
Rainbow on Cortex-M4

Tung Chou1, Matthias J. Kannwischer2, and Bo-Yin Yang1,3

1 Research Center for Information Technology and Innovation, Academia Sinica, Taipei, Taiwan
blueprint,by@crypto.tw

2 Max Planck Institute for Security and Privacy, Bochum, Germany
matthias@kannwischer.eu

3 Institute of Information Science, Academia Sinica, Taipei, Taiwan

Abstract. We present the first Cortex-M4 implementation of the NISTPQC signature finalist Rain-
bow. We target the Giant Gecko EFM32GG11B which comes with 512 kB of RAM which can easily
accommodate the keys of RainbowI.
We present fast constant-time bitsliced F16 multiplication allowing multiplication of 32 field elements in
32 clock cycles. Additionally, we introduce a new way of computing the public map P in the verification
procedure allowing vastly faster signature verification.
Both the signing and verification procedures of our implementation are by far the fastest among the
NISTPQC signature finalists. Signing of rainbowIclassic requires roughly 957 000 clock cycles which
4× faster than the state of the art Dilithium2 implementation and 45× faster than Falcon-512. Veri-
fication needs about 239 000 cycles which is 5× and 2× faster respectively. The cost of signing can be
further decreased by 20% when storing the secret key in a bitsliced representation.

Keywords: Rainbow, NISTPQC, Cortex-M4, MQ signatures, finite field arithmetic

1 Introduction

The advance of large scale quantum computers is threatening all conventional public-key cryptography
currently deployed due to Shor’s algorithm [Sho94]. Hence, researchers are looking into quantum-safe re-
placements for existing protocols. In 2016, the American National Institute of Standards and Technology
(NIST) [NIS] called for proposals to replace their existing standards for digital signatures, public-key encryp-
tion (PKE), and key-encapsulation mechanisms (KEM). In 2020, the third and final round of the standardiza-
tion process (NISTPQC) with 7 remaining finalists and 8 alternate candidates started. Out of these remain-
ing schemes, 6 are digital signature schemes (3 finalists and 3 alternate candidates). They can be grouped
into three major families; each of which has its own advantages and disadvantages: Hash-based signatures
(SPHINCS+ [ABB+20]) have small keys, but large signatures; Lattice-based signatures (Dilithium [BLD+20]
and Falcon [FHK+20]) have medium keys and medium signatures; Multivariate Quadratic (MQ-)based sig-
natures (GeMSS [CFM+20] and Rainbow [DCK+20a]) have very small signatures, but large keys. The sixth
signature scheme is Picnic built on top of zero knowledge proofs which does not quite fit any of those families.

Rainbow has a reputation extremely for fast verification (and signing), and comes with very small sig-
natures. However, while implementations of both hash-based signatures and lattice-based signatures have
received broad attention from the community, there appears to be only very little work on implementations of
MQ-based schemes, even though the aforementioned characteristics of Rainbow make it particularly suitable
either for root certificates, for any cases where the key can be built into the application, or in any situation
not calling for frequent downloading or updating.

Especially, implementing multivariate schemes and in particular UOV-based schemes on embedded plat-
forms seem to be poorly explored which may be due to the large public keys of these schemes. It may also be
due to the implementation complexity of the schemes as effectively and securely implementing the Gaussian
elimination and field arithmetic on an embedded platform is difficult.

So we try to bridge that gap in this work and present Cortex-M4 implementations of the smallest Rainbow
instances rainbowIclassic, rainbowIcircumzenithal, and rainbowIcompressed. As the public keys for
those parameter sets are 157.8 kB, 58 kB, and 58 kB respectively these are still within reach of fitting onto
some embedded platforms. The larger Rainbow parameter sets (level 3 and level 5) have public keys of 258
kB up to 1885 kB and, thus, may be arguably unsuitable for embedded platforms. However, our methods

are not simply tailored only for F16 and rainbowI. If there are larger Cortex-M’s, part of our methods will
extend straightforwardly and be useful for rainbowIII and rainbowV which use F256.

Contribution. We present optimized Cortex-M4 implementations of all three third-round instances of Rain-
bow with the parameter set aiming at NIST security level 1. Our achieved speed-ups mostly come from
bitsliced multiplication of F16 elements making use of the conditional execution instructions available on
the Cortex-M4. This multiplication can be even faster by switching to a direct F16 representation (F16 =
F2[x]/(x4 +x+1)) rather than the tower field representation mandated by the Rainbow specification. We ar-
gue that the specification should be changed. Furthermore, we choose an approach [CCNY12] which was not
previously used in the literature describing how to evaluate MQ public maps [CLP+18,DCK+20a,BPSV19].
In Rainbow, this is vastly faster. As verification for rainbowIclassic only consists of hashing and evaluating
the public map, our approach results in blazingly fast verification.

As our target platform (the EFM32GG11B) comes with a SHA256 and AES hardware accelerator, we also
present how Rainbow implementations can benefit from faster symmetric operations.

Code. Our Open-Source Cortex-M4 implementation of Rainbow is available at https://github.com/rainbowm4/
rainbowm4.

Related Work. Rainbow and its near relative TTS [YC05] was implemented in a sequence of papers [CCC+08,CCC+09,CLP+18]
for Intel platforms, but they tend to be for prior parameters and use different Intel-specific optimizations
different from what we use. [CLP+18] mostly uses the VPSHUFB table look-up instruction in AVX2 in-
struction set for F16 and is inapplicable to the ARM Cortex-M4, and [CCC+09] uses Wiedemann to evaluate
matrix inverses which is not constant time.

There is a large body of work targeting the Cortex-M4 on the other NISTPQC finalists Dilithium [GKS20],
Falcon [Por19], Kyber [ABCG20], Saber [KRS19,BMKV20,CHK+21], and NTRU [KRS19,CHK+21]. Un-
fortunately, these lattice-based finalists use modular integer arithmetic and polynomial multiplication for
relatively many coefficients, which means their optimizations do not carry over to Rainbow.

There are very few implementations on the Cortex-M4 for MQ. In particular, the work covering Rainbow is
very limited, especially with the most recent parameter sets. The only M4 work on Rainbow to our knowledge
was from Moya Riera’s Bachelor thesis [MR19], which optimized level 1 parameter sets of the second round
Rainbow. However, this implementation used look-up tables for F16 arithmetic which is not constant-time
on all Cortex-M4 platforms, and additionally (despite the smaller parameters) was considerably slower than
our work.

There is large body of work targeting the Cortex-M4 on the other NISTPQC finalists Dilithium [GKS20],
Falcon [Por19], Kyber [ABCG20], Saber [KRS19,BMKV20,CHK+21], and NTRU [KRS19,CHK+21]. Un-
fortunately, these lattice-based finalists use modular integer arithmetic and polynomial multiplication for
relatively many coefficients, which means their optimizations do not carry over to Rainbow.

Applicability to other contexts. Our techniques for evaluating quadratic systems (Section 3.3) and solving
linear systems (Section 3.2) equally benefit Unbalanced Oil and Vinegar [KPG99] and all its derivatives. Our
constant-time matrix solving (Section 3.2) generalize the Gauss-Jordan Elimination used in key generation
of code-based cryptography, e.g., as briefly mentioned in McBits [Cho17].

Structure. In Section 2 we introduce Rainbow and the features of the Cortex-M4 that proved useful when
implementing Rainbow. Section 3.1 introduces fast bitsliced F16 arithmetic for the Cortex-M4 which is used in
the core operations within Rainbow. Section 3.2 shows how the matrix inversion in the signing operation can
be implemented efficiently and in constant time. Section 3.3 describes how the public map can be evaluated
in variable time and, consequently, how verification can be sped up. Section 4 shows how a different F16

representation can speed up Rainbow even further, although it would require a change of the specification.
In Section 5, we present the performance of the resulting implementations and compare it to other NISTPQC
finalists.

2 Preliminaries

We introduce the Rainbow signature in Section 2.1 and describe useful features of the Cortex-M4 for Rainbow
in Section 2.3.

https://github.com/rainbowm4/rainbowm4
https://github.com/rainbowm4/rainbowm4

2.1 Recap of Multivariate Signatures

A Multivariate Quadratic Public Key Cryptosystem works on a field K = Fq which is called the “base field”.
For Rainbow I this is F16. It has a public map P = T ◦Q ◦ S : Kn → Km where T and S are typically affine
but is here (for Rainbow) linear. So, S : w 7→ x = MSw and T : y 7→ z = MTy. The map Q : x 7→ y,
called the central map must be quadratic and be easily invertible. The various MPKCs are characterized by
the construction of their Q’s, obviously it must be hard to decompose P : w 7→ z into its component maps.
Usually n > m and we have a digital signature.

2.2 Summary of Rainbow

Rainbow was proposed by Ding and Schmidt in 2004 [DS05], with a multi-stage Unbalanced Oil and Vinegar
(UOV) structure. Since 2008 it has always appeared with exactly two stages [DYC+08], and this is what we
describe below.

The Central Map in Rainbow Modern variants of Rainbow(Fq, v1, o1, o2) is parametrized by four integers
q, v1, o1, o2 [DS05,DYC+08].

