
Fast Quantum-Safe Cryptography on IBM Z 
Jonathan Bradbury1 and Basil Hess2 

1 IBM Systems, Poughkeepsie, USA 
2 IBM Research Europe, Rueschlikon, Switzerland 

Abstract. Performance of software implementations on today’s available hardware architectures plays 
a crucial role in the adoption of quantum-safe cryptography. An important target for quantum-safety 
are IBM Z® systems, which run and secure a majority of all worldwide transactions. With its current 
z15 architecture, the platform o˙ers a range of ISA extensions suitable for optimizing quantum-safe 
algorithms. In this work, we present optimizations of two promising candidates in the third round of 
the NIST PQC standardization process: SIKE and Dilithium. Our SIKE implementation covers NIST 
security levels 1-5. It uses vectorization techniques for its Fp and Fp2 arithmetic and achieves a signifcant 
speedup compared to generic implementations, running in 3.4 ms (encaps + decaps) for NIST level 1. Our 
Dilithium implementation benefts from vector optimizations applied to NTT and to sampling, and from 
SHA3 instructions on z15, running in 42.8 µs (sign) and 14.7 µs (verify) for NIST level 2. We present 
insights on the z15 ISA, on the implementations, evaluation results and provide an outlook of further 
optimization potential. 
Keywords: Quantum Safe, IBM Z, SIKE, Dilithium, Optimization, Evaluation 

1 Introduction 
NIST is in the third round of the standardization process for post-quantum cryptographic schemes to address 
the upcoming threat that quantum computers pose on most of the public-key cryptography used today. While 
security against quantum attacks is the primary motivation for the standardization, there are several factors 
that will play an important role for a timely adoption in practice. The industry is already preparing the 
migration to promising candidates for standardization, where considerations such as security, bandwidth, 
performance and applicability to the underlying infrastructure and platform are central. 

An example of such a platform are IBM Z systems. They are in use by a majority of the largest companies 
and are responsible to handle a vast number of all worldwide transactions [11]. To evaluate the performance 
potential on today’s available z15 CPU architecture, we select two promising candidates from the third round: 
SIKE and Diltithium. We give an overview of useful ISA extensions of the z15 architecture and demonstrate 
how we apply optimizations like vectorization and SHA3 acceleration to the underlying algorithms. Our 
evaluation results show that the algorithms get signifcant speedups by using the ISA extensions and they 
present z15 as an attractive target for optimizations. 

1.1 Optimized candidates 
We selected two candidates with di˙erent interesting characteristics: Superingular Isogeny Key Encapsulation 
(SIKE) [3] and CRYSTALS-Dilithium (or short Dilithium) [6]. 

SIKE is a KEM based on isogenies of supersingular elliptic curves. The underlying key agreement scheme [4] 
Supersingular Isogeny Diÿe Hellman (SIDH) can be seen as closely related to classical schemes like ECDH and 
DH, whereas still providing security against quantum attacks. An interesting property is that SIKE has the 



2 Fast Quantum-Safe Cryptography on IBM Z 

smallest key and ciphertext sizes among all NIST candidates, making it attractive for bandwidth or storage 
constrained settings. The main drawback also noted in the NIST report on the second round candidates [2] is 
its relatively slow performance compared to other candidates. More optimized implementation are therefore 
of high importance for SIKE. There are already several optimized implementations available for SIKE, for 
instance for Intel x64 [3], ARMv8-A [10], ARMv7-M [9] and initial work for AVX512 [8]. We were especially 
interested in how the z15 vector instructions can be eÿciently applied to accelerate SIKE. 

Dilithium is a signature scheme based on the module learning with errors problem (MLWE). It one of 
two lattice-based signature schemes in the third round (the other one is Falcon). NIST [2] sees Dilithium 
as well balanced in terms of performance and key/signature sizes, and it is further considered to allow a 
simpler implementation compared to Falcon. The availability of Dilithium variants using AES further makes 
it attractive for targets with AES acceleration. Since the z15 architecture o˙ers SHA3 instructions, we were 
especially interested how this accelerates the default Dilithium variants that use SHA3/SHAKE as well as 
how it compares to the hardware accelerated AES on the z15. 

2 IBM z15 
IBM z15 was released in 2019 and is a 64-bit big-endian multi-core architecture with roots going back to 
the System/360 from 1964. An IBM Z system consists of many cores with 5.2 GHz clock frequency each. 
Of especial interest for us are the Vector Facility, Vector-Enhancements Facility 1/2 with 32 128-bit vector 
registers and the Message-Security-Assist Extension 6 that o˙er SHA3 and SHAKE instructions. We discuss 
a few instructions in more detail, a comprehensive list is available in [1]. 

Vector Multiply Sum Logical - VMSL VMSL combines two 56-bit multiplications and one full 128-bit 
addition in a single SIMD instruction. The inputs are: (i) two vectors each with one 56-bit value stored in 
the lower and one in the upper part, respectively: a = (a0, a1) and b = (b0, b1). (ii) one vector with a full 
128-bit input acting as an accumulator: c. (iii) a value d 2 {0, 4, 8, 12}. We say that d0 = 2 if d 2 {4, 12}, 
else d0 = 1; and d1 = 2 if d 2 {8, 12}, else d1 = 1. The result is a 128-bit value e = (a0b0d0) + (a1b1d1) + c. 
This design allows at least 214 VMSL instructions to be chained together without an overfow. The VMSL 
instruction was introduced on the IBM z14 with the vector-enhancements facility 1. 

