times slower than Saber for decapsulation. Only for
encapsulation, the performance of NTRU becomes comparable. Kyber is between 5% and
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Table 14: Zynq UltraScale+ results for designs proposed and documented in this work
Key Generation

Level 1 Level 3 Level 5
Algorithm Time [us] Ratio Algorithm Time [us] Ratio Algorithm Time [us] Ratio
Saber 4.3 1.00 Kyber 5.9 1.00 Kyber 7.9 1.00
Kyber 4.9 1.14 Saber 7.3 1.24 Saber 13.2 1.67
NTRU-HRSS 172.7 40.16 NTRU-HPS 268.6 44.81
NTRU-HPS 192.7 48.18

Encapsulation
Level 1 Level 3 Level 5

Algorithm Time [us] Ratio Algorithm Time [us] Ratio Algorithm Time [us] Ratio
Saber 5.8 1.00 Kyber 8.3 1.00 Kyber 10.6 1.00
Kyber 7.2 1.24 Saber 10.1 1.22 Saber 15.9 1.50
NTRU-HRSS 7.4 1.28 NTRU-HPS 18.3 1.81
NTRU-HPS 14.7 2.53

Decapsulation
Level 1 Level 3 Level 5

Algorithm Time [us] Ratio Algorithm Time [us] Ratio Algorithm Time [us] Ratio
Saber 7.6 1.00 Kyber 10.9 1.00 Kyber 12.9 1.00
Kyber 10.0 1.32 Saber 12.7 1.17 Saber 19.3 1.50
NTRU-HPS 25.1 3.30 NTRU-HPS 34.0 3.12
NTRU-HRSS 29.4 3.87

32% slower at level 1. It outperforms Saber in all rankings at levels 3 by a factor ranging
between 17% and 33%. At level 5, the advantage of Kyber increases to the range 50%-80%.
The reasons for the change in the ranking of Kyber and Saber depending on the security
level are as follows. In Kyber, the NTT-based multiplier is quite small and sequential.
Therefore, it is justifiable to use 2, 3, and 4 multipliers at the security levels 1, 3, and
5, respectively (as described in Appendix A). In Saber, the schoolbook multiplier is big
and parallel. Therefore, increasing the number of multipliers is not justifiable, as a small
increase in speed causes a large increase in area. Consequently, the relative performance of
Kyber increases at higher security levels.

6 Conclusions
In this paper, we have proposed, documented, and benchmarked a) the first complete
hardware implementations of two variants of NTRU (NTRU-HRSS and NTRU-HPS),
as defined in the submissions to Rounds 2 and 3 of the NIST PQC standardization
process; b) the best high-speed implementation of Saber, outperforming competing designs
in terms of both speed and resource utilization, and c) the fastest implementation of
CRYSTALS-KYBER. All designs are fully reproducible, and their source code will be
released as open-source after the acceptance of this paper to a journal or a conference with
proceedings.

We also have comprehensively reviewed the related literature and collected information
about hardware and software/hardware implementations of all Round 3 candidates in
the category of Key Encapsulation Mechanisms (KEMs). Our analysis reveals that four
NIST PQC finalists significantly outperform all alternate candidates when implemented in
hardware with speed as a primary optimization target. Among the four finalists, Saber
and CRYSTALS-Kyber significantly outperform NTRU and Classic McEliece for at least
a subset of all operations. The differences between the two top candidates are relatively
minor. Saber seems to exhibit a minor advantage at the security level 1. However, this
advantage dissipates when the security level is increased. In particular, at the security
level 5, Kyber is at least 50% faster than Saber.
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A CRYSTALS-Kyber

A.1 Algorithms

CRYSTALS-Kyber [7] is a lattice-based CCA-secure key encapsulation mechanism (KEM)
based on the Module Learning with Errors problem (MLWE). Kyber provides three
parameter sets, Kyber512, Kyber768, and Kyber1024, corresponding to NIST security
levels 1, 3, and 5. Kyber constructs its CCA-KEM primitives (key generation, encapsulation,
and decapsulation) over CPA-secure public-key encryption (PKE) primitives (KeyGen,
Encrypt, Decrypt) through a variant of the Fujisaki-Okamoto transform [31, 39].

For all security levels, polynomials are of the same degree n = 256, and their coefficients
are members of the base prime field Zq, where q = 3329. However, a different number of
polynomials is required for each security level. These polynomials are treated as a vector.
The size of this vector is specified using the parameter k. k is 2, 3, and 4 for security levels
1, 3, and 5, respectively. Secret noise polynomials are sampled from a Centered Binomial
Distribution (CBD), where η is either 2 or 3.

Pseudocode of the Kyber CPAPKE Key Generation, Encryption, and Decryption are
given in algorithms 1, 2, and 3, respectively. Kyber CCA KEM schemes are built upon the
CPAPKE operations, multiple hashing operations, and the FO transformation to achieve
the IND-CCA2 security.

The detailed algorithms of the Kyber CCAKEM Key Generation, Encapsulation, and
Decapsulation are shown in algorithms 4, 5 and 6. Here is the meaning of notation used
in these algorithms:

• XOF: SHAKE128

• H: SHA3-256

• G: SHA3-512

• PRF(s, b): SHAKE256(s||b)

• KDF: SHAKE256

• CBDeta: Sample from centered binomial distribution η ∈ {2, 3}.

• Parse: Sample from uniform distribution using rejection sampling and then perform
NTT.

• Decodel: deserialize an array of 32l bytes into a polynomial f = f0 + f1X + . . . +
f255X

255 with each coefficient fi in 0, . . . , 2l − 1

• Encodel: inverse of Decodel

• Compressq(x, d): perform compression by taking an element x ∈ Zq and outputting
an integer in 0, . . . , 2d − 1, where d <

⌈
log2(q)

⌉
• Decompressq(x, d): perform decompression, defined such that
x′ = Decompressq(Compressq(x, d), d)
is an element close to x, specifically: |x′ − x mod±q| ≤ Bq :=

⌈
q

2d+1

⌋
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Algorithm 1 Kyber.CPAPKE.KeyGen() [6]
Output: Secret key sk
Output: Public key pk
1: d $←− {0, 1}256

2: (ρ|σ)← G(d)
3: for i from 0 to k − 1 do
4: for j from 0 to k − 1 do
5: Â[i][j]← Parse(XOF(ρ, j, i))
6: end for
7: end for
8: for i from 0 to k − 1 do
9: s[i]← CBDη(PRF(σ, i))
10: end for
11: for i from 0 to k − 1 do
12: e[i]← CBDη(PRF(σ, i+ k))
13: end for
14: ŝ← NTT(s)
15: ê← NTT(e)
16: t̂← (Â ◦ ŝ + ê)
17: pk ← Encode(̂t) |ρ
18: sk ← Encode(̂s)
19: return (pk, sk)

Algorithm 2 Kyber.CPAPKE.Enc(pk,m, r) [6]
Input: Public key pk
Input: Message m
Input: Random coins coins
Output: Ciphertext c
1: (pk′|ρ)← pk, pk′ ∈ {0, 1}256·12k