– There are two “segments” of central maps in each which we designate “oil” and “vinegar” variables. In
the first segment the vinegar variables are the xi for i ∈ V1 = {1, . . . , v1} and the oil variables are the
xi for i ∈ O1 = {v1 + 1, · · · , v2 := v1 + o1}. In the second segment, the vinegar variables has the index
set V2 = {1, · · · , v2 := v1 + o1} and the oil variables the index set O2 = {v2 + 1, · · · , n = v3 = v2 + o2 =
v1 + o1 + o2}.

– The central mapQ hasm = o1+o2 structured quadratic equations y = (yv1+1, . . . , yn) = (qv1+1(x), . . . , qn(x)),
where (notice the unusual indexing):

yk = qk(x) =

v1∑
i=1

v2∑
j=i

α
(k)
ij xixj , for k ∈ O1;

yk = qk(x) =

v2∑
i=1

n∑
j=i

α
(k)
ij xixj , for k ∈ O2.

– Note that in every qk, where k ∈ O1, there is no cross-term xixj where both i and j are in O1. So given
all the yi in the first stage with v1 < i ≤ v2, and all the vinegar variables xj with j ≤ v1, we can easily
compute the corresponding oil variables xv1+1, . . . , xv2 by solving a linear system.
Similarly, in every qk, where k ∈ O2, there is no cross-term xixj where both i and j are in O2. So given
all the yi in the second stage with v2 < i ≤ n, and all the vinegar variables xj with j ≤ v2, we can easily
compute xv2+1, . . . , xvn by solving a linear system.

– An inverse image x of Q such that Q(x) = y, can be found as follows:
1. Randomly guess the initial vinegar variables x̄ = (x1, . . . xv1) and from that and (yv1+1, . . . , yv2) solve

for (xv1+1, . . . , xv2) via Gauss-Jordan elimination. If there is no solution, restart from the beginning.
2. Having now the values x̄ = (x1, . . . xv2), from that and (yv2+1, . . . , yn) again solve for (xv2+1, . . . , xn)

via Gauss-Jordan elimination. If there is no solution, restart from the beginning.

The procedure is obviously extensible to any number of stages. A toy example of the central map Q in
Rainbow can be found in Appendix A.

Procedures of MPKC Signatures including Rainbow An MPKC signature system comprises three
main procedures: key generation, signing messages, and verifying signatures. Signing and verification are
much more important because a signature key is not expected to change often.

Key generation The user randomly chooses a secret key which consists of invertible S, T , and Q, then
computes P = T ◦Q ◦ S as the public key. S−1, T−1 and the parameters in Q is kept as the private key. We
mostly follow [DCK+20a, Sec. 4] and its reference implementation (aside from doing multiplications more
efficiently), as it is a faster approach for key generation of Rainbow compared to the alternative, which is
MQ key polynomial interpolation of T ◦ Q ◦ S [Wol04].

Table 1. Parameters of Rainbow [DCK+20a].

security NIST Round Round 2 Round 3

Field F16 F16

128 bits (v1, o1, o2) 32, 32, 32 36, 32, 32
n→ m 96→ 64 100→ 64

Field F256 F256

192 bits (v1, o1, o2) 68, 36, 36 68, 32, 48
n→ m 140→ 72 148→ 80

Field F256 F256

256 bits (v1, o1, o2) 92, 48, 48 96, 36, 64
n→ m 188→ 96 196→ 100

Signing The signer first computes the hash value of the message as the digest z ∈ Km. With the secret key,
the signer computes y = T−1(z), x = Q−1(y), and w = S−1(x) ∈ Kn which is the signature of the message.
This is common to all multivariate signatures although the details of computing Q−1(y) vary with specific
schemes.

Verification To verify a signature w ∈ Kn of a message, the user evaluates the public polynomial P(w) = z
and checks whether the digest of the message is equal to z.

Parameters of Rainbow Ding et al. [DCK+20a] chose the parameters for security requirements in Table 1.
Previously, against a Rainbow cryptosystem with m equations and n variables, the most pertinent attacks are
substituting n−m variables at random and trying to solve for the remaining m variables (“Direct Attack”),
and a structural attack which involves solving an associated quadratic system with n variables and n+m−1
equations (“Rainbow Band Separation”) [DYC+08]. Recently, Beullens posted the new “Intersection” and
“Rectangular MinRank” attacks against Rainbow [Beu20]. The Rainbow team acknowledged these attacks,
emphasizing that Round-3 Rainbow still meets its planned security levels [DCK+20b].

Computational Costs of Rainbow Signing The signer, as above, calculates the hash digest z of message
and inverts P with the secret key T , S, and Q, and does

z ∈ Km T−1

7−→ y
Q−1

7−→ x
S−1

7−→ w ∈ Kn ,

where w is the signature. Inverting the central map Q is clearly slower than inverting S, T . While inverting
Q with given y, the signer randomly guesses vinegar variables x̄ = (x1, . . . xv1) and solve (xv1+1, . . . , xv2) by

yv1+1 = ᾱ
(v1+1)
v1+1 xv1+1 + · · ·+ ᾱ(v1+1)

v2 xv2
+ β̄

(v1+1)
V1

...

yv1+o1 = ᾱ
(v2)
v1+1xv1+1 + · · ·+ ᾱ(v2)

v2 xv2 + β̄
(v2)
V1

.

(1)

Here (β̄
(v1+1)
V1

, . . . , β̄
(v2)
V1

) is evaluated as quadratic forms in x̄. This is obtained from evaluation of secret-
quadratic equations with secret values x̄ and the matrix

ᾱ
(k)
i · · · ᾱ(k)

i′

. . .

ᾱ
(k′)
i ᾱ

(k′)
i′

 , where i, i′ and k, k′ ∈ O1 ,

which we call matVO(x̄). If matVO(x̄) is a singular matrix the initial guesses are discarded and the process is
restarted. The signer will repeat this procedure to solve for xi with i ∈ O2, that is the variables xv2+1, . . . , xn
as we have now values of xi for i ∈ V1 ∪O1 = V2, using also the values yv2+1, . . . , yn.

Clearly, the main computation cost of signing is solving linear equations and computing the matrices
matVO(x̄) from vinegar variables x̄, twice.

Note that randomness (vinegar variables and salt) are generated using AES counter mode according to
the spec, with every byte sampled providing two random F16 elements.

Variations on the Basic Rainbow In NIST round 2 and 3, Rainbow’s authors included circumzenithal
and compressed variants, expanding most of the public key using AES counter mode from a seed, and storing
only parts of the keys not producible in this way. The private key can be derived from the private matrices S
and T and this public key and stored separately. This method, first appearing in [PBB10], reverses the normal
procedure of deriving the public key from the private key during key generation. Note that a circumzenithal
arc or rainbow is a meteorological phenomenon resembling an inverted rainbow. In the compressed variant,
the entire private key is additionally generated on the fly from the public key seed and the private seed for
S and T . These variations obviously trade key sizes for the time recomputing keys.

2.3 Cortex-M4

The Cortex-M4 is NIST’s primary microcontroller optimization target for the post-quantum competition.
The Cortex-M4 is a 32-bit processor that implements the ARMv7E-M instruction set which comes with a
number of powerful instructions. For example, the DSP instructions [KRS19,BMKV20,BFM+18] as well as
the single-cycle long multiplication instructions [GKS20,CHK+21,SJA19] proved to be very beneficial for
implementing post-quantum cryptography.

However, for implementing Rainbow, we mostly rely on instructions that are also present in the ARMv7-M

instruction set (a subset of ARMv7E-M) which is, for example, implemented by the Cortex-M3 microarchitec-
ture. However, Cortex-M3 cores usually come with considerably less RAM which makes them arguably less
suitable for Rainbow implementations.

The following features of ARMv7-M are particularly useful for implementing Rainbow:

Conditional execution. The feature benefiting Rainbow the most, is conditional execution. Using the it

instruction one can execute up to four instructions conditionally on a flag value. For example,
ite EQ

addeq r0, r1

addne r0, r2

either adds r1 or r2 to r0 depending on the Z flag (equal) being set or not.
Note that the ARMv7-M manual [ARM18, Section A4.1.2] states that

”If the flags do not satisfy this condition, the instruction acts as a NOP, that is, execution advances
to the next instruction as normal, including any relevant checks for exceptions being taken, but has
no other effect“

Hence, it is safe to use single-cycle instructions with secret-dependent conditions in constant-time code
as the run-time will be one cycle irrespective of the condition flags. In future ARM architectures it needs to
be carefully evaluated if this is still the case. An it block can consist of up to four instructions of which the
first must be the then branch and the following can be either then or else. The it instruction encodes which
instructions of an it block belong to which branch, e.g., itttt, ittee, and itete. The conditions that can
be used are the same as those for branch instructions (eq, ne, cs, cc, mi, pl, vs, vc, hi, ls, ge, lt, gt, le)
and the flags can be set using arithmetic instructions (e.g., adds, subs) or explicit comparison instructions
(e.g. cmp, tst). The conditions within an it block must be the same for all instructions (or the opposite for
the else branch). it* instructions takes 1 cycle each on the M4 (unless it is the second of a pair of 2-byte
instructions, which doesn’t happen in our implementations).

Barrel shifting. Standard data-processing instructions (e.g., add, eor, and) allow to have a flexible second
operand, i.e., the second argument can be shifted or rotated without changing the latency (1 cycle) for each
instruction. For example,

add r0, r1, r2, LSL#2

will shift r2 left by two bit positions add it to r1 and store the result to r0. Similarly, other shifts and
rotations can be used (lsr, asr, ror, rrx).