Vector Add - VA, VAC, VACC, VACCC Vector Add instructions perform an unsigned addition of two 
128-bit words (or multiple 64, 32, 16, or 8-bit values within a 128-bit vector). There are several variants with 
carry-in (VAC, VACCC), carry-out (VACC, VACCC) and without carry (VA). The vector add instructions 
were introduced with the vector facility on IBM z13. 

Vector Subtract - VS, VSCBI, VSBI, VSBCBI Vector Subtract instructions perform an unsigned subtrac-
tion of two 128-bit words (or multiple 64, 32, 16, or 8-bit values within a 128-bit vector). There are several 
variants with borrow-in (VSBI, VSBCBI), borrow-out (VSCBI, VSBCBI) and without borrow (VS). The 
vector subtract instructions were introduced with the vector facility on IBM z13. 

SHAKE and SHA3 - KIMD, KLMD The Compute Intermediate Message Digest and Compute Last 
Message Digest instructions provide acceleration for hash functions. The Message-Security-Assist Extension 
6 added functions for accelerating SHAKE-128, SHAKE-256, SHA-224, SHA3-256, SHA3-384 and SHA3-512. 

Further instructions Further instructions used in our implementations include vector compare equal 
(VCEQ), vector multiply (VML), vector multiply high (VMH), vector permute (VPERM), vector bit permute 



3 Jonathan Bradbury and Basil Hess 

(VBPERM), vector shift left double by byte (VSLDB), vector merge (VMRL), vector select (VSEL), and 
with complement (ANDC), loading and storing functions. 

3 Optimizing SIKE 
The arithmetic in SIKE involves operations over elliptic curves over prime felds. The primes are of the 
form p = 2e2 3e3 − 1. There are four parameter sets, each involving a di˙erent prime: SIKEp434, SIKEp503, 
SIKEp610 and SIKEp751. Compared to commonly known elliptic curve cryptography, most of the arithmetic 
is performed in a quadratic extension feld of Fp, which we denote as Fp2 . The optimizations we tackle are on 
the level of the Fp and the Fp arithmetic.2 

Our z15 implementation is based on the optimized code base from the SIKE submission (SIDH v3.3)1. 
The routines implemented in the original code use general purpose registers. Depending on the context in 
our optimizations, it is most eÿcient to keep the output of the routines in vector registers, as well as already 
providing inputs in vector registers. We denote variants returning vectors with the suÿx _OVEC, variants 
with inputs provided in vectors with the suÿx _IVEC and variants with inputs and outputs in vector with the 
suÿx _VEC. 

Modern CPU architectures such as IBM z15 have a multi-stage pipeline, where instructions are processed 
in a certain number of CPU cycles. A common technique to optimize pipeline use and throughput is to issue 
several independent instructions without data dependency. If a function has inherent data dependencies, it 
can make sense to interleave multiple instantiations of the function. If we interleave a function X ways, we 
identify this with a prefx XWAY_ in the function name. In the following, we describe the optimized routines 
in more detail. 

Digit Order Multi-precision integers used for SIKE are internally stored in arrays of 64-bit digits. Our 
implementation uses conversions from 64-bit general purpose registers to 128-bit wide vector registers. Since 
VMSL operates on pairs of 56-bit integers, it is most eÿcient to be able to read and store multi-precision 
integers in increments of 56 bits. While the SIKE library internally stores digits in little-endian order, we 
adapted the library with the possibility to reverse this to an internal big-endian order to suit the IBM Z 
architecture. 

Limbifcation To be able to use VMSL eÿciently, inputs originally in radix-264 need to be converted to 
radix-256. We also call a digit in radix-256 a limb. For the purpose of the conversion, we frst load the full 
word in increments of 128 bits to vector registers (using VL), followed by shifting with VSLD and vector 
permute (VPERM), obtaining vectors containing a pair of radix-256 limbs each. 

Radix-256 normalization and delimbifcation After applying VMSL on the limbs, and potential further 
additions, the vector registers hold values larger than 56-bits. Before applying a further VMSL operation, or 
before a conversion back to radix-264, the limbs need to be normalized to 56-bits each. This involves a carry 
propagation: In a loop, the least signifcant limb is shifted by 56 bits (VSLD), which is then added to the 
more signifcant limb (VA). The less signifcant limb is then normalized by selecting the 56 least signifcant 
bits (with an AND mask using ANDC). 