2: t̂← Decode(pk′)
3: for i from 0 to k − 1 do
4: for j from 0 to k − 1 do
5: ÂT [i][j]← Parse(XOF(ρ, i, j))
6: end for
7: end for
8: for i from 0 to k − 1 do
9: r[i]← CBDη(PRF(coins, i))
10: end for
11: for i from 0 to k − 1 do
12: e1[i]← CBDη(PRF(coins, i+ k))
13: end for
14: e2 ← CBDη(PRF(coins, 2k))
15: r̂← NTT(r)
16: u← NTT−1(ÂT ◦ r̂) + e1
17: v ← NTT−1(̂tT ◦ r̂) + e2 + Decompress(m, 1)
18: c1 ← Compress(u, du)
19: c2 ← Compress(v, dv)
20: c← (c1|c2)
21: return c
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Algorithm 3 Kyber.CPAPKE.Dec(sk, c) [6]
Input: Secret key sk
Input: Ciphertext c
Output: Message m
1: (c1|c2)← c
2: u← Decompress(c1, du)
3: v ← Decompress(c2, dv)
4: ŝ← Decode(sk)
5: û← NTT(u)
6: µ← v −NTT−1(̂s ◦ û)
7: m← Compress(µ, 1)
8: return m

Algorithm 4 Kyber.CCAKEM.KeyGen() [6]
Output: Public key pk
Output: Secret key sk

1: (pk, sk′)← Kyber.CPAPKE.KeyGen()
2: z $←− {0, 1}256

3: sk ← (sk′|pk|H(pk)|z)
4: return (pk, sk)

Algorithm 5 Kyber.CCAKEM.Encap(pk) [6]
Input: Public key pk
Output: Ciphertext c
Output: Shared secret ss
1: m′ $←− {0, 1}256

2: m← H(m′)
3: (s̄s|r)← G(m|H(pk)) s̄s, r ∈ {0, 1}256

4: c← Kyber.CPAPKE.Enc(pk,m, r)
5: ss← KDF(s̄s|H(c))
6: return (c, ss)

Algorithm 6 Kyber.CCAKEM.Decap(c, sk) [6]
Input: Ciphertext: ct
Input: Secret key: sk, public key: pk, hpk = H(pk), failure random z
Output: Shared secret ss ∈ {0, 1}256

1: m′ ← Kyber.CPAPKE.Dec(sk′, c)
2: (s̄s|r′)← G(m′|hpk) s̄s, r ∈ {0, 1}256

3: c′ ← Kyber.CPAPKE.Enc(pk,m′, r′)
4: ss← if (H(c′) = H(c)) KDF(s̄s|H(c)) else KDF(z|H(c))
5: return ss
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A.2 Polynomial Multiplication
A basic operation in lattice-based cryptography (LBC) schemes is the multiplication of
two polynomials. In Kyber the polynomials are elements of Rq = Zq[X]/〈Xn + 1〉.

An efficient method for the computation of polynomial convolution in Rq is through
the use of the Number-Theoretic Transform (NTT) [26] which is a generalization of the
Discrete Fourier Transform (DFT) to the finite ring Zq. Since the Round 2 version, Kyber
uses n = 256 and q = 3329 = 13 · 28 + 1 where 2n - q − 1 = 13 · 28. To make efficient
NTT multiplication possible, a new definition of NTT was provided, which transforms a
polynomial of degree 256 to a polynomial of degree 128 made up of degree one polynomials
as its coefficients.

f̂k = f mod (X2 − ζ(2k+1)) (1)

In other words f̂ consists of 128 polynomials of degree one:

f̂k = f mod (X2 − ζ(2k+1)) = ˆ̂
f2k + ˆ̂

f2k+1X (2)

The sequence of 128 coefficient pairs of degree 1 polynomials can be viewed as a
polynomial of degree 256 and then the NTT transform can be expressed separately for the
odd and even coefficients:

Point-wise multiplication consists of 128 basic products f̂ · ĝ mod X2 − ζ(2i+1):

ˆ̂
h2i + ˆ̂

h2i+1X = ( ˆ̂
f2i + ˆ̂

f2i+1X)(ˆ̂g2i + ˆ̂g2i+1X)

=
( ˆ̂
f2i ˆ̂g2i + ζ(2i+1) ˆ̂

f2i+1 ˆ̂g2i+1

)
+
( ˆ̂
f2i ˆ̂g2i+1 + ˆ̂

f2i+1 ˆ̂g2i

)
X (3)

A.3 Hardware Architecture
The proposed hardware architecture for Round 3 Kyber supports the following variants
and operations: a) CPA-PKE: Key Generation, Encryption, and Decryption, and b)
CCA-KEM: Key Generation, Encapsulation, and Decapsulation. The top-level unit is
shown in Fig. 15. The hardware is implemented in Chisel hardware design language [9][49]
and incorporates state of the art techniques for optimizing speed and minimizing the
resource overhead.

PNMUHSU
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1R1W 

Serialize

in Compress 
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  k PK RAM 
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Decompress 
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Figure 15: Block diagram of the Kyber top-level datapath
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A.3.1 Polynomial NTT and Multiplication Unit

The Polynomial NTT/Multiplication Unit (PNMU) performs forward and inverse NTT
operations, as well as point-wise multiplication and accumulation. The top-level block
diagram of PNMU is shown in Fig. 16. For security level K, we use k instances of the
PNMU module to allow for overlapping NTT and MAC operations on k polynomials of a
vector. Each PNMU instance has its own dedicated operating RAM (NTT RAM) as well
as a dedicated input FIFO (inFIFO), to minimize stalls when the module is busy.

A logical word of the NTT RAM consists of four coefficients. In each butterfly unit, two
consecutive operations are performed on two pairs of read coefficients, enabling an efficient
memory access scheme similar to [71]. In the DIT configuration, two input coefficients (out
of four) need to be swapped. The Head Reorder and Tail Reorder units are responsible
for this reordering inside coefficient pairs. The same reordering is required for the output
of the DIF butterfly. No extra reordering or scaling steps are required for either of the
forward or inverse NTT operations.

The data-path of the NTT units consists of two parallel configurable radix-2 butterflies,
which can operate in three modes of operation: DIT NTT, DIF iNTT, and point-wise
multiply-accumulate (MAC). As the computation of NTT (and INTT) for odd and even
coefficients can be carried out independently, we deploy two butterflies operating in parallel.
. This architecture allows for a more efficient implementation as the address generation
and control circuits are shared. Also as four coefficients can be efficiently packed in three
18-bit wide BRAM banks in a Simple Dual-Port configuration.

The result of the inverse NTT operation needs to be scaled by n−1. In straightforward
software and hardware implementations of NTT the scaling is performed in a separate step
requiring n additional field multiplications for each polynomial. By performing a division
by 2 (mod q) at each layer of inverse NTT, the scaling step can be entirely avoided. This
observation was also used by Zhang et al. [82]. In that implementation, two divide-by-2
hardware units are utilized to scale both outputs of the radix-2 INTT butterfly. In our
implementation, we use a single divide-by-2 unit for each butterfly, and the other output
of each butterfly is scaled by adjusting twiddle factors of the inverse transform.