Special immediates. Standard data-processing instructions can also be used with a constant as a second
operand. mov’s are limited to 16 bits immediates 0x0000XYZW while immediates for other instructions are
limited to an 8-bit value 0xXY shifted by some amount, or the special patterns 0x00XY00XY, 0xXY00XY00,
and 0xXYXYXYXY.

3 Implementation Building Blocks

This section introduces the novel implementation approaches that can be used to speed up Rainbow imple-
mentations. Section 3.1 introduces fast bitsliced F16 multiplication which is useful throughout all aspects of
Rainbow. We can speed up the multiplication further by switching to a direct F16 representation which is
described in Section 4. Section 3.2 shows how we can adapt constant-time F16 matrix inversion to benefit
from the fast bitsliced multiplication. This speeds up the signing procedure of Rainbow and can also be
adapted for F256 parameter sets. Section 3.3 presents a novel approach for evaluating the public map P
which is the core operation of Rainbow verification. We exploit that verification can run in variable time
depending on both the public key and the signature. This also works for other parameter sets of Rainbow.

3.1 F16 multiplication

The core operation within Rainbow is arithmetic in a finite field. As mentioned before, for rainbowI param-
eter sets this field is F16 (for the higher levels it is F256). The F16 representation used within Rainbow is the
tower field representation:

F16 := F4[y]/(y2 + y + x)

with

F4 := F2[x]/(x2 + x+ 1)

Hence, an element is represented by four bits ei with e = (e3 · x + e2) · y + e1 · x + e0. These bits are
packed into a nibble with e0 at the least significant bit position. Two elements are packed into a byte with
the least significant nibble in the lower half of the byte.

One approach of multiplying two F16 elements is using Karatsuba multiplication [KO63] and is, for
example, used in the reference implementation of Rainbow. It allows us to implement a F16 multiplication
using three F4 multiplications.

Given a = a1 · y + a0 and b = b1 · y + b0 where ai, bi ∈ F4,

a · b = (a1 · y + a0) · (b1 · y + b0)

= (a1 · b1) · y2 + (a0 · b1 + a1 · b0) · y + a0 · b0
= (a1 · b1) · y2 + ((a0 + a1) · (b0 + b1) + a0 · b0 + a1 · b1) · y + a0 · b0
= (a1 · b1) · (y + x) + ((a0 + a1) · (b0 + b1) + a0 · b0 + a1 · b1) · y + a0 · b0
= ((a0 + a1) · (b0 + b1) + a0 · b0) · y + a0 · b0 + a1 · b1 · x

However, this approach is rather slow on 32-bit (or larger) platforms as it utilizes the available 32-bit
arithmetic inefficiently. We, hence, opt for bitslicing the field elements into four registers and implementing
the multiplication using only logic operations. This is particularly useful when 32 or more F16 elements need
to be multiplied by a single F16 elements which is almost always the case in Rainbow.

Bitslicing. As two F16 elements fit into one byte, we can fit eight F16 elements into one 32-bit register.
However, we can achieve significantly faster F16 multiplication routines that run in constant time, when
we bitslice the field elements into 4 separate registers holding a total of 32 elements. To make use of fast
bitsliced multiplication, we need a way of converting a packed nibble representation of F16 elements into a

7 7 7 76 6 6 65 5 5 54 4 4 43 3 3 32 2 2 21 1 1 10 0 0 0r0

15 15 15 1514 14 14 1413 13 13 1312 12 12 1211 11 11 1110 10 10 109 9 9 98 8 8 8r1

23 23 23 2322 22 22 2221 21 21 2120 20 20 2019 19 19 1918 18 18 1817 17 17 1716 16 16 16r2

31 31 31 3130 30 30 3029 29 29 2928 28 28 2827 27 27 2726 26 26 2625 25 25 2524 24 24 24r3

31

31

31

31

23

23

23

23

15

15

15

15

7

7

7

7

30

30

30

30

22

22

22

22

14

14

14

14

6

6

6

6

29

29

29

29

21

21

21

21

13

13

13

13

5

5

5

5

28

28

28

28

20

20

20

20

12

12

12

12

4

4

4

4

27

27

27

27

19

19

19

19

11

11

11

11

3

3

3

3

26

26

26

26

18

18

18

18

10

10

10

10

2

2

2

2

25

25

25

25

17

17

17

17

9

9

9

9

1

1

1

1

24

24

24

24

16

16

16

16

8

8

8

8

0

0

0

0

r0

r1

r2

r3

Fig. 1. Bitsliced representation. The upper part denotes 32 elements in standard representation packed in 4 registers.
Numbers denote the index of the field element. Shades of gray denote the different bits within a F16 element. The
lower part denotes the bitsliced field elements with the least significant bit of each element packed in r0.

bitsliced representation. A straightforward approach would load each field element individually, mask out
the desired bit and pack it into the corresponding registers in the same order as the inputs. However, it
is much more efficient to load 32 elements at once into four registers, and reorganizing the elements in an
interleaved fashion as illustrated in Figure 1. Each row corresponds to a register containing 8 field elements.
The colors denote the bit within the field element where light gray is the least significant bit, while dark
gray is the most significant bit. This approach is similar to the one proposed by Chou for McBits [Cho17].
4 This interleaving can be implemented efficiently in 28 cycles as shown in Appendix B. The same code can
be used for the transformation from bitsliced representation to normal representation. The correct order of
the field elements will be restored when reversing the bitslicing. Note that addition in F16 is bitwise XOR
and, hence, behaves the same on the bitsliced representation.

Bitsliced Multiplication. We first consider F4 multiplication, then use it to construct F16 multiplication, and
then apply multiple simplifications to achieve a minimal instruction sequence. There are multiple approaches
to arrive at the same instruction sequence, but we find this description the most intuitive to follow.

F4 multiplication Recall that a F4 element (F2[x]/(x2 + x + 1)) is represented by two bits a0, a1, s.t.,
a = a1 ·x+a0. When multiplying two elements a = a1 ·x+a0 and b = b1 ·x+b0, we obtain c = a ·b = c1x+c0.
As x · x ≡ x + 1, x · (x + 1) ≡ 1, and (x + 1) · (x + 1) ≡ x (mod x2 + x + 1), it is easy to see that we can
compute c0, c1, by computing
c0 = a0 · b0 + a1 · b1
c1 = a1 · b0 + (a0 + a1) · b1

where · denotes logical AND and + denotes XOR. This can be very efficiently computed on bitsliced elements.

Constructing F16 multiplication When multiplying two F16 elements a = (a3 · x + a2) · y + a1 · x + a0 and
b = (b3 ·x+b2) ·y+b1 ·x+b0, we can rewrite them by using two F4 elements as a = α1 ·y+α0, b = β1 ·y+β0
with α0, α1, β0, β1 ∈ F4. We can, thus, write

a · b = (α1 · y + α0) · (β1 · y + β0)

= (α1 · β1) · y2 + (α0 · β1 + α1 · β0) · y + α0 · β0
= (α0 · β1 + α1 · β0 + α1 · β1) · y + α0 · β0 + (α1 · β1) · x
= γ1y + γ0

4 We may regard this as computing a transposition of binary matrices.

We can now consider γ0 and γ1 separately and substitute the F4 multiplication.

γ0 = α0 · β0 + (α1 · β1) · x
= (a1 · b0 + (a0 + a1) · b1) · x+ a0 · b0 + a1 · b1+

((a3 · b2 + (a2 + a3) · b3) · x+ a2 · b2 + a3 · b3) · x
= a0 · b0 + a1 · b1 + a3 · b2 + (a2 + a3) · b3+

(a1 · b0 + (a0 + a1) · b1 + a3 · b2 + (a2 + a3) · b3 + a2 · b2 + a3 · b3) · x
= a0 · b0 + a1 · b1 + a3 · b2 + (a2 + a3) · b3+

(a1 · b0 + (a0 + a1) · b1 + (a2 + a3) · b2 + a2 · b3) · x
= c1 · x+ c0

Hence, the least significant bits of the result can be computed as

c0 = a0 · b0 + a1 · b1 + a3 · b2 + (a2 + a3) · b3
c1 = a1 · b0 + (a0 + a1) · b1 + (a2 + a3) · b2 + a2 · b3

We proceed similarly for γ1:

γ1 = α0 · β1 + α1 · β0 + α1 · β1
= (a1 · b2 + (a0 + a1) · b3) · x+ a0 · b2 + a1 · b3+

(a3 · b0 + (a2 + a3) · b1) · x+ a2 · b0 + a3 · b1+

(a3 · b2 + (a2 + a3) · b3) · x+ a2 · b2 + a3 · b3
= a2 · b0 + a3 · b1 + (a0 + a2) · b2 + (a1 + a3) · b3+

(a3 · b0 + (a2 + a3) · b1 + (a1 + a3) · b2 + (a0 + a1 + a2 + a3) · b3) · x
= c3 · x+ c2

And hence,

c2 = a2 · b0 + a3 · b1 + (a0 + a2) · b2 + (a1 + a3) · b3
c3 = a3 · b0 + (a2 + a3) · b1 + (a1 + a3) · b2 + (a0 + a1 + a2 + a3) · b3