We use the term delimbifcation to mean the conversion from 56-bit limbs to 64-bit digits. For this 
purpose, we simply store each 56-bit limb to an output array in adjacent order. We further implemented 
functions that interleave two normalization and delimbifcation operations for an eÿcient application in the 
Fp arithmetic. This improves pipeline utilization and reduces the latency due to carry propagation. We 2 

name the normalization function NORM and the delimbifcation function DELIMB. 
1https://github.com/microsoft/PQCrypto-SIDH 

https://github.com/microsoft/PQCrypto-SIDH


4 Fast Quantum-Safe Cryptography on IBM Z 

3.1 Arithmetic in Fp 

Addition and subtraction Given a < 2p and b < 2p, we compute a + b (mod 2p) and a − b (mod 2p), 
respectively. The z15 vector instructions allow to perform full 128-bit addition (VA, VAC) and subtraction 
(VS, VSBI). Carry and borrow propagation is done with VACC, VACCC, VSCBI, and VSBCBI. The 
reduction modulo 2p is performed unconditionally, while the fnal result is selected in constant time (with 
VSL) depending on a fnal overfow/underfow. The 32 vector registers in z15 allow all operands to be held in 
registers simultaneously. We also implemented a 2-way interleaved addition and subtraction to further reduce 
the latency impact induced by carry propagation. We name the addition functions FPADD and MPADD. The 
subtraction functions are named FPSUB and MPSUB. 

Multi-precision multiplication Multi-precision multiplications constitute a substantial cost of the arithmetic 
in Fp. Since current CPU architectures are limited to 64-bit word lengths, a multi-precision algorithm 
usually with quadratic complexity on the number of words needs to be applied. There are typically three 
approaches: (i) Schoolbook multiplication adds partial products row-wise. (ii) The Comba method is similar 
to schoolbook multiplication, but adds the partial products column-wise. (iii) Karatsuba’s method breaks 
down a multiplication to the sum of two or more multiplications of smaller size. Karatsuba has the lowest 
number of total operations and is used by the Intel x64-optimized version of [3]. 

Our implementation is similar to the z14 optimized P-256 elliptic curve implementation [12] available in 
Golang but with larger primes. We found Comba’s method the best suited to exploit SIMD parallelism: we 
aim to issue up to 2 times 8 independent VMSL instructions to keep the pipeline well utilized. If latency 
allows it, we further provide the result of a previous VMSL operation to VMSL as accumulator. If not, we 
prefer to issue VMSL operations with zero as accumulator and sum up the partial products later with VA. 
Using Comba’s method, only one latency-critical normalization step is needed, compared to Karatsuba which 
requires two normalization steps. We name the multi-precision multiplication MPMUL and FPMUL, respectively, 
if it is combined with modular reduction. 

Multi-precision squaring Compared to multiplication, squaring allows further optimization with VMSL 
since many of the partial products from the multiplications appear twice. We exploit this by using VMSL’s 
fourth argument d that allows to selectively multiply the 56-bit multiplications by 2 before adding the 
accumulator, thus saving almost half of the VMSL instructions compared to multi-precision multiplication. 
We name the multi-precision multiplication MPSQR and FPSQR, respectively, if it is combined with modular 
reduction. 

Montgomery reduction Multiplication in Fp involves a multi-precision multiplication followed by a modular 
reduction. The SIKE primes have special form that can be exploited to more eÿciently implement Montgomery 
reduction. We use the observation described in [7] that defne �-Montgomery-friendly primes as p � 
−1 (mod 2�·w), where in our implementation w = 56 and � is a positive integer. For the SIKE primes we have 
�p434 = 3, �p503 = 4, �p610 = 5, �p751 = 6. The reduction algorithm involves multiplications by p + 1, where 
the � least signifcant 56-bit digits of p + 1 are zero, therefore reducing the number of VMSL instructions 
needed. We eÿciently implemented the reduction algorithm using VMSL and VA instructions. In contrast 
to multi-precision multiplication, reduction requires one intermediary pass of normalization, thus requiring 
careful scheduling of instructions to avoid latency bottlenecks. For the smallest prime p434 we further found 
it benefcial to interleave two reductions which is useful for optimizing Fp arithmetic. We name the reduction 2 

function REDC. 

23.2 Arithmetic in Fp

A majority of the arithmetic in SIKE is done in the quadratic extension feld of Fp, where the extension feld 
is defned as Fp = Fp(i) and i2 + 1 = 0. Multiplication and squaring in Fp have the highest computational 2 2 



 
 

 
 

 
 

 
 

5 Jonathan Bradbury and Basil Hess 

cost. 

2Multiplication Multiplication in Fp is defned as a · b = (a0 + a1 · i) · (b0 + b1 · i). Rewritten as a · b = 
(a0b0 − a1b1) + (a0b1 + a1b0) · i, a simple implementation uses four multiplications, one addition and one 
subtraction in Fp. A more optimal implementation performs the subtraction a0b0 − a1b1 and the addition 
a0b1 + a1b0 in limbs in radix-256, without carry propagation and before performing the normalization and 
Montgomery reduction. Compared to the simple version, this requires only two instead of four Montgomery 
reductions. 

We found an implementation rewriting the formula as follows to be slightly faster: a · b = (a0b0 − a1b1) + 
((a0 + a1) · (b0 + b1) − a0b0 − a1b1) · i. This requires three multiplications, two additions and three subtractions. 
We perform the initial two additions (a0 + a1 and b0 + b1) using the 128-bit addition as described in Sec. 
3.1. The three subtractions are performed in limbs after the multiplications (and before normalization and 
delimbifcation). This operation can be fully pipelined without any carry propagation dependencies. We 
further have to consider that the subtraction a0b0 − a1b1 may underfow, which we avoid by unconditionally 
adding p · 2dlog2(p)/64e·64 using one carry-less addition. Finally, we only use two Montgomery reduction steps 
followed by delimbifcation to obtain the fnal result. 

