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All post-quantum signatures have a larger combined size of public key and 
signature compared to RSA and DL-based signatures. This can pose challenges 
if signatures need to e verified in very constrained devices and is especially 
important when the payload of the signed message is much smaller than the 
signature, due to additional transmission overhead required for the signature. 
Such short messages are for example used in the real-world use case of feature 
activation in the automotive domain. Feature activation is the remote activation 
of features that are already implemented in the soft- and hardware of the car. For 
example, an additional infotainment package. Usually, a short activation code is 
protected with a signature to prevent unauthorized activation of the feature. 

We focus on verification of signatures and cover NIST PQC round-3 can-
didates Dilithium, Falcon, Rainbow, GeMSS, and SPHINCS+ . We assume an 
ARM Cortex-M3 with 8 kB of memory and 8 kB of flash for code; a practical 
and widely deployed setup in, for example, the automotive sector. This amount 
of memory is insufficient for most schemes. Rainbow and GeMSS public keys 
are too big; SPHINCS+ signatures do not fit in this memory. To make signature 
verification work for these schemes, we stream in public keys and signatures. Due 
to the memory requirements for efficient Dilithium implementations, we stream 
in the public key to cache more intermediate results. 

We show that this way signature verification can be done keeping only small 
data packets in constrained memory. When streaming the public key, the device 
needs to securely store a hash value of the public key to verify the authentic-
ity of the streamed public key. During signature verification, the public key is 
incrementally hashed, matching the data flow of the streamed public key. We 
implemented and benchmarked the proposed public key and signature streaming 
approach for four different signature schemes (Dilithium, SPHINCS+ , Rainbow, 
and GeMSS). Although for Dilithium streaming the public key is not strictly nec-
essary, the saved bytes allow us to keep more intermediate results in memory. 
This results in a speed-up. 
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Table 1. Communication overhead in bytes and milliseconds at 500 kbit/s and 
20 Mbit/s. GeMSS requires to stream in the public key nb ite times (4 for gemss-128). 
All other schemes require streaming in the public key and signed message once. 

streaming data streaming time 
|pk| |sig| total 500 kbit/s 20 Mbit/s 

sphincs-sa 32 7 856 7 888 126.2 ms 3.2 ms 
sphincs-fb 32 17 088 17 120 273.9 ms 6.9 ms 

rainbowI-classic 161 600 66 161 666 2 586.7 ms 64.7 ms 
gemss-128 352 188 33 1 408 785c 22 540.6 ms 563.5 ms 
dilithium2 1 312 2 420 3 732 59.7 ms 1.5 ms 
falcon-512 897 690 1 587 25.4 ms 0.6 ms 

a -sha256-128s-simple b -sha256-128f-simple c 4 · |pk| + |sig| 

For comparison, we also implemented the lattice-based scheme Falcon for 
which streaming small data packets is not necessary in our scenario as the entire 
public key and signature fit into RAM. The source code is published and available 
at https://git.fslab.de/pqc/streaming-pq-sigs. We demonstrate that the 
proposed streaming approach is very well suited for constrained devices with a 
maximum utilization of 8 kB RAM and 8 kB Flash. 

The talk will highlight details of the implementations and show how the sizes 
and speeds are obtained. We summarize the results in the following tables. 

Table 1 lists the public key, signature sizes, and the time needed for streaming 
them into the device at 500 kbit/s and 20 Mbit/s. 

Table 2 presents the speed results for our implementations. The studied signa-
ture schemes rely on either SHA-256 (rainbowI-classic, sphincs-sha256) or 
SHA-3/SHAKE (dilithium2, falcon-512, and gemss-128). In a typical HSM-
enabled device SHA-256 would be available in hardware and SHA-3/SHAKE will 
also be available in the future. However, on the Nucleo-F207ZG no hardware ac-
celerators are available. Hence, we resort to software implementations instead. 
For SHA-256 we use the optimized C implementation from SUPERCOP.1 For 
SHA-3/SHAKE, we rely on the ARMv7-M implementation from the XKCP.2 

Table 3 presents the memory requirements of our implementations. 

1 https://bench.cr.yp.to/supercop.html 
2 https://github.com/XKCP/XKCP 
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Table 2. Cycle count for signature verification for a 33-byte message. Average over 
1 000 signature verifications. Hashing cycles needed for verification of the streamed in 
public key (hashing and comparing to embedded hash) are reported separately. We 
also report the verification time on a practical HSM running at 100 MHz and also the 
total time including the streaming at 20 Mbit/s. 

w/o pk vrf. w/ pk verification w/ streaming 
pk vrf. total timee 20 Mbit/s 

sphincs-sa 

sphincs-fb 

rainbowI-classic 
gemss-128 
dilithium2 
falcon-512 

8 741k 
26 186k 

333k 
1 619k 
1 990k 
581k 

0 
0 

6 850kd 

109 938kc 

133kc 

91kc 

8 741k 
26 186k 
7 182k 

111 557k 
2 123k 
672k 

87.4 ms 
261.9 ms 
71.8 ms 

1 115.6 ms 
21.2 ms 
6.7 ms 

90.6 ms 
268.7 ms 
136.5 ms 

1 679.1 ms 
21.8 ms 
8.2 ms 

a -sha256-128s-simple b -sha256-128f-simple c SHA-3/SHAKE 
d SHA-256 e At 100 MHz (no wait states) 

Table 3. Memory and code-size requirements in bytes for our implementations. Mem-
ory includes stack needed for computations, global variables stored in the .bss section 
and the buffer required for streaming. Code-size excludes platform and framework code 
as well as code for SHA-256 and SHA-3. 

memory code 
total buffer .bss stack .text 

sphincs-sa 

sphincs-fb 

rainbowI-classic 
gemss-128 
dilithium2 
falcon-512 

6 904 
7 536 
8 168 
8 176 
8 048 
6 552 

4 928 780 1 196 
4 864 780 1 892 
6 848 724 596 
4 560 496 3 120 

40 6 352 1 656 
897 5 255 400 

2 724 
2 586 
2 194 
4 740 
7 940 
5 784 

a -sha256-128s-simple b -sha256-128f-simple 


	Verifying Post-Quantum Signatures in 8 kB of RAM