Now that we have established how a · b is calculated, we need to come up with an instruction sequence
that does so efficiently. Consider the most common multiplication case within Rainbow: We have a large
number (≥ 32) of field elements a(i) which are multiplied by a single field element b and then added to a
bitsliced accumulator c(i). This is, for example, the case in the matrix-vector multiplication. In this case, it is
best to bitslice a(i) and keep b in nibble-sliced representation. For sake of explanation, we assume that we are
multiplying exactly 32 elements a(0), . . . , a(31) which are bitsliced into four registers. The register containing

the least significant bits of a(0), . . . , a(31) is denoted as a0 = a
(0)
0 , . . . , a

(31)
0 and similarly for a1, . . . , a3 and

c0, . . . , c3. b is stored in the least significant four bits of a register, with b0 denoting the least significant bit.
Algorithm 1 shows the instruction sequence that implements the computation of the product and ac-

cumulates it into c0, . . . , c3. If only a multiplication is needed, but no accumulation, c0, . . . , c3 first need to
be initialized to zero. The instruction sequence heavily relies on using conditional execution to only execute
the additions of ai if certain bits of b are set. We compute a0 + a1 and a2 + a3 in two separate registers
tmp0, tmp1 as those are used both in c1, c3 and c0, c1, c3 respectively. Also, we save another cycle by storing
(b2 · a2) + (b3 · a3) in a temporary register tmp2 and (b2 · a3) + (b3 · (a2 + a3)) in tmp3 which is required
to compute c1, c2 and c0, c1, c3 respectively. Another shortcut that we have been using is line 16, which is
functionally equivalent to computing
mov tmp3, #0

tst b, #4

in a single cycle. In total our instruction sequence requires 32 clock cycles, i.e., one clock cycle for each field
multiplication.

This approach is directly extensible to parameter sets using F256 (RainbowIII and RainbowV).

Algorithm 1 F16 Multiply and Accumulate Instruction Sequence

Input: 32 F16 elements bitsliced into a0, a1, a2, a3

Input: 1 F16 element in the least significant nibble of b
Input: 32 F16 elements bitsliced in the accumulator c0, c1, c2, c3
Output: Each of the elements in ai multiplied by b and added to ci

1: tst b, #1

2: itttt ne . conditional exec. if b&1 6= 0
3: eorne c0, c0, a0 . c0 += b0 · a0

4: eorne c1, c1, a1 . c1 += b0 · a1

5: eorne c2, c2, a2 . c2 += b0 · a2

6: eorne c3, c3, a3 . c3 += b0 · a3

7: eor tmp0, a0, a1 . tmp0 = a0 + a1

8: eor tmp1, a2, a3 . tmp1 = a2 + a3

9: tst b, #2

10: itttt ne . conditional exec. if b&2 6= 0
11: eorne c0, c0, a1 . c0 += b1 · a1

12: eorne c1, c1, tmp0 . c1 += b1 · (a0 + a1)
13: eorne c2, c2, a3 . c2 += b1 · a3

14: eorne c3, c3, tmp1 . c3 += b1 · (a2 + a3)
15: mov tmp2, #0

16: ands tmp3, tmp2, b, lsr #3 . Set tmp3=0; set cs flag if b&4 6= 0
17: itttt cs . conditional exec. if b&4 6= 0
18: eorcs tmp2, tmp2, a2 . tmp2 = b2 · a2

19: eorcs tmp3, tmp3, a3 . tmp3 = b2 · a3

20: eorcs c2, c2, a0 . c2 += b2 · a0

21: eorcs c3, c3, a1 . c3 += b2 · a1

22: tst b, #8

23: itttt ne . conditional exec. if b&8 6= 0
24: eorne c2, c2, a1 . c2 += b3 · a1

25: eorne c3, c3, tmp0 . c3 += b3 · (a0 + a1)
26: eorne tmp2, tmp2, a3 . tmp2 = b2 · a2 + b3 · a3

27: eorne tmp3, tmp3, tmp1 . tmp3 = b2 · a3 + b3 · (a2 + a3)
28: eor c0, c0, tmp3 . c0 += b2 · a3 + b3 · (a2 + a3)
29: eor c1, c1, tmp2 . c1 += b2 · a2 + b3 · a3

30: eor c1, c1, tmp3 . c1 += b2 · a3 + b3 · (a2 + a3)
31: eor c2, c2, tmp2 . c2 += b2 · a2 + b3 · a3

32: eor c3, c3, tmp3 . c3 += b2 · a3 + b3 · (a2 + a3)

Algorithm 2 Matrix inversion using constant-time Gaussian elimination (for us F = F16)

Input: Matrix A ∈ Fo×o

Output: Inverse A−1 ∈ Fo×o

Output: fail ∈ {0, 1}, 1 if A is not invertible

1: A′ ← (A|Io) ∈ Fo×2·o

2: fail← 0
3: for i← 0, . . . , o− 1 do
4: for j ← i + 1, . . . , o− 1 do . make sure A′i,i 6= 0
5: p← A′i,i
6: for k ← i, . . . , 2 · o− 1 do
7: if p = 0 then A′i,k ← A′i,k + A′j,k . needs to be constant-time

8: if A′i,i = 0 then fail← 1 . needs to be constant-time

9: p−1 ← A′−1
i,i . constant-time inversion in F

10: for k ← i, . . . , 2 · o− 1 do . normalize row i→ A′i,i = 1
11: A′i,k ← p−1 ·A′i,k
12: for j ← 0, . . . , o− 1 do . subtract from other rows → A′j,i = 0
13: if j = i then continue

14: for k ← i, . . . , 2 · o− 1 do
15: A′j,k ← A′j,k + A′j,i ·A′i,k
16: (Io|A−1)← A′

17: return A−1, fail

Algorithm 3 15 cycle table lookup to a 16 element look-up table encoded into the immediate arguments of
4 mov instructions. The i-th bit of each constant encodes one bit of the inverse of i. For example, the inverse
of yx+ y + x+ 1 (encoded as 0xF) is y (0x4), i.e., the 15-th bit is only set in the third constant (0xFA30).

1: movw t, #0x58D6

2: lsr.w einv, t, e
3: and.w einv, #1

4: movw t, #0x2B9C

5: lsr.w t, t, e
6: and.w t, #1

7: orr.w einv, einv, t, lsl #1

8: movw t, #0xFA30

9: lsr.w t, t, e
10: and.w t, #1

11: orr.w einv, einv, t, lsl #2

12: movw t, #0x65F0

13: lsr.w t, t, e
14: and.w t, #1

15: orr.w einv, einv, t, lsl #3

3.2 F16 Matrix Inversion

Besides F16 multiplication, the Rainbow signature requires solving two matrix equations. Since if A−1 exists,
Ax = b ↔ x = A−1b, we may without much loss of generality consider matrix inversion as a part of the
signing procedure. As it operates on secret inputs, it is required to be constant-time which is not the case in
a straightforward implementation of Gaussian elimination. We use an adapted version of the constant-time
Gauss-Jordan elimination first presented by Bernstein, Chou, and Schwabe [BCS13]. Rainbow’s constant time
variant is illustrated in Algorithm 2 and is essentially the same as in the Rainbow reference implementation.
However, for an implementation we need to choose how to implement the field arithmetic.

Field inversion. For F16 inversion (line. 9) the most efficient implementation uses a constant-time table
look-up. As the number of possible input values is small (16), we can pack the look-up table (16 · 4 bit) into
the 16-bit immediate arguments of 4 mov instructions and then select the right bits by shifting them into the
right place. The code for the F16 representation used in Rainbow is shown in Algorithm 3. For larger fields
(e.g., F256) this approach does not work, and one would rather store a table in flash, loop through it, and
conditionally select the right element. For a = 0, the inverse doesn’t exist and special treatment is needed,
i.e., the entire matrix inversion fails and fail = 1. In that case, the matrix gets discarded and one samples
a new set of vinegar variables.


a00 a01 . . . a0o 1 0 . . . 0
a10 a11 · · · a1o 0 1 . . . 0
...

. . .
...

...
. . .

...
ao0 . . . aoo 0 . . . 1




1 0 . . . 0 b00 b01 . . . b0o
0 1 . . . 0 b10 b11 · · · b1o
...

. . .
...

...
. . .

...
0 . . . 1 bo0 . . . boo



bitsliced bitsliced

constant-time Gaussian elimination, b = a−1

Fig. 2. Partially bitsliced inversion. Input is in normal representation. Output is in bitsliced representation.

Note that a field element at index i can be efficiently retrieved from a packed matrix representation
(starting at address a) using the following instruction sequence:

lsrs i, i, #1

ldrb pivot, [a, i]

ite cs

lsrcs pivot, pivot, #4

andcc pivot, pivot, #0xF

Field multiplication. The optimal choice for implementing F16 multiplication is less obvious. To achieve
the fastest multiplication one would want to keep the entire extended matrix A′ in bitsliced representation.
However, when making sure that the pivot element is not zero in lines 4 to 7 and when inverting the pivot
element in line 9, one needs to access individual field elements which is tedious and inefficient when working
on a bitsliced matrix. Hence, it is faster to keep the matrix in normal (packed nibble-) representation, only
perform the bitslicing ad hoc just before multiplying and convert back just after. It is notable, that that
individual element accesses only occur to the left half of the matrix. Hence, we can bitslice the right half and
keep it bitsliced throughout the computation. This is illustrated in Figure 2. As the output of the matrix
inversion is always the input to matrix multiplication, it is possible to return the bitsliced inverse.