2Algorithm 1: Multiplication in Fp
1: function FP2MUL(a = (a0, a1), b = (b0, b1)) 

2dlog2(p)/64e·642: vecpp p · 
3: t0, t1 2WAY_FPADD(a0, a1, b0, b1) 
4: vec(a0+a1)·(b0+b1 ) = MPMUL_OVEC(t0, t1) 
5: veca0b0 MPMUL_OVEC(a0, b0) 
6: veca1b1 MPMUL_OVEC(a1, b1) 
7: vec(a0+a1)·(b0+b1 )−a0b0 

MPSUB_VEC(vec(a0+a1)·(b0+b1), veca0b0 ) 
8: vec(a0+a1)·(b0+b1 )−a0b0−a1b1 

MPSUB_VEC(vec(a0+a1)·(b0 +b1)−a0b0 
, veca1b1 ) 

9: veca0b0−a1b1 MPSUB_VEC(veca0b0 , veca1 b1 ) 
10: veca0b0−a1b1 MPADD_VEC(veca0b0−a1b1 , vecpp) 
11: 2WAY_NORM_VEC(veca0b0−a1b1 , vec(a0+a1)·(b0+b1)−a0b0−a1b1 

) 
12: 2WAY_REDC_VEC(veca0b0−a1b1 , vec(a0+a1)·(b0 +b1)−a0b0−a1b1 

) 
13: c0, c1 = 2WAY_DELIMB(veca0b0 −a1b1 , vec(a0+a1)·(b0+b1)−a0b0−a1b1 

) 
14: return c = (c0, c1) 
15: end function 

Algorithm 1 achieves a speedup factor from 1.37 to 1.59 compared to the simple version. The larger 
parameter sets beneft most due to the larger amount of work that is done purely in vectors before any 
normalization and delimbifcation. 

2Squaring Squaring in Fp2 is defned as a = (a0 + a1 · i)2. The frst option to implement squaring is 
by rewriting the formula as a2 = (a0

2 − a1
2) + (2a0a1) · i, requiring two squarings, one multiplication, one 

subtraction and one addition. An alternative is to trade two squarings for one multiplication, by rewriting 
the formula to a2 = (a0 + a1)(a0 − a1) + (2a0a1) · i. This requires two multiplications, two additions and 
one subtraction in Fp. A simple implementation would chose the second formula with the lower number of 
multiplications/squarings and perform all individual operations in Fp. In a more optimized variant of the 
same formula, we interleave the initial three additions and subtractions a0 + a0, a0 + a1 and a0 − a1 (with a 
function 3way_addaddsub) to achieve a higher throughput. This is illustrated in Algorithm 2. 

In an optimized version of the frst formula, we beneft from the lower computational cost from multi-
precision squaring compared to multiplication. We are further able to perform the addition and subtraction 



 
 
 

 
 
 
 
 
 

6 Fast Quantum-Safe Cryptography on IBM Z 

Algorithm 2: Squaring in Fp2 , optimized variant 1 

1: function FP2SQR(a = (a0, a1)) 
2: 2a0, a0 + a1, a0 − a1 3WAY_ADDADDSUB(a0, a1) 
3: c1 FPMUL(2a0, a1) 
4: c0 FPMUL(a0 + a1, a0 − a1) 
5: return c = (c0, c1) 
6: end function 

in limbs before normalizing the results of the squarings and multiplications, which maximizes throughput 
and avoids carry propagation dependencies. Only two Montgomery reduction steps are needed this way. This 
variant is illustrated in Algorithm 3. 

Algorithm 3: Squaring in Fp2 , optimized variant 2 

1: function FP2SQR(a = (a0, a1)) 
2dlog2(p)/64e·642: vecpp p · 

3: vec MPSQR_OVEC(a0)2a 

2a1 
4: vec 

0 

MPSQR_OVEC(a1) 
5: veca0a1 MPMUL_OVEC(a0, a1) 
6: veca0

2−a2 MPSUB_VEC(veca2 , veca2 )
1 0 1 

7: vec2a0 a1 MPADD_VEC(veca0a1 , veca0a1 ) 
8: 2WAY_NORM_VEC(veca0−a2 , vec2a0a1 )2 

9: 2WAY_REDC_VEC(veca0
2−a2

1 

, vec2a0a1 ) 
2 210: c0, c1 = 2WAY_DELIMB(veca 

1

0−a , vec2a0a1 ) 
11: return c = (c0, c1) 

1 

12: end function 

We found that the performance and the choice of variant 1 and 2 depends on the parameter set. In 
SIKEp434, Algorithm 2 performs best while in SIKEp503, SIKEp610 and SIKEp751, the performance achieved 
with Algorithm 3 was faster. Compared to the simple version, the optimized squaring achieves a speedup 
factor between 1.15 and 1.22 across the parameter sets. The speedup is lower compared to multiplication in 
Fp due to the lower number of total operations involved in squaring. 2 

3.3 Implementation and Results 
We implemented optimized versions of the SIKE parameter sets SIKEp434, SIKEp503, SIKEp610, and 
SIKEp751. The library is based on the oÿcial SIKE optimized third round submission to NIST [3]. For 
evaluation, we implemented a baseline and an optimized version: 

1. A baseline portable C implementation based on the optimized, pure C version of the SIKE library. All 
loops were unrolled. 