The twiddle factors are stored in a separate ROM, which is mapped to BRAM-based
memory during the FPGA synthesis. While only 128 twiddle constants are sufficient for
both forward and inverse NTT operations, as we’re storing the twiddle factors in a Block
RAM with available extra capacity, an additional scaled copy (scaled by 2−1 mod q) of
the twiddle factors is also kept to eliminate an extra scaling step and the need for scaling
hardware in one side of the DIF butterfly. This also eliminates need for generation of
different twiddle-factor index sequence during the inverse NTT operation.

The point-wise multiplication of polynomials a and b (both in NTT domain) is performed
on base degree 1 polynomials in the form of a2i + a2i+1X and b2i + b2i+1X. The resulting
polynomial c = a ∗ b is calculated using the following formula:

c2i + c2i+1X = (a2i + a2i+1X)(b2i + b2i+1X) mod X2 − ζi

which results to: {
c2i = a2ib2i + a2i+1b2i+1ζi

c2i+1 = a2ib2i+1 + a2i+1b2i

The straightforward formulation requires 5 modular multiplications for producing a pair
of coefficients. By using the Karatsuba method, the number of modular multiplications
can be reduced to 4:{

c2i = a2ib2i + a2i+1b2i+1ζi

c2i+1 = (a2i + a2i+1)(b2i + b2i+1)− a2ib2i − a2i+1b2i+1
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Figure 16: Block diagram of the NTT.

By adding some multiplexers and careful scheduling of the butterfly pipelines, the same
resources are used to perform the point-wise multiplication and accumulation (MAC).
The scheduling of the butterflies for point-wise multiplication is shown in Figure 17. The
butterfly pipeline is interleaved with the first pass of operations entering the pipeline and
the second pass of operations coming from the feedback loop. This results in the complete
utilization of the multiplier and reduction units of both butterflies in each cycle. The
multiplication and accumulation of each polynomial require 128 cycles (plus 12 additional
cycles to clear the pipeline).

A.3.2 Barrett reduction with support for division

Coefficients of polynomials are elements of a finite field (or ring) Zq, where q is a small
constant modulus (less than 20 bits). In Kyber q is a prime. This choice requires a
modular reduction step after most arithmetic operations to keep the bit width of the
data bounded. Variants of Barrett [13], Montgomery [62], K-RED [56], and SAMS2 [55]
reduction algorithms have been widely used in software and hardware implementations of
R-LWE schemes.

We use an optimized variant of the Barrett reduction algorithm shown in Algorithm 7.
As shown by Knezevic et al. [52], by careful selection of parameters α and β, only one
level of conditional subtraction will be required. The hardware generator code creates
optimized single constant multipliers (SCM) based on shift-adder trees and ternary adders
based on [54].

A.3.3 Keccak and Sampling Unit

Kyber uses the SHA3-256 and SHA3-512 hash functions as well as SHAKE128 and
SHAKE256 extendable-output functions. All of them are based on the Keccak permutation.
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PWM0: First pass through the pipeline PWM1: Second pass via feedback

Figure 17: Point-wise multiplication and accumulation (MAC) using the NTT butterflies

Our Keccak implementation takes advantage of the full-width, basic iterative architecture,
which performs 24 rounds in 24 clock cycles. The data input and output are 64 bits wide
with the valid-ready (decoupled) interface. Keccak and Sampling Unit (KSU) integrates
the Keccak with CBD and rejection-based samplers.

A.3.4 Centered Binomial Sampler

The CBD module in Kyber is responsible for performing binomial sampling. Kyber requires
12 bits of random data generated by SHAKE module to generate four coefficients per clock
cycle. Two CBD parameters η1 and η2 are used. η2 = 2 for all security levels, η1 = 3 for
security Level 1 and η1 = 2 for the other security levels. The samples are calculated from
formula 4.

Bη =
η∑
i=1

(ai − bi) (4)

Hamming weights of the input chunks of the size η ∈ {2, 3} are calculated. Negative results
are mapped to positive values through a lookup table.

A.3.5 Rejection-based Sampler

In order to minimize the size of the public key, the public matrix A (or its transpose AT )
is generated through the rejection-based sampling of a deterministic random source. The
uniform random is generated using SHAKE128 from the public key seed. The output
from SHAKE is partitioned into groups of 12 bits, and the resulting unsigned value is
only accepted as a valid coefficient if it is less than q = 3329. This gives a probability of
81.27% for a sample to be valid. As k2 sampled polynomials need to be generated through
multiple invocations of the Keccak permutation and filtering of coefficients, this step is
one of the bottlenecks in Kyber hardware scheduling. The rejection-based sampling of A is
inherently not constant time, but any timing variation entirely depends on the public key
seed and therefore would not expose any secrets. The Rejection Sampling submodule of the
KSU is able to construct a polynomial of 256 coefficients in an average time of 82 cycles.
The output will then be delivered to the PNMU for the execution of the matrix-vector
multiplication.
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Algorithm 7 Optimized Barrett Modular Reduction and Division
Require: 0 ≤ u ≤ (q − 1)2

Ensure: r = u mod q, r ∈ [0, q) . remainder
Ensure: u = d.q + r mod q, d ∈ [0, q) . quotient

Generation Time: Find optimal values for α and β such that:
1. Only a single conditional subtraction is required
2. Multiplication with the constant µ has minimal hardware complexity.
For Kyber Round 3:
q := 3329, n := dlog2(q)e = 12, α := 12, β := −2, µ := b 2n+α

q
c = 5039

function BarrettReduce(u)
uh ← u� (n+ β) . discard n+ β least-significant bits
d← (µ · uh)� (α− β) . discard α− β least-significant bits
r ← u− d · q
if r ≥ q then . conditional subtraction

r ← r − q
d← d+ 1

end if
end function

A.3.6 Comparison of re-encrypted Ciphertext

During decapsulation, instead of comparing the re-encrypted ciphertext with the received
ciphertext, we first generate H(ct) of the original ciphertext. After re-encryption the
hash of the re-encrypted ciphertext (H(ct′)) is computed, and then only the hashes are
compared. This eliminates the need for keeping the original ciphertext. This design
decision has negligible cycle overhead but allows a simpler control circuit and also provides
a path towards protection against ciphertext malleability side-channel attacks. Additional
protection against power and electromagnetic side-channel attacks for this design is under
development and will be presented in our future work.

A.3.7 Improvements over Previous Work

A state-of-the-art hardware implementation of Kyber is reported in [81]. Our design has
been conducted independently. Both designs employ all relevant optimization techniques
reported before, including:

• Flexible DIF/DIT butterflies for performing forward/inverse NTT transforms with
efficient resource sharing and avoiding any extra shuffling (bit-reverse ordering) steps.

• Efficient division by two at each step of inverse NTT, eliminating the need for the
scaling step.

• Parallel processing of even and odd coefficients using a double-butterfly structure.