An additional speed-up is achieved by letting the inner loops in line 6 and line 14 always start at
k = 0. This does not change the result, but greatly simplifies the loop control and the overhead of accessing
the packed elements. Overall, this results in a small speed-up even though the number of additions and
multiplications is slightly increased.

Avoiding matrix inversion As the inverse of the matrix is multiplied by the variables y directly after inversion
and is not used at any other point in the Rainbow signature generation, one can also eliminate the matrix
inversion and simply solve for x in Ax = y. The Gauss elimination proceeds similar to Algorithm 2, but
one cannot benefit from bitslicing the right part of the matrix. This approach is 33 000 cycles faster than
inverting the matrix first and then multiplying. Unfortunately, according to the Rainbow specification the
vinegar variables and the matrix are sampled from the same PRG. In the first layer, a new matrix is sampled
until it is invertible before the vinegar variables of the second layer are sampled. If one wants to merge these
steps one would have to change the way the matrix and variables are sampled or would have to roll back
the PRG in case the matrix is not invertible before sampling another matrix. Therefore, we only use this
approach to eliminate the inversion in the second layer of Rainbow.

3.3 Evaluating the Public Map P

One of the key advantages of Rainbow, is a very simple verification procedure: One applies the public map P
to the signature z and verifies that the result matches the (randomized) hash of the message. The application
of P consists of the substitution of the variables z1, ..., zn into the system of equations represented by the

public key. The public key is stored as a Macaulay matrix A ∈ F((n
2))×m which allows us to sequentially load

it exactly once while processing the variables.

Macaulay matrix indexing: Here, by writing the index set as
((
n
2

))
× m we mean that the indices in Ai,j,k

satisfy 0 ≤ i ≤ j < n, 0 ≤ k < m.

Algorithm 4 Traditional way of computing the public
map P
Input: Public Key A ∈ F((n2))×m in Macaulay form
Input: Variables z ∈ Fn

Output: P(z) ∈ Fm

1: h ∈ Fm ← 0
2: for i← 0, . . . , n− 1 do
3: for j ← i, . . . , n− 1 do
4: t ∈ F← zi · zj
5: for k ← 0, . . . ,m− 1 do
6: hk ← hk + Ai,j,k · t

return h

Algorithm 5 Our way of computing public map P in
variable time

Input: Public Key A ∈ F((n2))×m in Macaulay form
Input: Variables z ∈ Fn

Output: P(z) ∈ Fm

1: h′ ∈ F|F|×m ← 0
2: for i← 0, . . . , n− 1 do
3: for j ← i, . . . , n− 1 do
4: t ∈ F← zi · zj
5: for k ← 0, . . . ,m− 1 do
6: h′t,k ← h′t,k + Ai,j,k

7: h← h′1
8: for t ∈ F \ {0, 1} do
9: for k ← 0, . . . ,m− 1 do

10: hk ← hk + h′t,k · t
return h

The standard procedure to compute P (which can be in constant time) is illustrated in Algorithm 4
and requires

((
n
2

))
· m +

((
n
2

))
field multiplications. The documentation of the UOV-derived NIST submis-

sions [DCK+20a,BPSV19,SPK17] each describe some variation of this.5

However, we propose a different and much more efficient way to compute the public map only requiring
(|F|−2)·m+

((
n
2

))
multiplications. This method is not mentioned in previous documents describing UOV-based

MQ systems. Our modified procedure for computing P is illustrated in Algorithm 5. One key observation
is that we do not need the verification to have a runtime that is independent of the inputs as both the
signature and the public key are considered public. Therefore, we propose to use one accumulator (of m
field elements) for each possible value of the monomial zi · zj . The corresponding column of the matrix A
is then added to the accumulator corresponding to the value of zi · zj . This obviously may leak the value
of zi · zj through a cache timing side-channel, but that does not need to concern us. The computation of
the monomials within the loop costs

((
n
2

))
multiplications. In the very end, we combine the accumulators

by multiplying each of them with the corresponding F16 element requiring (|F| − 2) ·m multiplications as
multiplications by 0 and 1 are trivial. This allows a massive speed-up at the cost of additional memory large
enough to hold |F| ·m field elements (or (|F| − 1) ·m if one omits the buffer for zi · zj = 0.) In the case of
rainbowI, the additional memory of 16 · 64/2 = 512 bytes is negligible. For the larger parameter sets using
F256 this approach is probably still worthwhile on some platforms. For rainbowIII (m = 80) and rainbowV

(m = 100), 256 · 80 = 20 480 bytes and 256 · 100 = 25 600 bytes are required respectively.
One could further reduce the number of multiplications to (log2(|F16|)− 1) · m = 3 · m by instead

doing more additions. First, we sum up the accumulators corresponding to the elements that have the least
significant bit is set, i.e., 1, x + 1, y + 1, y + x + 1, yx + 1, yx + x + 1, yx + y + 1, yx + y + x + 1. Then, we
sum up the accumulators corresponding to the elements that have the second bit set (x, x+ 1, y+ x, y+ x+
1, y + x, y + x + 1, yx + x, yx + x + 1), multiply the sum by x, and then added to the first sum. Similarly,
we proceed for the other two bits corresponding to y, and yx. That approach is then similar to the one by
Cheng, Chou, Niederhagen, and Yang [CCNY12, Sec. 3.1]. However, we chose not to implement this trick
as the performance gain is negligible and the final multiplications already take less than 1% of our total
run-time.

Instead, as variable run-time is of no concern, we can further improve the procedure:

F16 Multiplication using LUTs. As the signature z is public, we may use look-up tables to compute the F16

multiplications. This is particularly useful when individual field elements are to be multiplied when computing

5 Note that the secret MQ evaluation we used during signing is performed like it was in [DCK+20a], which uses
a separate buffer in the inner two loops and only multiply by zi outside these loops, because multiplying a vector
is much faster than multiplying individual elements. In addition, we accelerated multiplications as in the previous
section.

Algorithm 6 Bitsliced Multiply and Accumulate for F16 = F2[x]/(x4 + x+ 1)

Input: 32 F16 elements bitsliced into a0, a1, a2, a3

Input: 1 F16 element in the least significant nibble of b
Input: 32 F16 elements bitsliced in the accumulator c0, c1, c2, c3
Output: Each of the elements in ai multiplied by b and added to ci

1: eor tmp0, a0, a3

2: eor tmp1, a2, a3

3: eor tmp2, a1, a2

4: tst b, #1

5: itttt ne

6: eorne c0, c0, a0

7: eorne c1, c1, a1

8: eorne c2, c2, a2

9: eorne c3, c3, a3

10: tst b, #2

11: itttt ne

12: eorne c0, c0, a3

13: eorne c1, c1, tmp0

14: eorne c2, c2, a1

15: eorne c3, c3, a2

16: tst b, #4

17: itttt ne

18: eorne c0, c0, a2

19: eorne c1, c1, tmp1

20: eorne c2, c2, tmp0

21: eorne c3, c3, a1

22: tst b, #8

23: itttt ne

24: eorne c0, c0, a1

25: eorne c1, c1, tmp2

26: eorne c2, c2, tmp1

27: eorne c3, c3, tmp0

the monomials zi · zj as those multiplications are tedious to bitslice. We replace those multiplications by a
look-up to a 256 element look-up table. For efficiency, we do not pack the elements in the look-up table and
it, consequently, occupies 256 bytes in the case of F16. For the multiplications of the accumulators in the
end, we stick with bitsliced multiplications as those bulk multiplications outperform table look-ups.

Skipping parts of the public key. Whenever zi · zj = 0, the corresponding entries in A have no impact on
the result h. This is the case when either zi = 0 or zj = 0. When zj = 0, the inner loop can be skipped
saving load, addition, and store operations of m field elements. Even more importantly, when zi = 0, both
inner loops can be skipped which saves (n− i) ·m operations. The additional cost of branching depending
on the variables is by far outweighed by the savings: Processing one column takes 37 cycles (3 cycles for
multiplication using a LUT, 18 cycles load of accumulator and column, 8 cycle addition, and 8 cycle store.)
Checking for zj = 0 in the inner loop costs two cycles (cmp, beq). As it is expected to skip the computation
in 1

16 of cases, implementing the check pays off slightly. For the outer loop, the speed-up is more pronounced
as we skip n/2 = 50 columns on average. This saves more than 1850 cycles and is expected to happen for
every 16th execution, i.e., saving significantly more than the 2 cycles needed for the check.

4 Alternative F16 Representation

In addition to F16 tower field representation as mandated by the Rainbow specification, we have also exper-
imented with using the direct representation F16 = F2[x]/(x4 + x+ 1). By switching to that representation
one can implement bitsliced multiplication using the instruction sequence presented in Algorithm 6. This
sequence needs only 27 cycles (one cycle per instruction) compared to 32 cycles for the multiplication for
the tower field representation.

Unfortunately, Rainbow keys, signatures, and all values sampled in the signing procedure are using the
tower field representation and one would have to convert to and from the direct representation to make use
of Algorithm 6. The conversion can only be done by multiplication by a 4×4 bit matrix while bitsliced. This
conversion outweighs the performance gain from faster multiplication.