2. A z15 vectorized assembly version with the optimization techniques applied using assembly compiler-
intrinsics. All optimized arithmetic is written in constant-time. The implementation is integrated with 
the SIKE optimized library. 

The code was compiled on Linux on Z (Ubuntu 21.04 Beta) using clang-12, with -march=z15 -mzvector 
-mvx and -O3 compiler fags activated. The evaluation machine was an IBM z15 logical partition (LPAR) 
operating at 5.2 GHz. 



7 Jonathan Bradbury and Basil Hess 

Overall results The overall performance consisting of encapsulation plus decapsulation takes between 3.4 ms 
for SIKEp434 and 14.5 ms for SIKEp751. Key generation performance ranges from 1.0 ms for SIKEp434 and 
4.2 ms for SIKEp751. The fgures are depicted in Table 1. 

Table 1: Performance (in thousands of cycles) of SIKE on an IBM z15 LPAR at 5.2 GHz. Cycle counts are 
rounded to the nearest 103 cycles. 

Scheme KeyGen Encaps Decaps 
total 

(Encaps + Decaps) 

SIKEp434 
Portable C 22’771 36’807 39’089 75’897 

This work 5’233 
(1.01 ms) 

8’676 
(1.67 ms) 

9’141 
(1.76 ms) 

17’818 
(3.43 ms) 

Speedup 4.4 x 4.2 x 4.3 x 4.3 x 

SIKEp503 
Portable C 34’442 57’364 60’663 118’028 

This work 8’200 
(1.58 ms) 

13’915 
(2.68 ms) 

14’763 
(2.84 ms) 

28’667 
(5.51 ms) 

Speedup 4.2 x 4.1 x 4.1 x 4.1 x 

SIKEp610 
Portable C 61’783 113’745 114’270 228’015 

This work 12’428 
(2.39 ms) 

23’338 
(4.49 ms) 

23’400 
(4.50 ms) 

46’738 
(8.99 ms) 

Speedup 5.0 x 4.9 x 4.9 x 4.9 x 

SIKEp751 
Portable C 110’838 179’540 193’048 372’589 

This work 21’908 
(4.21 ms) 

37’700 
(7.25 ms) 

37’560 
(7.22 ms) 

75’260 
(14.47 ms) 

Speedup 5.1 x 4.8 x 5.1 x 5.0 x 

Compared with baseline, the assembly versions are 4.3, 4.2, 4.9 and 5.0 times faster for SIKEp434, 
SIKEp503, SIKEp610 and SIKEp751, respectively. The di˙erent speedups have two reasons: First, larger 
parameter sets beneft more from vectorization than the smaller ones. This is because the proportional 
overhead from limbifcation and delimbifcation decreases the more operations are performed in limbs. Second, 
the better the limbs are utilized, the better the improvement one can expect. In our case we accommodate 
integers up to a length of 4 · dlog2(p)e to allow lazy reductions. Split into 56-bit limbs, one needs 8, 10, 11 and 
14 limbs for SIKEp434, SIKEp503, SIKEp610 and SIKEp751, respectively. The limb utilization of SIKEp434 
and SIKEp610 is more benefcial than the one of SIKEp503 and SIKEp751, leading to a higher speedup. 

2 2 . 
The results are available in Table 2. 

We observe a signifcant speedup in each of the optimized operations. Similarly as in the overall results, 
the improvements are most accentuated with larger parameter sets. Arithmetic operating in 56-limbs 
(multiplication and squaring in Fp and Fp2 ) further benefts most if the limbs are well utilized. 

Fp and Fp performance We further break down the SIKE performance to the arithmetic over Fp and Fp 



8 Fast Quantum-Safe Cryptography on IBM Z 

2Table 2: Performance (in cycles) of Fp and Fp arithmetic functions on an IBM z15 LPAR at 5.2 GHz. In 
brackets are speedup factors compared to the portable C baseline implementation. 

SIKEp434 SIKEp503 SIKEp610 SIKEp751 

Fp add 31 (3.0 x) 31 (3.7 x) 31 (4.7 x) 36 (5.6 x) 
Fp sub 31 (2.2 x) 31 (2.5 x) 31 (3.2 x) 31 (3.8 x) 
Fp mul 161 (3.4 x) 254 (3.0 x) 312 (3.5 x) 405 (3.8 x) 
Fp rdc 88 (3.0 x) 109 (3.4 x) 140 (3.6 x) 171 (4.2 x) 
Fp2 add 46 (3.4 x) 46 (4.7 x) 62 (4.8 x) 72 (5.4 x) 
Fp2 sub 46 (2.7 x) 46 (3.8 x) 62 (3.5 x) 72 (3.6 x) 
Fp2 mul 390 (4.4 x) 514 (4.3 x) 603 (5.3 x) 842 (5.3 x) 
Fp2 sqr 286 (4.1 x) 410 (3.9 x) 499 (4.7 x) 702 (4.7 x) 

Table 3: Performance (in thousands of cycles) of encaps+decaps with assembly-optimized implementations 
on di˙erent platforms: IBM z15, Intel x64 (Skylake), ARMv8-A, ARMv7-M. 