• Reuse of DIF/DIT butterflies for performing Kyber’s point-wise multiplication.

• Use of Karatsuba algorithm to reduce number of field multiplications for point-wise
multiplications from 5 to 4.

Our improvements over previous work are as follows:
Our high-level architecture and scheduling are based on the use of K Polynomial

NTT/Multiplication Units (PNMUs) and a single Hash/Sampling unit (HSU). In [81], only
a single set of these units is used. Our PNMUs are developed to have low area (around
940 LUTs each). As a result, they allow efficient exploitation of Kyber’s algorithm-level
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parallelism by setting K to 2, 3, and 4 for the security levels 1, 3, and 5, respectively.
Through the design space exploration, we determined that using K PNMUs is optimal
from the point of view of our optimization metric, Latency2 ·Area.

We support efficient reuse of NTT butterflies for point-wise multiplication (PWM) and
the Multiply-Accumulate (MAC) operation. As in [81], we utilize the Karatsuba method
to reduce the number of required field multiplications. However, we developed a more
resource-efficient mapping of operations. Unlike [81], we support the accumulation of
NTT-domain polynomials, which eliminates the extra cycles for load/add/store during
multiplication by matrix A (used in Keygen, Encap, Decap) and the extra NTT-domain
addition (in KeyGen). We also eliminate the need for an extra "accumulate" unit used
in [81].

We support a more efficient NTT/PWM memory access, reducing the memory require-
ment of each PNMU to 1-read 1-write (1R1W) 64x48-bit RAM. In Xilinx FPGAs, this
memory is mapped to a single BRAM tile (36 Kb block RAM) in the simple dual-port
(SDP) mode of operation. Efficient "Head/Tail Re-order" units of the double-butterfly
structure perform online re-ordering of coefficients entering/exiting the butterfly pipeline
in NTT/invNTT (as a Multi-path Delay Commutator) as well as the re-ordeing required
for PWM/MAC. The double-butterfly structure computes the point-wise multiplication
through interleaved reiteration of the pipeline as depicted in Figure 17.

Our deeply pipelined butterfly implementation, including 12 stages, results in a higher
maximum clock frequency. The optimized control circuit can skip pipeline flushing stalls
whenever possible.

We have developed an optimized reduction unit based on a tweaked version of Barrett’s
algorithm. This unit has been shown to be faster and more efficient than the other
implementations of modular reduction suggested in the literature. It also computes the
division by q, required for a fast and efficient implementation of the compression step. As
a bonus, our hardware generation code works perfectly for any value of q, including the
value used in CRYSTALS-DILITHIUM.

Our fast and efficient implementation of the Rejection sampler processes four coefficients
at a time, reducing the "Parse" step to an average of 116 cycles per polynomial.

Our fast implementations of Keccak and the CBD sampler are integrated together into
an optimized Hash/Sampler Unit.

Our fast and efficient Keecak implementation has input and output widths of 64 bits,
with decoupled output and efficient SHA3/SHAKE padding of the input words.

Efficient implementation of the CBD sampler which can simultaneously supports η
values 2 and 3 (for security level 1) and provide output in the standard range.

Finally, unlike [81], our design is technology-independent and does not employ any
vendor-specific IPs. These features allow for easy deployment on FPGA platforms other
than Xilinx, use of synthesis flows other than Vivado (including open-source FPGA flows),
as well as porting to ASICs.
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B NTRU

B.1 Algorithms

Definitions and Parameters: Φ1 is (x− 1). Φn is (xn− 1)/Φ1 = xn−1 + xn−2 + . . .+ x+ 1 .
From the implementation point of view, all operations in NTRU are polynomial operations
over the quotient rings Rq, Sq and Sp where Rq : Zq[x]/Φ1Φn, Sq : Zq[x]/Φn, and
Sp : Zp[x]/Φn. Parameter p is fixed to 3 in all parameter sets of NTRU. Thus, polynomials
in Sp are in ternary form, i.e., have their coefficients in {−1, 0, 1}. In this paper, for
NTRU, we use the notation Sp and S3 interchangeably. Coefficients of polynomials in Rq
and Sq have bit-widths of εq = log2q and those of polynomials in Sp have bit-widths of
εp = dlog2pe.

Algorithm 8 NTRU PKE Keypair
Input: fg_bits
Output: pk = packed_h and sk = (packed_f,
packed_fp, packed_hq)
1: (f, g)← Sample(fg_bits)
2: fp ← f−1 mod (3,Φn)
3: G← 3 · g
4: v0 ← (G · f) mod (q,Φn)
5: v1 ← v−1

0 mod (q,Φn)
6: h← (v1 ·G ·G) mod (q,Φ1Φn)
7: hq ← (v1 · f · f) mod (q,Φ1Φn)
8: sk ← (pack_εp(f), pack_εp(fp),

pack_εq(hq))
9: pk ← pack_εq(h)

Algorithm 9 NTRU KEM Keypair
Input: Random seed seeds
Output: pk = packed_h and sk =
(packed_f, packed_fp, packed_hq, s)
1: (fg_bits, prf_key)← SHAKE128(seeds)
2: packed_h, packed_f, packed_fp,
packed_hq ← PKE.KeyPair(fg_bits)

3: sk ← (packed_f, packed_fp, packed_hq,
bits_to_bytes(prf_key))

4: pk ← packed_h

Algorithm 10 NTRU PKE Encryption
Input: pk = packed_h, r and m
Output: packed_c
1: m′ ← Lift(m)
2: h← unpack_εq(packed_h)
3: c← (r · h+m′) mod (q,Φ1Φn)
4: packed_c← pack_εq(c)

Algorithm 11 NTRU DPKE Decryption
Input: sk = (packed_f, packed_fp,
packed_hq) and packed_c
Output: r,m, fail
1: if c 6≡ 0 (mod (q,Φ1)) return (0, 0, 1)
2: c← unpacked_εq(packed_c)
3: f ← unpacked_εp(packed_f)
4: a′ ← (c · f) mod (q,Φ1Φn)
5: a← Rq_to_S3(a′)
6: fp ← unpacked_εp(packed_fp)
7: m← (a · fp) mod (3,Φn)
8: hq ← unpacked_εq(packed_hq)
9: m′ ← Lift(m)
10: r ← ((c−m′) · hq) mod (q,Φn)
11: if (r,m) valid return (r,m, 0) else return

(0, 0, 1)

Algorithm 12 NTRU KEM Encapsulation
Input: pk = packed_h and seed
Output: packed_c and shared key K
1: seedrm ← SHAKE-128(seed)
2: (r,m)← Sample(seedrm)
3: packed_c← PKE.Encrypt(pk, (r,m))
4: packed_rm← (pack_εp(r), pack_εp(m))
5: K ← Hash(packed_rm)

Algorithm 13 NTRU KEM Decapsulation
Input: sk = (packed_f, packed_fp,
packed_hq, s) and packed_c
Output: Shared key K
1: (r,m, fail)← PKE.Decrypt((packed_f,
packed_fp, packed_hq), packed_c)

2: packed_rm← (pack_εp(r), pack_εp(m))
3: k1 ← H1(r,m)
4: k2 ← H2(s, packed_c)
5: if fail == 0 then
6: K ← k1
7: else
8: K ← k2
9: end if
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Figure 18: Top-level block diagrams of the Encapsulation and Decapsulation modules
of NTRU. The purple, blue modules are used only in Encapsulation and Decapsulation,
respectively.