Consequently, the only way to benefit from this more efficient representation is to change the Rainbow
specification to use F2[x]/(x4 + x + 1) everywhere. For a Cortex-M4 implementation, there is no benefit to
use the tower field implementation and a change of the specification would only make it faster Clearly, the
same is the case for other bitsliced implementations which are likely to be used on other microcontroller
platforms. For AVX2 implementations (e.g., the one from [DCK+20a]) a change of the field representation
does not have any impact on performance as field multiplication is implemented using constant-time table
lookups. Hence, we argue that the Rainbow specification should be changed to use the direct representation
for F16 and F256.

When changing the field representation, one also has to update the lookup tables for the inverse describes
in Section 3.2 and the variable-time multiplication described in Section 3.3. Besides that, all other parts of
Rainbow remain the same.

5 Results

This section presents the results when applying the optimization presented in this paper to the reference
implementation that is part of the Rainbow submission package [DCK+20a].

Platform. Due to Rainbow’s large keys, we use the somewhat non-standard microcontroller EFM32GG11B6

which is part of Silicon Labs’ Giant Gecko Starter Kit. It comes with 512 kB of RAM and 2 MiB of flash
memory. The core can run at a frequency of up to 72 MHz. It comes with a TRNG which we use to obtain
the required randomness in Rainbow. Another feature of the EFM32GG11B that makes it an attractive target
for post-quantum cryptography is that it comes with a cryptography accelerator supporting AES128, AES256,
SHA-1, SHA256, and 256-bit multiplication. Section 5.2 presents how using the AES256 and SHA256 changes
the performance of our implementations.

SHA2 and AES256. For hashing Rainbow uses SHA2. We use the SHA2 implementation from SUPERCOP7.
Additionally, Rainbow uses AES256 extensively for expanding matrices from a random seed. We use the
bitsliced implementation8 by Adomnicai and Peyrin [AP20].

Benchmarking. We base our benchmarking on the testing and benchmarking framework pqm4 [KRSS]. As
pqm4 is built for the STM32F407, we adapt their hardware abstraction layer to support the Giant Gecko. We
use the arm-none-eabi-gcc compiler version 10.2.0 and compile with -O3. We do not run the Giant Gecko
at the maximum frequency, but instead, down-clock it to 16 MHz and configure it to have zero wait states
when fetching instructions and data from flash. This ensures that the resulting cycle counts are comparable
to the ones produced by pqm4 on the STM32F407. Similar to pqm4, we use the built-in SysTick timer to
count cycles. As the EFM32GG11B is not commonly used in the literature, we perform experiments to confirm
that the timing behavior is comparable to the STM32F407. We benchmarked the schemes from pqm4 [KRSS]
and found a very small cycle count differences of less than 1%.

5.1 RainbowI with and without precomputation

Table 2 contains the performance results obtained on the EFM32GG11B. The runtime of our implementation
of verification heavily depends on the signature as explained in Section 3.3. Signing also has varying run-
time depending on how many attempts are needed until the matrix inversion succeeds. Hence, we run 10 000
iterations of signing and verification (with different messages) and report the average. For comparison,
we report the performance results of Moya Riera [MR19] for the round 2 parameters. Despite, the larger
parameters, we achieve a reduction in cycle counts by 27%, 47%, and 85% for key generation, signing, and
verification respectively. For reference for the other parameter sets, we also report the cycle counts for the
C implementation that is part of the Rainbow submission package [DCK+20a].

According to the specification, the Rainbow secret key is stored in nibble-packed representation. In our
implementation, for each part of the secret key, the first step is to convert it to bitsliced representation. This
change of representation can also be precomputed. We include the precomputation in the key generation, but
it could also be implemented differently. This saves around 187 000 cycles for signing. However, this makes the
secret key representation implementation-specific and platform-specific (due to Endianness) which may not
be desirable. For rainbowIcompressed, this approach does not work as the secret key only consists of a seed
that is used to re-sample the secret key during signing. One could also consider precomputing the bitsliced
representation of the public key. However, this would only result in negligible speed-up due to the optimized

6 The full name of core is EFM32GG11B820F2048GL192.
7 https://bench.cr.yp.to/supercop.html
8 https://github.com/aadomn/aes

https://bench.cr.yp.to/supercop.html
https://github.com/aadomn/aes

clock cycles
parameter set w/o precomp. w/ precomp.

[MR19]
K: 134 354k

rainbowIclassic S: 1 815k
(Round 2) V: 1 619k

rainbowIclassic

ref.
K: 417 316k
S: 5 433k
V: 3 529k

This work
K: 98 431k K: 98 691k
S: 957k S: 770k
V: 239k V: 238k

This work
K: 94 584k K: 94 845k

rainbowIclassic S: 907k S: 719k
F16 = F2[X]/(X4 + X + 1) V: 238k V: 238k

rainbowIcircumzenithal

ref.
K: 462 322k
S: 5 422k
V: 27 965k

This work
K: 107 639k K: 107 899k
S: 955k S: 769k
V: 12 903k V: 12 903k

This work
K: 103 343k K: 103 604k

rainbowIcircumzenithal S: 902k S: 717k
F16 = F2[X]/(X4 + X + 1) V: 12 902k V: 12 902k

rainbowIcompressed

ref.
K: 462 387k
S: 217 061k
V: 27 968k

This work
K: 107 711k
S: 56 643k
V: 12 903k

This work
K: 103 415k

rainbowIcompressed S: 54 778k
F16 = F2[X]/(X4 + X + 1) V: 12 902k

Table 2. Performance of RainbowI parameter sets on ARM Cortex-M4. Cycle counts are obtained on the
EFM32GG11B running at 16 MHz. For signing and verification, the cycle counts are the average of 10 000 exe-
cutions. For rainbowIclassic and rainbowIcircumzenithal, signing can be sped up by precomputing the bitsliced
secret key. We include the precomputation in the key generation.

parameter set stack [bytes] code size [kB]

rainbowIclassic

K: 40 696 K: 36
S: 4 052 S: 32
V: 812 V: 12

all: 56

rainbowIcircumzenithal

K: 142 304 K: 27
S: 4 052 S: 32
V: 20 156 V: 22

all: 51

rainbowIcompressed

K: 245 976 K: 27
S: 224 240 S: 43
V: 20 156 V: 22

all: 53

Table 3. Stack consumption and code size of our Rainbow M4 implementation.

verification algorithm that uses very few multiplications. Additionally, having an implementation-specific
public key representation appears even less enticing.

The results for the alternative F16 representation described in Section 4 is also shown in Table 2. It
consistently reduces the runtime by up to 7% for signing.

Table 3 presents the stack requirement and code size of our implementations. As we do not use any
dynamically allocated memory, all intermediate variables are included in the stack. It does not include keys,
the message, and the signature as those are allocated by the calling code. We measure the stack consumption
by writing a fixed value to each byte of the stack, running the procedure and then checking how much of the
stack has been overwritten.

For obtaining the code-size, we run arm-none-eabi-size on then binary that includes all the code
required to execute, i.e., we strip out all unused code. However, this includes the platform code and we, hence,
subtract 21 kB to obtain the code-size of the Rainbow code. We additionally report the code size when only
a part of the signature scheme is needed. If used by the procedure, the code size includes 5 kB for AES256

and 8 kB for SHA256. SHA256 is only used in signing and verification. AES256 is only used in key generation,
signing, and for circumzenithal verification (rainbowIcircumzenithal and rainbowIcompressed).

Optimizing RAM and code size is not the primary target for our work; we merely report them for
completeness. classic inherently provides competitive memory consumption for signing and verification.
circumzenithal and compressed require significantly more RAM. However, one needs to take into account
that they also have smaller keys. For example, circumzenithal public keys are almost 100 kB smaller
than classic public keys. If keys reside in RAM, circumzenithal outperforms classic in terms of RAM
consumption. Clearly, more RAM efficient implementations are possible, and it is an interesting area of
future work.

5.2 Hardware Acceleration for SHA2 and AES

Symmetric cryptography is at the core of virtually all post-quantum cryptography schemes often making up
the majority of cycles [KRSS] (e.g., up to 80% for Kyber [ABCG20], 81% for Dilithium [GKS20]). We report
the cycles for our Rainbow implementations (with precomputation) in Table 4. When using software imple-
mentations for AES and SHA2, we see that for rainbowIclassic only 10% of signing and 4% of verification
are spent in hashing. This looks very differently for circumzenithal verification (rainbowIcircumzenithal
and rainbowIcompressed) where 92% are spent in symmetric primitives.

Interestingly, the Giant Gecko provides hardware support for the symmetric cryptography needed by
Rainbow. We, hence, also report results using the hardware accelerator. This provides a vast speed-up
for verification of rainbowIcircumzenithal and rainbowIcompressed of 13×. For rainbowIclassic the
speed-up is less notable.

Table 4. Hashing results for our implementations with precomputation. We report the cycles spent in AES and SHA256

combined. We report both software results, and results using the hardware accelerator of the Giant Gecko.

parameter set AES, SHA2 total cc AES+SHA2 cc

rainbowIclassic

sw
K: 98 691k K: 12 451k (13%)
S: 770k S: 78k (10%)
V: 238k V: 9k (4%)

hw
K: 86 490k K: 679k (1%)
S: 697k S: 4k (1%)
V: 230k V: 1k (0%)

rainbowIcircumzenithal

sw
K: 107 899k K: 12 466k (12%)
S: 769k S: 78k (10%)
V: 12 903k V: 12 131k (92%)

hw
K: 95 683k K: 680k (1%)
S: 694k S: 4k (1%)
V: 1 027k V: 664k (65%)

rainbowIcompressed

sw
K: 107 711k K: 12 466k (12%)
S: 56 643k S: 12 544k (22%)
V: 12 903k V: 12 131k (92%)

hw
K: 95 494k K: 680k (1%)
S: 44 355k S: 684k (2%)
V: 1 026k V: 664k (65%)

5.3 Comparison to other Post-Quantum Signature Schemes

Table 5 compares our rainbowIclassic implementation with the other to NISTPQC signature finalists:
Dilithium [BLD+20] and Falcon [FHK+20]. Both have been optimized for the Cortex-M4 [GKS20,Por19].
The results shown are taken from the corresponding publications and have been obtained by benchmarking
on the STM32F407. However, as the EFM32GG11B timings are very close, the results are comparable to ours.