IBM z15 Intel x64 ([3]) ARMv8-A ([3]) ARMv7-M ([9]) 

SIKEp434 17’818 20’024 58’542 184’000 
SIKEp503 28’667 27’959 81’621 257’000 
SIKEp610 46’738 54’699 181’107 493’000 
SIKEp751 75’260 84’553 282’089 770’000 

Comparison with other platforms SIKE is an attractive target for assembly-optimized implementations 
on several architectures. The SIKE round 3 submission bundles and reports some of the fastest software 
implementations available in [3]. While it is diÿcult to compare cycle counts across CPU architectures, we 
summarize the values reported in related literature in Table 3 to give an overview. The assembly-optimized 
version targeting Intel x64 uses ADX and MULX instructions available from the Broadwell architecture 
onwards. Compared with our z15 implementation, we achieve an improved cycle count of up to a factor 1.17 
(for SIKEp610). Our speedup factor in CPU cycles is mainly infuenced by the utilization of the 56-bit limbs, 
which is best in SIKEp610 and worst in SIKEp503. The assembly-optimized version from [3] and [10] targets 
64-bit ARMv8 Cortex-A platforms. Compared to the implementation for this target, the cycle count is up to 
3.88 times improved on z15. Another optimized version from [9] targets the embedded ARMv7 Cortex-M4 
architecture. The cycle count of our z15 implementation is up to 10.3 times improved. We further note 
that z15 is operating at 5.2 GHz and therefore often has a further advantage in absolute timings. Another 
interesting architecture for vectorized optimization is AVX512-IFMA, providing 52-bit fused multiply and 
add (FMA) instructions on 512-bit wide registers, where [8] predicts a potential speedup of a factor 1.72 
compared to a non-vectorized implementation. 

4 Optimizing Dilithium 
Dilithium is a digital signature scheme based on the hardness of the MLWE and MSIS lattice problems. 
The arithmetic used in Dilithium operates over the polynomial ring Zq[X]/(X256 + 1). To perform eÿcient 
operations over this ring the number-theoretic transform (NTT) is used. The NTT consists of modular 
operations modulo the prime q = 223 − 213 + 1. The other operations that consume a great deal of 
computational time are the generation of longer sequences of random values from seeds. 



 
 

 
 
 

9 Jonathan Bradbury and Basil Hess 

4.1 Modular Multiplication 
All of the multiplications done as part of the NTT, inverse-NTT and pointwise operations perform a 
centered reduction modulo q. The centered reduction of element r reduces the element to the range 
− q−1 0 � q−1 

2 � r 2 . The reference implementation provides the function montgomery_reduce(int64_t a) to 
perform this reduction. The IBM Z vector architecture provides 32-bit multiplication instructions which 
can either produce a full 64-bit product or produce the high or low half of the product. The most eÿcient 
implementation for doing the modular multiplication can be shown in Algorithm 4. 

Algorithm 4: Multiplication with centered reduction 
1: function MontMul(a = (a0, a1, a2, a3), b = (b0, b1, b2, b3)) 
2: plo VMLF(a, b) 
3: phi VMHF(a, b) 
4: t VMLF(plo, qinv) 
5: t VMHF(t, q) 
6: c phi − t 
7: return c 
8: end function 

By using Algorithm 4, the timing of a single 256-element pointwise multiplication was reduced from 525 ns 
to 56 ns, more than a 9x speedup. 

4.2 NTT 
To get the greatest performance from the NTT, as many elements as possible should be contained within 
vector registers. The IBM Z vector architecture has 32 128-bit registers which can hold a combined 128 32-bit 
elements. However, some of these registers are necessary to hold temporary values so fewer are available for 
use. With manual register allocation in the butterfies of the NTT, we found that we could use 16 of the 
vector registers holding 64 elements at a time. By loading groups of elements into each register that are 
spaced by 16 elements, we can perform 4 levels of the NTT without having to reload any registers. We iterate 
four times to complete all of the frst 4 levels of the Cooley-Tukey butterfies while saving out the results 
when fnished. To complete the fnal 4 levels, we load 64 consecutive elements at a time and can to complete 
all remaining levels before storing the fnal results. We iterate four times to complete the NTT. 

When we combined Algorithm 4 to perform the multiplications by the twiddle factors and the optimized 
traversal of the elements, the performance improved from 3475 ns for an NTT with the reference implementation 
to 236 ns for the NTT in this work, more than a 14x speedup. 

Similar optimizations were performed for the Gentleman-Sande butterfies of the inverse-NTT improving 
performance from 8270 ns to 255 ns, a speedup of over 32x. 

4.3 Hashing 
Dilithium makes extensive use of extendible output functions (XOFs) to expand seeds. There are two variants 
of Dilithium, one uses the SHAKE128 and SHAKE256 XOFs, and the other uses AES256-CTR to construct 
the XOF. IBM Z is the only commercially available CPU with support for full Keccak acceleration. ARMv8.4 
added several instructions to help improve the performance of doing a round of Keccak, but the operations 
are still broken down into a sequence of instructions. 