In NTRU-HRSS, polynomial f , which is a part of the secret key, is required to have
non-negative correlation property,

∑
i fifi+1 ≥ 0. In NTRU-HPS, polynomial m in Sp

has the fixed-weight property, consisting of d/2 coefficients equal to 1 and d/2 coefficients
equal to −1, with d = q/8− 2. Having the fixed-weight property of m ensures that the
ciphertext c ≡ 0 (mod (q,Φ1)) in NTRU-HPS. In NTRU-HRSS, in order to achieve the
same property of c, m is lifted from S3 to Rq by the map m 7→ Φ1 · S3(m/Φ1).

The key generation, encryption and decryption of the PKE scheme of NTRU are
shown in Algorithms 8, 10 and 11, respectively [20]. The IND-CCA2 NTRU KEM in
Algorithms 9, 12 and 13, is based on the Saito-Xagawa-Yamakawa variant of the NTRU-
HRSS KEM, with improvements that eliminate re-encryption during decapsulation. In
the reference implementation of NTRU, the Sample function performs ternary sampling
on random input, which requires kilobytes of random data per each operation of key
generation or encapsulation. We chose to deviate from the reference implementation
by using only 32-byte random input data and expanding it using SHAKE128. Sample
generates polynomials in ternary form, which may have either an arbitrary or a fixed
weight and/or non-negative correlation property. The top-level diagram of NTRU is shown
in Fig. 18.

During key generation, two polynomial inversions are performed in S3 (mod (3,Φn))
and Sq (mod (q,Φn)). To reduce space requirements, all coefficients of polynomials modulo
q or p are packed together by unpack_εq and unpack_εp. Thus, they must be unpacked
before being used in any operation. The Lift function lifts polynomial in S3 to Rq. The most
critical operation is polynomial multiplication in Rq ( mod (q,Φn)). Other multiplication
operations in S3 or Sq can be performed by doing multiplication in Rq, followed by modulo
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Figure 19: FIFO-based merge sort module for NTRUHPS2048677.

(3,Φn) or (q,Φn), respectively. During decryption, the ciphertext c is checked to determine
if c ≡ 0 (mod (q,Φ1)). As described in the specification [20], if c is unpacked by unpack_εq,
we only need to check whether the unused bits of the final byte of c are all zeros. r and
m are also needed to be checked if they are in the plaintext space, which means their
coefficients are in the ternary form, and for NTRU-HPS, m must have the correct fixed
weight.

B.2 Hardware Architecture
B.2.1 Ternary Sampling

For NTRU-HRSS, the generation of f and g is performed in S3 during key generation.
Random bytes coming from SHAKE128 are reduced modulo 3 to obtain the ternary
coefficients stored in a first-in first-out (FIFO) unit. The sum of products of consecutive
coefficients s =

∑
i fifi+1 is computed at the same time. After finishing generating all

coefficients, if s < 0, coefficients at even indices are signed-flipped before being transferred
to the next computational stage. Thus, the non-negative correlation properties of f and
g are satisfied. g is later multiplied by x − 1, which can be carried out trivially during
the transfer. During encryption, r and m do not have either the non-negative correlation
property or fixed-weight. They can be computed by simply reducing random data modulo
3.

For NTRU-HPS, f and r have arbitrary weight and can be sampled in a straightforward
manner. However, m and g have fixed weight and are sampled by creating a random
permutation of a list with a fixed number of values −1, 0 and 1. One can simply perform
Fisher-Yates shuffle to have a random non-biased permutation of such a list. However,
Fisher-Yates shuffle is not constant-time and creates a risk of potential timing attacks.
Given that, we adopt a constant-time merge sorting approach for the permutation. The
merge-sort module requires n random elements. Each element includes 30 random bits
concatenated with "01" for the first w/2 elements, "10" for the next d/2 elements, and "00"
for the rest. To get a 30-bit block, a 64-bit input is passed through a PISO, to be divided
into two 32-bit blocks. Each 32-bit block is then processed using a buffer register and a
variable shifter to get a 30-bit block. The leftover bits are stored in the buffer register to
be concatenated with the subsequent output of PISO. After sorting, the upper 30 bits are
discarded, and the lower 2 bits are converted from {0, 1, 2} to {0, 1,−1}.

Related works: Wang et al. [77] proposed a fully pipelined constant-time merge sort
module to generate random permutation in the Key Generation operation of Classic
McEliece. To sort a random list of n elements, the module needs log2(n) iterations,
where each step requires O(n) comparison operations. Therefore, the total cycle count is
approximately equal to nlog2(n) cycles. Marotzke [58] implemented an iterative Batcher’s
merge exchange sort module for a very similar sampling function in the Streamlined NTRU
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Table 15: Implementation Results of the FIFO-based Merge Sort module and comparison
with related works.

Freq. LUT FF BRAM DSP Cycles
NTRUPRime: n = 761, w = 32, Zynq Ultrascale+

Batcher’s Merge Exchange Sort [58] 279 231 87 1.0 0 49,400
FIFO-based Merge Sort 250 1,441 940 3.5 0 2,762

ClassicMcEliece: n = 8192, w = 45, Zynq Ultrascale+
4x Pipelined Merge Sort [78] 250 583 411 20.0 0 147,505
FIFO-based Merge Sort 250 2,533 1,589 33.0 0 26,646

Prime. Its operation also have asymptotic complexity of O(nlog2(n)).
To speed up this operation, we use a merge-sort module consisting of log2(n) cascaded

Sort Stages to sort the random sequences. The FIFO-based merge-sort module for NTRU-
HPS677 is shown in Fig. 19. The inputs to each Sort Stage are two sorted lists, and the
output is a sorted list of double input length, including all elements from the two input
lists. Each input list is stored in a separate segment of memory. While the lower stages
can be implemented by registers, the higher stages are implemented in dual-port memory.
This approach can reduce the number of LUTs and FFs used to construct the large FIFO
in higher stages at the cost of a small number of BRAMs. The internal structure of a
Sort Stage is shown in Fig 20. By making use of the dual-port memory, the controller in
each stage can write out the sorted list to the next stage and receive other input lists from
the previous stage at the same time. By pipelining the operation of multiple Sort Stages,
we can achieve a highly optimized latency for sorting. Our merge-sort module requires n
clock cycles for reading n elements, roughly n cycles for sorting, and another n cycles to
write out a sorted sequence.