For our implementation, we report the one with software implementations of AES and SHA256. Inter-
estingly, both Falcon and Dilithium signing benefit from precomputation as well. For all implementations,
precomputation is included in the key generation cycles.

Our implementation of rainbowIclassic signing is 4× faster than the state of the art Dilithium2 imple-
mentation and 4× faster than Falcon-512. Verification is 5× than Dilithium2 and 2× faster than Falcon-512.
Consequently, our implementation of Rainbow on the Cortex-M4 is by far the fastest among the finalists of
the NISTPQC competition.

Acknowledgements

This work has been supported by the European Commission through the ERC Starting Grant 805031
(EPOQUE). Taiwanese authors were supported by Taiwan Ministry of Science and Technology Grant 109-
2221-E-001-009-MY3, Sinica Investigator Award AS-IA-109-M01, Executive Yuan Data Safety and Talent
Cultivation Project (AS-KPQ-109-DSTCP).

Table 5. Comparison to other NIST PQC finalist signature schemes. Signing benefits from precomputation of a
different representation of the secret key compared to the reference implementation. The precomputation is included
in the key generation of the respective implementations.

scheme implementation precomp. cycle count

dilithium2 [GKS20]

no
K: 1 315k
S: 3 987k
V: 1 259k

yes
K: 2 267k
S: 3 097k
V: 1 259k

falcon-512 [Por19]

no
K: 171 294k
S: 43 302k
V: 504k

yes
K: 187 485k
S: 21 156k
V: 504k

rainbowIclassic This work

no
K: 98 431k
S: 957k
V: 239k

yes
K: 98 691k
S: 770k
V: 238k

References

ABB+20. Jean-Philippe Aumasson, Daniel J. Bernstein, Ward Beullens, Christoph Dobraunig, Maria Eichlseder,
Scott Fluhrer, Stefan-Lukas Gazdag, Andreas Hülsing, Panos Kampanakis, Stefan Kolbl, Tanja
Lange, Martin M Lauridsen, Florian Mendel, Ruben Niederhagen, Christian Rechberger, Joost Rijn-
eveld, Peter Schwabe, and Bas Westerbaan. SPHINCS+. Submission to the NIST Post-Quantum
Cryptography Standardization Project [NIS], 2020. available at https://csrc.nist.gov/projects/

post-quantum-cryptography/round-3-submissions.
ABCG20. Erdem Alkim, Yusuf Alper Bilgin, Murat Cenk, and François Gérard. Cortex-m4 optimizations for R,M

lwe schemes. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2020(3):336–357,
Jun. 2020. https://eprint.iacr.org/2020/012.

AP20. Alexandre Adomnicai and Thomas Peyrin. Fixslicing aes-like ciphers: New bitsliced aes speed records
on arm-cortex m and risc-v. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2021(1):402–425, Dec. 2020. https://eprint.iacr.org/2020/1123.

ARM18. ARM. ARMv7-M architecture reference manual, 2018. https://developer.arm.com/documentation/

ddi0403/ed.
BCS13. Daniel J. Bernstein, Tung Chou, and Peter Schwabe. Mcbits: fast constant-time code-based cryptography.

In Guido Bertoni and Jean-Sébastian Coron, editors, Cryptographic Hardware and Embedded Systems –
CHES 2013, Lecture Notes in Computer Science. Springer-Verlag Berlin Heidelberg, 2013. Document ID:
e801a97c500b3ac879d77bcecf054ce5, http://cryptojedi.org/papers/#mcbits.

Beu20. Ward Beullens. Improved cryptanalysis of uov and rainbow. Available from https://eprint.iacr.org/

2020/1343, 2020.
BFM+18. Joppe W. Bos, Simon Friedberger, Marco Martinoli, Elisabeth Oswald, and Martijn Stam. Fly, you fool!

Faster Frodo for the ARM Cortex-M4. 2018. https://eprint.iacr.org/2018/1116.
BLD+20. Shi Bai, Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe, Gregor

Seiler, and Damien Stehlé. CRYSTALS-DILITHIUM. Submission to the NIST Post-Quantum
Cryptography Standardization Project [NIS], 2020. available at https://csrc.nist.gov/projects/

post-quantum-cryptography/round-3-submissions.
BMKV20. Jose Maria Bermudo Mera, Angshuman Karmakar, and Ingrid Verbauwhede. Time-memory trade-off in

toom-cook multiplication: an application to module-lattice based cryptography. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2020(2):222–244, Mar. 2020. https://eprint.iacr.

org/2020/268.
BPSV19. Ward Beullens, Bart Preneel, Alan Szepieniec, and Frederik Vercautern. LUOV, submission to the

nist post-quantum cryptography project, 2019. Available from https://csrc.nist.gov/CSRC/media/

Projects/Post-Quantum-Cryptography/documents/round-2/submissions/LUOV-Round2.zip.
CCC+08. Anna Inn-Tung Chen, Chia-Hsin Owen Chen, Ming-Shing Chen, Chen-Mou Cheng, and Bo-Yin Yang.

Practical-sized instances of multivariate PKCs: Rainbow, TTS, and `IC-derivatives. In Johannes Buch-
mann and Jintai Ding, editors, PQCrypto, volume 5299 of Lecture Notes in Computer Science, pages
95–108. Springer, 2008.

CCC+09. Anna Inn-Tung Chen, Ming-Shing Chen, Tien-Ren Chen, Chen-Mou Cheng, Jintai Ding, Eric Li-Hsiang
Kuo, Frost Yu-Shuang Lee, and Bo-Yin Yang. SSE implementation of multivariate PKCs on modern x86
CPUs. In Christophe Clavier and Kris Gaj, editors, CHES, volume 5747 of Lecture Notes in Computer
Science, pages 33–48. Springer, 2009.

CCNY12. Chen-Mou Cheng, Tung Chou, Ruben Niederhagen, and Bo-Yin Yang. Solving quadratic equations with
xl on parallel architectures. In Emmanuel Prouff and Patrick Schaumont, editors, CHES, volume 7428
of Lecture Notes in Computer Science, pages 356–373. Springer, 2012.

CFM+20. A. Casanova, J.-C. Faugère, G. Macario-Rat, J. Patarin, L. Perret, and J. Ryckeghem. GeMSS. Sub-
mission to the NIST Post-Quantum Cryptography Standardization Project [NIS], 2020. available at
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions.

CHK+21. Chi-Ming Marvin Chung, Vincent Hwang, Matthias J. Kannwischer, Gregor Seiler, Cheng-Jhih Shih,
and Bo-Yin Yang. NTT multiplication for NTT-unfriendly rings: New speed records for Saber and
NTRU on Cortex-M4 and AVX2. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2021(2):159–188, 2021. https://eprint.iacr.org/2020/1278.

Cho17. Tung Chou. Mcbits revisited. In Cryptographic Hardware and Embedded Systems - CHES 2017, pages
213–231, 2017. https://eprint.iacr.org/2017/793.

CLP+18. Ming-Shing Chen, Wen-Ding Li, Bo-Yuan Peng, Chen-Mou Cheng, and Bo-Yin Yang. Implementing
128-bit secure mpkc signatures. IEICE Transactions, E101-A(3):553–569, 2018.

DCK+20a. Jintai Ding, Ming-Shing Chen, Matthias Kannwischer, Jacques Patarin, Albrecht Petzoldt, Di-
eter Schmidt, and Bo-Yin Yang. Rainbow, submission to the nist post-quantum cryptography

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://eprint.iacr.org/2020/012
https://eprint.iacr.org/2020/1123
https://developer.arm.com/documentation/ddi0403/ed
https://developer.arm.com/documentation/ddi0403/ed
http://cryptojedi.org/papers/#mcbits
https://eprint.iacr.org/2020/1343
https://eprint.iacr.org/2020/1343
https://eprint.iacr.org/2018/1116
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://eprint.iacr.org/2020/268
https://eprint.iacr.org/2020/268
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-2/submissions/LUOV-Round2.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-2/submissions/LUOV-Round2.zip
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://eprint.iacr.org/2020/1278
https://eprint.iacr.org/2017/793

project, 2020. Available from www.pqcrainbow.org and https://csrc.nist.gov/CSRC/media/Projects/

post-quantum-cryptography/documents/round-3/submissions/Rainbow-Round3.zip.

DCK+20b. Jintai Ding, Ming-Shing Chen, Matthias Kannwischer, Jacques Patarin, Albrecht Petzoldt, Dieter
Schmidt, and Bo-Yin Yang. Response to recent paper by ward beullens, 2020. Available from
http://precision.moscito.org/by-publ/recent/response-ward.pdf.