On IBM Z when the message-security-assist 6 is installed, the Compute Intermediate Message Digest 
(KIMD) and Compute Last Message Digest (KLMD) instructions perform an entire SHAKE operation with a 
single invocation. The KIMD instruction is used when you need to make multiple calls with various input 



10 Fast Quantum-Safe Cryptography on IBM Z 

bu˙ers. The KLMD instruction can be used either to complete an operation started with KIMD by applying 
padding if necessary and then storing the output, or can be used when the entire input bu˙er is available. 
Since we always have the entire input bu˙er at the time of the operation, our implementation only uses 
the KLMD instruction. Because this instruction performs the entire SHAKE operation it has some startup 
overhead. To avoid this overhead when possible, the existing interface of initializing the random stream and 
then squeezing blocks out of the stream was changed: the interface to do both the stream initialization and 
squeezing the blocks of output as a single operation. Also, in order to avoid having to call the squeeze block 
interface if after rejection sampling there was not enough data, we increased the size of the initial amount of 
data obtained in order to reduce the frequency of having to request more random bits. 

This same interface was also reused when implementing the variant of Dilithium that uses AES256-CTR. 
Instead of using the KLMD instruction, the Cipher Message with Authentication (KMA) instruction was 
used. This instruction is usually used for accelerating AES-GCM operations, but it is also the fastest way to 
perform AES-CTR mode operations. Since the KMA instruction is designed to encrypt data, a zero bu˙er 
that is the size of the output bu˙er must be created and passed to the instruction. The GCM tag is discarded 
at the end of the operation. 

4.4 Sampling 

Once a random bit stream has been obtained from either SHAKE or AES256-CTR, the output is then 
sampled. The sampling that is done the most is rejection sampling on the XOF output in the ExpandA 
function. This sampling takes three bytes of input data, masks o˙ the upper 9 bits, and then compares the 
resulting value to q. If the value is less than q, it is written to the output. If it is not, another three bytes of 
input are obtained. While it may seem that this is a serial operation, we vectorized the operation in a similar 
to the AVX2 implementation, sampling 4 input values at a time. 

This vectorized sampling, along with the hashing enhancements above for NIST level-2 using SHAKE 
128 the ExpandA function, the execution time was reduced from 480600 µs to 70350 µs, over a 6.5x speedup. 
When using NIST level-2 and AES256-CTR, execution time was reduced from 1350200 µs to 40300 µs. The 
AES256-CTR is still faster than the SHAKE128 implementation. Some of the slow down is due to the KLMD 
interface having to save and restore the Keccak sponge state which is almost half the size of the XOF output, 
reducing the possible throughput. The KMA instruction only has to load the 32-byte key and initial counter 
value and saves the fnal counter value. 

4.5 Implementation and Results 

We implemented optimized versions of the Dilithium parameter sets for NIST security levels 2, 3, and 5 for 
both the SHAKE and AES variants. The library is based on the oÿcial Dilithium reference third round 
submission [6]. For evaluation we measured a baseline and an optimized version: 

1. A baseline portable C implementation based on the reference code provided to NIST. 

2. An optimized version with vectorized polynomial operations, including hand coded assembly versions 
of the NTT and inverse-NTT, vectorized sampling for the ExpandA function as well as accelerated 
SHAKE and AES256-CTR functions. 

The code was compiled on Linux on Z (Fedora 31) using GCC 9.2.1 with -march=arch13 -O3 -mzvector 
compiler fags added to the reference set of fags. The evaluation machine was an IBM z15 logical partition 
(LPAR) operating at 5.2 GHz. The results are available in Table 4. 



11 Jonathan Bradbury and Basil Hess 

Table 4: Performance (in cycles) of Dilithium on an IBM z15 LPAR at 5.2 GHz. 

KeyGen Sign Verify 

Dilithium2 
Portable C (ref) 684’841 3’102’625 763’919 

This work 104’000 
(20.0 µs) 

253’239 
(48.7 µs) 

93’080 
(17.9 µs) 

Speedup 6.6 x 12.3 x 8.2 x 

Dilithium2-AES 
Portable C (ref) 1’241’346 3’939’394 1’231’936 

This work 84’760 
(16.3 µs) 

222’565 
(42.8 µs) 

76’440 
(14.7 µs) 

Speedup 14.6 x 17.7 x 16.1 x 

Dilithium3 
Portable C (ref) 1’213’252 5’231’388 1’217’799 

This work 239’201 
(46.0 µs) 

419’118 
(80.6 µs) 

142’999 
(27.5 µs) 

Speedup 5.1 x 12.5 x 8.5 x 

Dilithium3-AES 
Portable C (ref) 2’362’562 6’878’307 2’053’712 

This work 201’238 
(38.7 µs) 

367’647 
(70.7 µs) 

112’321 
(21.6 µs) 

Speedup 11.7 x 18.7 x 18.3 x 

Dilithium5 
Portable C (ref) 1’748’487 5’842’697 1’861’797 

This work 266’762 
(51.3 µs) 

538’191 
(103.5 µs) 

234’519 
(45.1 µs) 

