
Verifying Post-Quantum Signatures in 8 kB of
RAM

Ruben Gonzalez1 , Andreas Hülsing2 , Matthias J. Kannwischer3 , Juliane
4Krämer , Tanja Lange2 , Marc Stöttinger5 , Elisabeth Waitz6 , Thom Wiggers7 ,

and Bo-Yin Yang8

1 Hochschule Bonn-Rhein-Sieg, Bonn, Germany
2 Eindhoven University of Technology, Eindhoven, The Netherlands
3 Max Planck Institute for Security and Privacy, Bochum, Germany

4 Technische Universität Darmstadt, Darmstadt, Germany
5 Hessen3C, Wiesbaden, Germany

6 Elektrobit Automotive GmbH, Erlangen, Germany
7 Radboud University, Nijmegen, The Netherlands

8 Academica Sinica, Taipei, Taiwan
streaming-pq-sigs@kannwischer.eu

All post-quantum signatures have a larger combined size of public key and
signature compared to RSA and DL-based signatures. This can pose challenges
if signatures need to e verified in very constrained devices and is especially
important when the payload of the signed message is much smaller than the
signature, due to additional transmission overhead required for the signature.
Such short messages are for example used in the real-world use case of feature
activation in the automotive domain. Feature activation is the remote activation
of features that are already implemented in the soft- and hardware of the car. For
example, an additional infotainment package. Usually, a short activation code is
protected with a signature to prevent unauthorized activation of the feature.

We focus on verification of signatures and cover NIST PQC round-3 can-
didates Dilithium, Falcon, Rainbow, GeMSS, and SPHINCS+ . We assume an
ARM Cortex-M3 with 8 kB of memory and 8 kB of flash for code; a practical
and widely deployed setup in, for example, the automotive sector. This amount
of memory is insufficient for most schemes. Rainbow and GeMSS public keys
are too big; SPHINCS+ signatures do not fit in this memory. To make signature
verification work for these schemes, we stream in public keys and signatures. Due
to the memory requirements for efficient Dilithium implementations, we stream
in the public key to cache more intermediate results.

We show that this way signature verification can be done keeping only small
data packets in constrained memory. When streaming the public key, the device
needs to securely store a hash value of the public key to verify the authentic-
ity of the streamed public key. During signature verification, the public key is
incrementally hashed, matching the data flow of the streamed public key. We
implemented and benchmarked the proposed public key and signature streaming
approach for four different signature schemes (Dilithium, SPHINCS+ , Rainbow,
and GeMSS). Although for Dilithium streaming the public key is not strictly nec-
essary, the saved bytes allow us to keep more intermediate results in memory.
This results in a speed-up.

mailto:streaming-pq-sigs@kannwischer.eu

Table 1. Communication overhead in bytes and milliseconds at 500 kbit/s and
20 Mbit/s. GeMSS requires to stream in the public key nb ite times (4 for gemss-128).
All other schemes require streaming in the public key and signed message once.

streaming data streaming time
|pk| |sig| total 500 kbit/s 20 Mbit/s

sphincs-sa 32 7 856 7 888 126.2 ms 3.2 ms
sphincs-fb 32 17 088 17 120 273.9 ms 6.9 ms

rainbowI-classic 161 600 66 161 666 2 586.7 ms 64.7 ms
gemss-128 352 188 33 1 408 785c 22 540.6 ms 563.5 ms
dilithium2 1 312 2 420 3 732 59.7 ms 1.5 ms
falcon-512 897 690 1 587 25.4 ms 0.6 ms

a -sha256-128s-simple b -sha256-128f-simple c 4 · |pk| + |sig|

For comparison, we also implemented the lattice-based scheme Falcon for
which streaming small data packets is not necessary in our scenario as the entire
public key and signature fit into RAM. The source code is published and available
at https://git.fslab.de/pqc/streaming-pq-sigs. We demonstrate that the
proposed streaming approach is very well suited for constrained devices with a
maximum utilization of 8 kB RAM and 8 kB Flash.

The talk will highlight details of the implementations and show how the sizes
and speeds are obtained. We summarize the results in the following tables.

Table 1 lists the public key, signature sizes, and the time needed for streaming
them into the device at 500 kbit/s and 20 Mbit/s.

Table 2 presents the speed results for our implementations. The studied signa-
ture schemes rely on either SHA-256 (rainbowI-classic, sphincs-sha256) or
SHA-3/SHAKE (dilithium2, falcon-512, and gemss-128). In a typical HSM-
enabled device SHA-256 would be available in hardware and SHA-3/SHAKE will
also be available in the future. However, on the Nucleo-F207ZG no hardware ac-
celerators are available. Hence, we resort to software implementations instead.
For SHA-256 we use the optimized C implementation from SUPERCOP.1 For
SHA-3/SHAKE, we rely on the ARMv7-M implementation from the XKCP.2

Table 3 presents the memory requirements of our implementations.

1 https://bench.cr.yp.to/supercop.html
2 https://github.com/XKCP/XKCP

https://git.fslab.de/pqc/streaming-pq-sigs
https://bench.cr.yp.to/supercop.html
https://github.com/XKCP/XKCP

Table 2. Cycle count for signature verification for a 33-byte message. Average over
1 000 signature verifications. Hashing cycles needed for verification of the streamed in
public key (hashing and comparing to embedded hash) are reported separately. We
also report the verification time on a practical HSM running at 100 MHz and also the
total time including the streaming at 20 Mbit/s.

w/o pk vrf. w/ pk verification w/ streaming
pk vrf. total timee 20 Mbit/s

sphincs-sa

sphincs-fb

rainbowI-classic
gemss-128
dilithium2
falcon-512

8 741k
26 186k

333k
1 619k
1 990k
581k

0
0

6 850kd

109 938kc

133kc

91kc

8 741k
26 186k
7 182k

111 557k
2 123k
672k

87.4 ms
261.9 ms
71.8 ms

1 115.6 ms
21.2 ms
6.7 ms

90.6 ms
268.7 ms
136.5 ms

1 679.1 ms
21.8 ms
8.2 ms

a -sha256-128s-simple b -sha256-128f-simple c SHA-3/SHAKE
d SHA-256 e At 100 MHz (no wait states)

Table 3. Memory and code-size requirements in bytes for our implementations. Mem-
ory includes stack needed for computations, global variables stored in the .bss section
and the buffer required for streaming. Code-size excludes platform and framework code
as well as code for SHA-256 and SHA-3.

memory code
total buffer .bss stack .text

sphincs-sa

sphincs-fb

rainbowI-classic
gemss-128
dilithium2
falcon-512

6 904
7 536
8 168
8 176
8 048
6 552

4 928 780 1 196
4 864 780 1 892
6 848 724 596
4 560 496 3 120

40 6 352 1 656
897 5 255 400

2 724
2 586
2 194
4 740
7 940
5 784

a -sha256-128s-simple b -sha256-128f-simple

	Verifying Post-Quantum Signatures in 8 kB of RAM