DS05. Jintai Ding and Dieter Schmidt. Rainbow, a new multivariable polynomial signature scheme. In Con-
ference on Applied Cryptography and Network Security — ACNS 2005, volume 3531 of Lecture Notes in
Computer Science, pages 164–175. Springer, 2005.

DYC+08. Jintai Ding, Bo-Yin Yang, Chia-Hsin Owen Chen, Ming-Shing Chen, and Chen-Mou Cheng. New
differential-algebraic attacks and reparametrization of rainbow. In Applied Cryptography and Net-
work Security, volume 5037 of Lecture Notes in Computer Science, pages 242–257. Springer, 2008. cf.
http://eprint.iacr.org/2008/108.

FHK+20. Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas Pornin, Thomas
Prest, Thomas Ricosset, Gregor Seiler, William Whyte, and Zhenfei Zhang. Falcon. Submission to the
NIST Post-Quantum Cryptography Standardization Project [NIS], 2020. available at https://csrc.

nist.gov/projects/post-quantum-cryptography/round-3-submissions.

GKS20. Denisa O. C. Greconici, Matthias J. Kannwischer, and Daan Sprenkels. Compact Dilithium implemen-
tations on Cortex-M3 and Cortex-M4. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2021(1):1–24, 2020. https://eprint.iacr.org/2020/1278.

KO63. Anatolii Karatsuba and Yuri Ofman. Multiplication of multidigit numbers on automata. Soviet Physics
Doklady, 7:595–596, 1963. Translated from Doklady Akademii Nauk SSSR, Vol. 145, No. 2, pp. 293–294,
July 1962. Scanned version on http://cr.yp.to/bib/1963/karatsuba.html.

KPG99. Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced Oil and Vinegar signature schemes. In
Advances in Cryptology — EUROCRYPT 1999, volume 1592 of Lecture Notes in Computer Science,
pages 206–222. Jacques Stern, ed., Springer, 1999.

KRS19. Matthias J. Kannwischer, Joost Rijneveld, and Peter Schwabe. Faster multiplication in Z2m [x] on cortex-
m4 to speed up NIST PQC candidates. In Applied Cryptography and Network Security, pages 281–301,
2019. https://eprint.iacr.org/2018/1018.

KRSS. Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen. PQM4: Post-quantum crypto
library for the ARM Cortex-M4. https://github.com/mupq/pqm4.

MR19. Joan Moya Riera. Performance Analysis of Rainbow on ARM Cortex-M4. Bachelor’s thesis, Technische
Universität München, 2019. http://hdl.handle.net/2117/169145.

NIS. NIST, the US National Institute of Standards and Technology. Post-quantum cryptography standardiza-
tion project. https://csrc.nist.gov/Projects/post-quantum-cryptography.

PBB10. Albrecht Petzoldt, Stanislav Bulygin, and Johannes Buchmann. Cyclicrainbow - a multivariate signa-
ture scheme with a partially cyclic public key. In Guang Gong and Kishan Chand Gupta, editors,
INDOCRYPT, volume 6498 of Lecture Notes in Computer Science, pages 33–48. Springer, 2010.

Por19. Thomas Pornin. New efficient, constant-time implementations of falcon. Cryptology ePrint Archive,
Report 2019/893, 2019. https://eprint.iacr.org/2019/893.

Sho94. P.W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In FOCS 1994,
pages 124–134. IEEE, 1994. https://ieeexplore.ieee.org/abstract/document/365700.

SJA19. Hwajeong Seo, Amir Jalali, and Reza Azarderakhsh. SIKE round 2 speed record on ARM cortex-m4. In
Cryptology and Network Security - CANS, pages 39–60, 2019. https://eprint.iacr.org/2019/535.

SPK17. Kyung-Ah Shim, Cheol-Min Park, and Aeyoung Kim. Himq-3, submission to the nist post-
quantum cryptography project, 2017. Available from https://csrc.nist.gov/CSRC/media/Projects/

post-quantum-cryptography/documents/round-1/submissions/HiMQ_3.zip.

Wol04. Christopher Wolf. Efficient public key generation for HFE and variations. In Ed Dawson and Wolfgang
Klemm, editors, Cryptographic Algorithms and their Uses - 2004, International Workshop, Gold Coast,
Australia, July 5-6, 2004, Proceedings, pages 78–93. Queensland University of Technology, 2004.

YC05. Bo-Yin Yang and Jiun-Ming Chen. Building secure tame-like multivariate public-key cryptosystems: The
new TTS. In ACISP 2005, volume 3574 of Lecture Notes in Computer Science, pages 518–531. Springer,
July 2005.

A Toy Example of the Central Map of Rainbow

– K = GF(7), (v1, o1, o2) = (2, 2, 2)

www.pqcrainbow.org
https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/documents/round-3/submissions/Rainbow-Round3.zip
https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/documents/round-3/submissions/Rainbow-Round3.zip
http://precision.moscito.org/by-publ/recent/response-ward.pdf
http://eprint.iacr.org/2008/108
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://eprint.iacr.org/2020/1278
http://cr.yp.to/bib/1963/karatsuba.html
https://eprint.iacr.org/2018/1018
https://github.com/mupq/pqm4
http://hdl.handle.net/2117/169145
https://csrc.nist.gov/Projects/post-quantum-cryptography
https://eprint.iacr.org/2019/893
https://ieeexplore.ieee.org/abstract/document/365700
https://eprint.iacr.org/2019/535
https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/documents/round-1/submissions/HiMQ_3.zip
https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/documents/round-1/submissions/HiMQ_3.zip

– central map Q = (q(3), q(4), q(5), q(6)) with

q(3) = x21 + 3x1x2 + 5x1x3 + 6x1x4 + 2x22 + 6x2x3 + 4x2x4 + 2x2 + 6x3 + 2x4 + 5,

q(4) = 2x21 + x1x2 + x1x3 + 3x1x4 + 4x1 + x22 + x2x3 + 4x2x4 + 6x2 + x4,

q(5) = 2x21 + 3x1x2 + 3x1x3 + 3x1x4 + x1x5 + 3x1x6 + 6x1 + 4x22 + x2x3 + 4x2x4

+ x2x5 + 3x2x6 + 3x2 + 3x3x4 + x3x5 + 2x3x6 + 2x3 + 3x4x5 + x5 + 6x6,

q(6) = 2x21 + 5x1x2 + x1x3 + 5x1x4 + 5x1x6 + 6x1 + 5x22 + 3x2x3 + 5x2x5 + 4x2x6

+ x2 + 3x23 + 5x3x4 + 4x3x5 + 2x3x6 + 4x3 + x24 + 6x4x5 + 3x4x6

+ 4x4 + 4x5 + x6 + 2.

– Goal: Find pre image x ∈ K6 of y = (6, 2, 0, 5) under the map Q
– Choose random values for the Vinegar variables x1 and x2, e.g. (x1, x2) = (0, 1) and substitute them

into the polynomials q(3), . . . , q(6).

q̃(3) = 5x3 + 6x4 + 2, q̃(4) = x3 + 5x4,

q̃(5) = 3x3x4 + x3x5 + 2x3x6 + 3x3 + 3x4x5 + 4x4 + 2x5 + 2x6,

q̃(6) = 3x23 + 5x3x4 + 4x3x5 + 2x3x6 + x24 + 6x4x5 + 3x4x6 + 4x4 + 2x5 + 5x6 + 1.

– Set q̃(3) = y1 = 6 and q̃(4) = y2 = 2 and solve for x3, x4 ⇒ (x3, x4) = (3, 4)
– Substitute into q̃(5) and q̃(6) ⇒ ˜̃q(5) = 3x5 + x6 + 5, ˜̃q(6) = 3x5 + 2x6 + 1
– Set ˜̃q(5) = y3 = 0 and ˜̃q(6) = y4 = 5, solve for x5 and x6 ⇒ (x5, x6) = (0, 2)

A pre image of y = (6, 2, 0, 5) is given by x = (0, 1, 3, 4, 0, 2).

B Conversion to bitsliced representation

Algorithm 7 Conversion of F16 elements from normal to bitsliced representation and vice versa.

Input: 32 F16 elements in a0, a1, a2, a3

Output: Bitsliced F16 elements in b0 (LSB), b1, b2, b3 (MSB)

1: and b0, a0, #0x11111111

2: and t, a1, #0x11111111

3: orr b0, b0, t, lsl#1

4: and t, a2, #0x11111111

5: orr b0, b0, t, lsl#2

6: and t, a3, #0x11111111

7: orr b0, b0, t, lsl#3

8: and b1, a1, #0x22222222

9: and t, a0, #0x22222222

10: orr b1, b1, t, lsr#1

11: and t, a2, #0x22222222

12: orr b1, b1, t, lsl#1

13: and t, a3, #0x222222221

14: orr b1, b1, t, lsl#2

15: and b2, a2, #0x44444444

16: and t, a0, #0x44444444

17: orr b2, b2, t, lsr#2

18: and t, a1, #0x44444444

19: orr b2, b2, t, lsr#1

20: and t, a3, #0x44444444

21: orr b2, b2, t, lsl#1

22: and b3, a3, #0x88888888

23: and t, a0, #0x88888888

24: orr b3, b3, t, lsr#3

25: and t, a1, #0x88888888

26: orr b3, b3, t, lsr#2

27: and t, a2, #0x88888888

28: orr b3, b3, t, lsr#1

	Rainbow on Cortex-M4