The comparison of our FIFO-based merge sort module with previous work is shown
in Table 15. We synthesize our module with the parameters used in [58] and [77]. Since
the code of [77] is open-source, we can synthesize their merge-sort module targeting the
same platform, Zynq Ultrascale+, and obtain results. Our FIFO-based merge sort module
outperforms the previous designs by roughly an order of magnitude, excluding the time to
load input and unload output. Although the increase in resource utilization is significant,
it is still a quite compact design, suitable for high-speed applications that require random
constant-time permutation.
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Figure 21: Toom-Cook 3 Polynomial Multiplier w/ Overlap-free Karatsuba.

B.2.2 Polynomial Multiplication

In all previous work on hardware implementations of NTRU, the polynomial multipliers
always exploited the property of small ternary coefficients. The schoolbook multiplication
has quadratic-complexity but enables simple, parallel, easy-to-parameterize, and very
fast architecture for polynomial multiplication in NTRU. In [57], an efficient architecture
based on Toom-Cook algorithm is proposed in a Software/Hardware codesign platform.
Toom-Cook 4-way was applied to divide polynomial multiplication of 256 coefficients into
seven multiplications with 64 coefficients. These seven multiplications are run in parallel
using seven schoolbook polynomial multipliers.

In the AVX2 implementation of the NTRU submission package [64], a multi-layer
Toom-Cook and Karatsuba is used to speed up the multiplication. In the recent work [21],
an NTT-based polynomial multiplication is proposed, which outperforms the Toom-Cook
method. However, the NTT-based polynomial multiplication was also applied to only
multiplication with ternary polynomials. Therefore, it is not applied to speed up key
generation and the final multiplication in decryption, which does not have any input
polynomial in ternary form.
Toom-Cook Polynomial Multiplier. In this work, for multiplication without involving
ternary polynomial, we implement a Toom-Cook 3-way polynomial multiplier, which splits
an n-coefficient polynomial multiplication into five multiplications with n/3 coefficients.
The five multiplications are performed in parallel using five Odd-Even Karatsuba multipliers.
Our improvements over [57] include:

• Our implementation supports splitting input polynomials into three smaller polyno-
mials before Evaluation step. The Toom-Cook core in [57] relies on software to do
this operation.

• Using the Odd-Even Karatsuba method significantly improves the latency of the
multiplication step.
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Figure 22: Recomposition in Rq.

• Our core supports Recomposition, which has the output polynomial in the ring Rq.
In [57], 5 output polynomials are transferred to software and are then recomposed
into a single polynomial.

Toom-Cook and Karatsuba are multiplication algorithms that have better asymptotic
complexity compared to the schoolbook method. Toom-Cook k-way is a generalization of
Karatsuba with k = 2. Both algorithms generally follow five steps: splitting, evaluation,
pointwise-multiplication, interpolation, and recomposition. The input polynomials are
split into 2k − 1 polynomials with n/k coefficients. These polynomials are then evaluated
at 2k − 1 points. The evaluated polynomials are multiplied in the pointwise-multiplication
steps. The results are interpolated as an opposite of the evaluation step. The output
polynomials of the interpolation step are finally recomposed into the final product.

The top-level diagram of Toom-Cook 3-way module is shown in Fig. 21. Toom-
Cook 3-way splits input polynomial A(x) into three polynomial a0, a1 and a2 such that
A(y) = a0 + a1y + a2y, where y = dn/3e. a0, a1 and a2 are then evaluated at five points
{0, 1,−1, 2 and ∞}. The pointwise multiplications are performed by Odd-Even Karatsuba
modules. We adopt the optimal sequence for evaluation and interpolation in the Toom-
Cook 3-way from Bodrato et al. [18]. We would like to highlight that during evaluation,
there is a division by 2, which becomes a one-bit shift and causes a one-bit loss of precision.
Therefore, the pointwise multiplication and interpolation steps require one extra bit for
each coefficient.

After interpolation steps, we have 5 output polynomials c0, c1, . . . c4 with 2n/3 coeffi-
cients needed to be recomposed and reduced modulo xn − 1 in the ring Rq. Fig. 22 shows
the positions of polynomials c0, c1 . . . c4 in the final product polynomial d modulo xn − 1.
Since the recomposition module receives five coefficients with the same index from c0 to c4,
we need two registers d0, d2 and three shift registers of the size bn/3c− 1. For example, d0
will be initialized with the coefficient from c0 at the cycle 0, then it is added to a coefficient
from c2 in the cycle bn/3c − 1 and lastly added with the last coefficient from c4 in the
cycle b2n/3c − 1.

The overlap-free Karatsuba splits input polynomial A(x) into two polynomials a0
and a1 such that A(y) = a0 + a1y where y = x. It means that a0 consists of all
even coefficients of A(x); meanwhile, a1 consists of all odd coefficients of A(x). The
overlap-free Karatsuba scheme enables a more efficient alignment of product coefficients
compared to the classic Karatsuba scheme. The diagram of our overlap-free Karat-
suba module is shown in Fig. 23. Two polynomials are stored in RAM_a and RAM_b.
The multiplication between two coefficients from RAM_a and RAM_b would normally cost
12 integer multipliers. However, this number is reduced to 9 multipliers thanks to
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Figure 23: Overlap-free Karatsuba polynomial multiplier.

Table 16: Implementation results of the Toom-Cook 3 polynomial multiplier and comparison
with related work for Saber with n = 256 and q = 213.

Freq.
[MHz] LUT/FF/BRAM/DSP Split/Eval.

[cycles]
Mult.

[cycles]
Inter./Recomp.

[cycles]
Total

[cycles]
Toom-Cook 3 130 3963/3389/0/45 174 688 174 1,036
Toom-Cook 4 [61] 125 2927/1279/2/28 Not Avail./128 1,168 128/Not Avail. > 1, 424

the Karatsuba algorithm. The latency of this module can be calculated as follows:
Multiplication Latency = ( n

6×3 + 1)× (n6 + 1)
The comparison with the previous work in [57] is shown in Table 16. We synthesize

our design for Saber with n = 256 and q = 213 on the Xilinx ZedBoard Zynq-7000. The
recomposition module is also adjusted to support the ring Zq[x]/(xn + 1). The increase in
the number of LUTs and FFs comes partially from the large shift registers used in splitting
and recomposition steps. We note that the splitting and recomposition steps are merged
into evaluation and interpolation, respectively. Our Toom-Cook multiplier finishes one
polynomial multiplication in Rq or Sq in 5507, 5098 and 7274 cycles for n = 701, 677 and
821, respectively.
Ternary Polynomial Multiplier. For multiplications involving polynomial in the
ternary form {−1, 0, 1}, we use the constant-time LFSR-based polynomial multiplier,
proposed in [28], which has the latency of n clock cycles. By loading the ternary polynomial
with coefficients in {−1, 0, 1} to the LFSR, instead of a polynomial with "big" coefficients,
we reduce the number of flip-flops required to realize this LFSR by a factor of four. We also
shorten the time required to load a polynomial into the LFSR, since eight 2-bit coefficients
can be loaded in a single clock cycle. All integer multiplication-and-accumulation operations
between coefficients of two operands and one product polynomials are reduced to addition,
pass-through, or subtraction. The LFSR is initialized to a polynomial with ternary
coefficients. Let us denote the initial state of this LFSR as a(x). In each subsequent
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Table 17: Implementation results of the Extended GCD module and comparison with
related work for Streamlined NTRU Prime in Zynq Ultrascale+ platform.