Speedup 6.6 x 10.9 x 7.9 x 

Dilithium5-AES 
Portable C (ref) 3’608’605 8’163’265 3’466’667 

This work 204’362 
(39.3 µs) 

458’109 
(88.1 µs) 

177’317 
(34.1 µs) 

Speedup 17.7 x 17.8 x 19.6 x 



12 Fast Quantum-Safe Cryptography on IBM Z 

5 Conclusion and further work 
We have demonstrated a signifcant speedup of SIKE and Dilithium by using vector and SHA3 instructions 
on IBM z15. Our results are competitive with other platforms and in many cases outperform them in terms 
of cycle count and absolute timings. SIKE benefts especially from VMSL instructions on z15 that allow an 
eÿcient implementation of fnite feld and extension feld arithmetic. Dilithium also benefts from vector 
instructions to speedup modular multiplication, NTT and sampling. The application of hardware SHA3 
acceleration further greatly improves the performance of default SHAKE-based Dilithium versions. 

As future work, we envision to apply some of the optimization methods to other platforms with advanced 
instruction sets like AVX512. Our optimizations in SIKE will further also have an application to emerging 
isogeny-based schemes, such as the signature scheme SQISign [5]. Our optimized Dilithium implementation 
will presumably beneft in future hardware generations from even faster SHA3 hardware. Other lattice-based 
schemes and the hash-based signature SPHINCS+-SHAKE256 that are mainly dominated by Keccak related 
functions can be speed up with these instructions as well. 



13 Jonathan Bradbury and Basil Hess 

References 
[1] z/Architecture Principles of Operation. https://www.ibm.com/support/pages/ 

zarchitecture-principles-operation, 2019. Accessed: 2021-04-19. 

[2] Gorjan Alagic, Jacob Alperin-Sheri˙, Daniel Apon, David Cooper, Quynh Dang, John Kelsey, Yi-Kai 
Liu, Carl Miller, Dustin Moody, Rene Peralta, et al. Status report on the second round of the nist 
post-quantum cryptography standardization process. US Department of Commerce, NIST, 2020. 

[3] Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil Hess, Aaron Hutchinson, 
Amir Jalali, David Jao, Koray Karabina, Brian Koziel, Brian LaMacchia, Patrick Longa, Michael Naehrig, 
Geovandro Pereira, Joost Renes, Vladimir Soukharev, and David Urbanik. Supersingular isogeny key 
encapsulation, 2020. 

[4] Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-resistant cryptosystems from supersingular 
elliptic curve isogenies. Journal of Mathematical Cryptology, 8(3):209–247, 2014. 

[5] Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and Benjamin Wesolowski. SQISign: 
Compact post-quantum signatures from quaternions and isogenies. In Shiho Moriai and Huaxiong Wang, 
editors, ASIACRYPT 2020, Part I, volume 12491 of LNCS, pages 64–93. Springer, Heidelberg, December 
2020. 

[6] Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler, and 
Damien Stehlé. Crystals-dilithium: A lattice-based digital signature scheme. IACR Transactions on 
Cryptographic Hardware and Embedded Systems, pages 238–268, 2018. 

[7] Armanndo Faz-Hernández, Julio López, Eduardo Ochoa-Jiménez, and Francisco Rodríguez-Henríquez. 
A faster software implementation of the supersingular isogeny Diÿe–Hellman key exchange protocol. 
IEEE Transactions on Computers, 67:1622–1636, November 2017. 

[8] D. Kostic and S. Gueron. Using the new vpmadd instructions for the new post quantum key encapsulation 
mechanism sike. In 2019 IEEE 26th Symposium on Computer Arithmetic (ARITH), pages 215–218, 
2019. 

[9] H. Seo, M. Anastasova, A. Jalali, and R. Azarderakhsh. Supersingular isogeny key encapsulation 
(sike)round 2 on arm cortex-m4. IEEE Transactions on Computers, pages 1–1, 2020. 

[10] Hwajeong Seo, Amir Jalali, and Reza Azarderakhsh. Optimized sike round 2 on 64-bit arm. In Ilsun You, 
editor, Information Security Applications, pages 341–353, Cham, 2020. Springer International Publishing. 

[11] Christopher Tozzi. 9 mainframe statistics that may surprise you. https://www.precisely.com/blog/ 
mainframe/9-mainframe-statistics, 2020. Accessed: 2021-04-19. 

[12] James You, Qi Zhang, Curtis D’Alves, Bill O’Farrell, and Christopher Kumar Anand. Using z14 
fused-multiply-add instructions to accelerate elliptic curve cryptography. In CASCON, pages 284–291, 
2019. 

https://www.ibm.com/support/pages/zarchitecture-principles-operation
https://www.ibm.com/support/pages/zarchitecture-principles-operation
https://www.precisely.com/blog/mainframe/9-mainframe-statistics
https://www.precisely.com/blog/mainframe/9-mainframe-statistics

	Introduction
	Optimized candidates

	IBM z15
	Optimizing SIKE
	Arithmetic in Fp
	Arithmetic in Fp2
	Implementation and Results

	Optimizing Dilithium
	Modular Multiplication
	NTT
	Hashing
	Sampling
	Implementation and Results

	Conclusion and further work