Freq. LUT FF BRAM DSP Cycles
Extended GCD w/ n = 761 [58] 271 518 216 0 0 1,168,899
Extended GCD w/ n = 821 250 8,534 5,479 0 0 1,846

iteration, the output from LFSR contains the value a(x) · xi mod xn − 1. In a single clock
cycle, a simple multiplication by x, namely a(x) ·xi+1 mod xn−1= a(x) ·xi ·x mod xn−1,
is performed.

B.2.3 Inversion in S3 and Rq

Inverse of polynomials in Rq and S3 plays an important role in key generation. We need
to compute fp which is an inverse of f in S3 for the secret key. Computation of v1, which
is an inverse of v0 in Sq, must be completed before any later operations could proceed.

Inversion in S3: Inversion in S3 is done using the constant-time extended Greatest
Common Divisor (GCD) unit proposed in [17]. The top-level diagram of our S3_inverse
module is shown in Fig. 24. At first, g(x) is initialized with an input polynomial in reverse
order. f(x), r(x) and v(x) are initialized with Φn, 1 and 0 respectively. The module runs
in exactly 2(n− 1) cycles. All coefficients of four polynomials are updated simultaneously
during each iteration according to the value of δ and g0. All operations, including addition,
subtraction, and multiplication, are reduced modulo 3. Multiply and divide by x are
performed by simple bit shifting. Lastly, the inverse of input polynomial is f0 × v(x). We
note that the inverse polynomials are also stored in the reverse order. Our module also
supports inversion in S2, which is used in inversion in Sq. We compare our results for
NTRU-HPS821 with n = 821 with the Reciprocal in R/3 module in the implementation
of Streamlined NTRU Prime in [58]. We have shown that the extended GCD can be
implemented in an unrolled fashion, achieving highly optimized latency.

Inversion in Rq: To compute the inverse of h in Sq, we perform h−1 mod (2,Φn) and
then apply a variant of the Newton iteration in Rq to obtain hq ≡ h−1 mod (q,Φn). The
pseudocode of inversion in Rq is given in Algorithm 14. A similar approach is presented
in [48], which finds an inverse mod (2,Φn) using h−1 ≡ h2n−1−2 mod (2,Φn). Given
that squaring operation in Z2[x] is particularly very efficient in software, this approach is
suitable for software implementation. In our case, we can re-use our S3_inverse module
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Algorithm 14 Polynomial Inversion in Sq [48]
Input: Polynomial a in Sq
Output: Polynomial b in Sq such that a · b = 1 mod (q,Φn)
1: v0 ← a−1 mod (2,Φn)
2: i← 1
3: while i < logq do
4: v0 ← v0 · (2− a · v0)
5: i← 2i
6: end while
7: b← v0

Algorithm 15 Lift in NTRU-HRSS [48]
Input: Polynomial v in S3
Output: Polynomial b = Φ1((v/Φ1) mod (3,Φn)) mod (q,Φ1Φn)

1: z = [1/Φ1] mod (3,Φn) =
n−2∑
i=0

(1− i) · xi (mod 3)

2: a = vz mod (q,Φ1Φn)
3: for i = 0 to n− 1 do
4: ai = ai − an−1 (mod 3) . a = v/Φ1 mod (3,Φn)
5: end for
6: b0 = an−1 − a0 (mod q)
7: for i = 1 to n− 1 do
8: bi = ai−1 − ai (mod q) . b = Φ1((v/Φ1) mod (3,Φn)) mod (q,Φ1Φn)
9: end for

to compute inversion in S2. All arithmetic operations are now reduced modulo 2 instead
of 3 as in inversion in S3. Operations from line 3 to 6 in Algorithm 14 are equivalent to 8
polynomial multiplications, which are performed by the Toom-Cook multiplier. Due to the
long latency of the polynomial multiplication, inversion in Rq is the most time-consuming
operation in Key Generation of NTRU, taking up to 90% of total latency.

B.2.4 Lift function in NTRU-HRSS

In NTRU-HRSS, the Lift function maps m from S3 to Rq by doing m 7→ Φ1 · S3(m/Φ1).
An efficient implementation of Lift is shown in Algorithm 15. As shown in the pseudocode,
Lift function can be performed by one multiplication with z = 1Φn then followed by
reduction modulo (3,Φn) and lastly multiplied by Φ1. Since z is a constant ternary
polynomial, it is stored in the memory and the multiplication can be performed by
the Ternary_Poly_Mult in n cycles. Reduction modulo (3,Φn) and multiplication by
Φ1 = x− 1 can be performed on-the-fly while transferring result back to the memory.
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C Saber

C.1 Algorithms

Saber uses a version of the Fujisaki-Okamoto transformation from an IND-CPA public-
key encryption scheme to construct an IND-CCA KEM. By using only moduli that are
powers of 2, modular reduction and rejection sampling are eliminated. A distinctive
feature of Saber compared to LWE schemes is that rounding operations are used to avoid
the noise addition step and reduce the amount of randomness required. In this paper,
we implemented all three parameter sets of Saber: LightSaber, Saber, and FireSaber,
corresponding to security levels 1, 3, and 5, respectively.

Definitions and Parameters: Saber involves operations on matrices and vectors of
polynomials over the quotient rings Rq : Zq[x]/(xn + 1) with fixed n = 256. Polynomials
in Saber are sampled from the uniform distribution or centered binomial distribution. βµ
denotes a centered binomial distribution with the parameter µ and the values of samples
in the range [−µ/2;µ/2]. The module dimension l defines the size of vectors and matrices
of polynomials as l × 1 and l × l, respectively. We denote Rl×lq and Rl×1

q as a matrix and
vector of polynomials in Rq. The rounding operation includes coefficient-wise addition
with a constant factor and is followed by bit shifting.

The pseudocode of Saber is shown as Algorithms 16, 17, 18, 20, 19, and 21. The
KEM key generation includes sampling uniformly random matrix A using SHAKE128.
Secret vector s is sampled in binomial distribution from the uniformly random output
from SHAKE128. The vector product of AT s is rounded and served as a public vector b in
the public key. The secret key includes the public key, hash of the public key, secret vector
s, and a pseudo-random byte string z, which is used for implicit rejection in FO transform.

Encapsulation includes encryption with additional hashing. A "small" vector s is
generated using sampling from the centered binomial distribution. The ciphertext has
two parts. The first part has the rounded product of As′. The second one includes the
sum of the inner product of b, s′, and the encoded message m. We adopt the optimization
in [83] to compute bT s′ before As′. Since the generation of s′ and A requires the same
SHAKE128 function, we would need to finish generating s′ before performing As′ with the
on-the-fly generation of A. The multiplication of bT and s′ can be performed in parallel
with the sampling of s′. The shared secret is derived from the hashes of the public key,
message, and ciphertext. Decapsulation involves decryption and re-encryption. During
decryption, the secret key is used to compute v, which is used to extract the message. The
obtained message is then re-encrypted to check whether the re-encrypted ciphertext is the
same as the received one. To save bandwidth, all coefficients of polynomials modulo q or
rounded to p or T are packed together by pack_εq, pack_εp or pack_εT. Thus, they must
be unpacked before being used in any operation. The top-level block diagram is shown in
Fig. 25.

Algorithm 16 Saber PKE Keypair
Input: seedA and seeds
Output: pk = (seedA, packed_b), sk = (s)
1: seedA ← SHAKE-128(seedA)
2: A ← Unpack_εq(SHAKE-128(seedA)) ∈
Rl×lq

3: s← Sample(SHAKE-128(seeds)) ∈ Rl×1
q

4: sk ← s
5: b← Roundqp(AT · s) ∈ Rl×1

p

6: pk ← (seedA,Pack_εp(b))

Algorithm 17 Saber KEM Keypair
Input: seedA, seeds and z.
Output: pk = (seedA, packed_b), sk = (z,
pkh, pk, s)
1: seedA, packed_b, s ← PKE_Keypair(seedA,
seeds)

2: pk ← (seedA, packed_b)
3: pkh← SHA3-256(pk)
4: sk ← (z, pkh, pk, s)
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Table 18: Implementation results of the Optimized Polynomial Multiplier using optimized
integer multipliers vs. the centralized multiplier architecture in [14]

Optimized Multiplier Centralized Multiplier
LightSaber 12,492 LUTs, 8,727 FFs 13,658 LUTs, 8,727 FFs
Saber 12,492 LUTs, 8,727 FFs 11,426 LUTs, 8,727 FFs
FireSaber 8,726 LUTs, 8,215 FFs 8,734 LUTs, 8,215 FFs

Algorithm 18 Saber PKE Encryption
Input: pk = (seedA, packed_b), m and seeds′
Output: c = (packed_cm, packed_b′))
1: s′ ← Sample(SHAKE-128(seeds′)) ∈ Rl×1

q

2: A ← Unpack_εq(SHAKE-128(seedA)) ∈
Rl×lq

3: b′ ← Roundqp((A · s′ + h) mod q) ∈ Rl×1
p

4: packed_b′ ← Pack_εp(b′)
5: b← Unpack_εp(packed_b)
6: v′ ← bT · (s′ mod p) ∈ Rp
7: cm ← RoundpT(v′+h1− 2εp−1 ·m mod p) ∈
RT

8: packed_cm ← Pack_εT(cm)
9: c← (packed_cm, packed_b′)

Algorithm 19 Saber PKE Decryption
Input: sk = packed_s and c = (packed_cm,
packed_b′))
Output: m
1: s← Unpack_εq(packed_s) ∈ Rl×1

q

2: b′ ← Unpack_εp(packed_b′) ∈ Rl×1
p

3: v ← b′T · s mod p ∈ Rp
4: m′ ← Roundp2(v + h2 − 2εp−εT · cm mod
p) ∈ R2

Algorithm 20 Saber KEM Encapsulation
Input: pk = (seedA, BS_b),m
Output: c = (packed_cm, packed_b′)) and a
shared key K
1: (K̂, r) ← SHA3-512(SHA3-256(pk),

SHA3-256(m))
2: c← Saber.PKE.Enc(pk,m, r)
3: h_c← SHA3-256(c)
4: K ← SHA3-256(K̂, h_c)

Algorithm 21 Saber KEM Decapsulation
Input: sk = (packed_s, z, pkh, pk = (seedA,
packed_b)) and c = (packed_cm, packed_b′))
Output: Shared key K
1: m′ ← Saber.PKE.Dec(packed_s, c)
2: (K̂′, r′)← SHA3-512(pkh,m′)
3: c′ ← Saber.PKE.Enc(pk,m′, r′)
4: h_c← SHA3-256(c)
5: if c = c′ then
6: K ← SHA3-256(K̂′, h_c)
7: else
8: K ← SHA3-256(z, h_c)
9: end if

C.2 Hardware Architecture
C.2.1 Sampling

The diagram of our CBD sampling modules for three parameter sets of Saber is shown in
Fig. 26. The values of coefficients sampled from CBD are in the range [-5; 5], [-4; 4], and
[-3;3], corresponding to the bit-width w = 4, 4, 3. The 64-bit inputs are buffered in the
dual-step shift register. After the shift register is full, chunks of data are read out and
fed through a pure combinational logic to generate the coefficients. The output width of
sampling modules is equal to 8 ∗ w. Therefore, we will have 8 samples generated per clock
cycle.

C.2.2 Polynomial Multiplication

The high-speed SW/HW codesign of Saber in [24] uses a schoolbook-based multiplier,
which requires 256 DSPs with 13-bit inputs. A Toom-Cook based multiplier for Saber
is proposed in [57], also in the SW/HW co-design context. The Saber crypto-processor
implementation in [75] uses a schoolbook-based multiplier, which exploits the small sizes
of input coefficients. It can provide very good performance with moderate resource
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consumption. [14] improves the multiplier used in [75] by centralizing coefficient-wise
multiplication and replacing integer multipliers with simple multiplexers. RISC-V proposed
an approach to use an NTT module to speed-up polynomial multiplication in Saber based
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on the Chinese Remainder Theorem. Recently, [83] introduced an 8-level Karatsuba
multiplier for Saber with efficient scheduling of operations, which achieves very small
latency in terms of clock cycles. However, it requires a large area and a long critical path,
which leads to low clock frequency.

For our high-speed application of Saber, we opt to use the schoolbook-based multiplier
as shown in Fig. 27. Since there are multiple multiplications involved in vector-vector or
matrix-vector multiplication, we improve the latency of multiplication by adding input and
output buffers. The buffers are capable of pre-loading the next input polynomial as well as
unloading the previous product polynomial at the same time as the current multiplication
is performed. The S&S’MEM stores all small coefficients of secret polynomials in their
unpacked form. Thus, it can provide one polynomial in 32 cycles. The latencies of loading
and unloading polynomials are hidden in the multiplication latency. The multiplier can
also be unrolled by a factor u = 1, 2, or 4, which can finish one polynomial multiplication
in 256, 128 or 64 cycles, respectively. Instead, having simple integer coefficient-wise
multipliers, which are based on shift-add operations, as in [75], we generated optimized
integer multipliers using an open-source tool FloPoCo [25]. We also tried the centralized
coefficient-wise multiplier approach proposed in [14]. We report the results of the two
approaches in Table 18. The centralized multipliers approach has better area consumption
in the case of Saber, so we use this approach for the specific parameter set. For LightSaber
and FireSaber, the optimized integer multipliers are used.

C.2.3 Improvements over Previous Work

Compared to the previous work on the implementations of Saber, reported in [74] and [83],
we further optimize the schoolbook multiplier. Additionally, we optimize the scheduling
of all operations in hardware by fully exploiting the potential for parallel processing of
operations without data dependencies. Our implementation achieves the best latency and
the usage of LUTs.
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