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Abstract. Isogeny-based cryptography is a promising approach for post-
quantum cryptography. The best-known protocol following that approach 
is the supersingular isogeny Diffie-Hellman protocol (SIDH); this proto-
col was turned into the CCA-secure key encapsulation mechanism SIKE 
submitted to NIST post-quantum standardization process, which has re-
mained in the third round as an “alternate” candidate. 
Isogeny-based cryptography generally relies on the conjectured hardness 
of computing an isogeny between two isogenous elliptic curves, and most 
cryptanalytic work referenced on SIKE’s webpage exclusively focuses on 
that problem. Interestingly, the hardness of this problem is sufficient for 
neither SIDH nor SIKE. In particular, these protocols reveal additional 
information on the secret isogeny, in the form of images of specific torsion 
points through the isogeny. 
This paper surveys existing cryptanalysis approaches exploiting this of-
ten called “torsion point information”, summarizes their current impact 
on SIKE and related algorithms, and suggests some research directions 
that might lead to further impact. 

1 Introduction 

Isogeny-based cryptography is a promising candidate for post-quantum cryptog-
raphy. It originates from Courveignes’s seminal work [12] where he introduced 
the notion of hard homogenous spaces and instantiatied it with ordinary elliptic 
curves, and Charles, Goren and Lauter’s hash function [9] (CGL) based on isoge-
nies of supersingular elliptic curves. In 2011 de Feo and Jao introduced SIDH [23] 
and in the recent years field has blossomed for example with the introduction of 
CSIDH [7] (the only post-quantum scheme which provides non-interactive key 
exchange), SQISign and many more isogeny-based schemes. SIKE [21], which 
is a key encapsulation mechanism derived from SIDH, is currently a 3rd round 
alternate candidate in NIST’s post-quantum standardization project. 

Most isogeny-based protocols today are based on the hardness of computing 
isogenies between supersingular elliptic curves. However, only CGL hash func-
tion [9] and the GPS signature scheme [19] only rely on this “pure” isogeny 
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problem. In SIDH protocol, parties send over torsion point images, which moti-
vates the study of the following problem: 

Problem 1.1 (Supersingular Isogeny with Torsion (SSI-T)). For a prime p and 
smooth coprime integers A and B, given two supersingular elliptic curves E0/Fp2 

2and E/Fp connected by an unknown degree-A isogeny φ : E0 → E, and given 
the restriction of φ to the B-torsion of E0, compute φ. 

In [23] a more specific version of the SSI-T problem is called the CSSI problem. 
Computing isogenies between supersingular elliptic curves is a natural algorith-
mic question which has been studied for a long time, but the SSI-T problem is 
specific to SIDH and its variants. It is natural to wonder how the SSI-T problem 
relates to the pure isogeny problem. The aim of this survey paper is to give a 
summary of results which exploit the extra information in various ways. Our 
goal is to explain these techniques, assess their impact and warn designers of 
future protocols to take these results into account. The current state of the art 
is that SIKE is not affected by these attacks. 

The structure of the paper is as follows. In Section 2 we recall basic math-
ematical results on supersingular elliptic curves and quaternion algebras and 
the SIDH protocol. In Section 3 we discuss active attacks on SIDH, namely the 
GPST attack [18] and its extensions. In Section 4 we discuss how the endomor-
phism ring computation problem relates to the security of SIDH and the SSI-T 
problem in general. In Section 5 we discuss passive torsion-point attacks which 
originate from [29] and were later improved significantly in [13]. In Section 6 
we discuss the quantum hidden-shift attack from [26]. Finally, in Section 7 we 
discuss open problems which could shape the future of torsion-point attacks. 

2 Supersingular isogeny Diffie-Hellman and its variants 

We refer to [31] and [17] for general background on elliptic curves and isogeny-
based cryptography. The following high-level description of SIDH [23] and some 
of its variants relevant to Problem 1.1 are taken nearly verbatim from [13, Sec-
tion 2.1]. 

Recall that E[N ] denotes the N -torsion subgroup of an elliptic curve E and 
[m] denotes scalar multiplication by m. The public parameters of the system are 
two smooth coprime numbers A and B, a prime p of the form p = ABf − 1, 
where f is a small cofactor, and a supersingular elliptic curve E0 defined over 
p2 together with points PA, QA, PB , QB ∈ E0 such that E0[A] = hPA, QAi and 
E0[B] = hPB , QB i. 
The protocol then proceeds as follows: 

1. Alice chooses a random cyclic subgroup of E0[A] as GA = hPA +[xA]QAi and 
Bob chooses a random cyclic subgroup of E0[B] as GB = hPB + [xB ]QB i. 

2. Alice computes the isogeny φA : E0 → E0/hGAi =: EA and Bob computes 
the isogeny φB : E0 → E0/hGB i =: EB . 

3. Alice sends the curve EA and the two points φA(PB ), φA(QB ) to Bob. Sim-� � 
ilarly, Bob sends EB , φB (PA), φB (QA) to Alice. 
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4. Alice and Bob use the given torsion points to obtain the shared secret curve 
E0/hGA, GB i. To do so, Alice computes φB (GA) = φB (PA)+[xA]φB (QA) and 
uses the fact that E0/hGA, GB i ∼= EB /hφB (GA)i. Bob proceeds analogously. 

The SIKE proposal [21] suggests various choices of (p, A, B) depending on 
the targeted security level: All parameter sets use powers of two and three for A 
and B, respectively, with A ≈ B and f = 1. For example, the smallest parameter 

2216set suggested in [21] uses p = · 3137 − 1. Other constructions belonging to 
the SIDH ‘family tree’ of protocols use different types of parameters [1, 11, 30]. 

We may assume knowledge of End(E0): The only known way to construct 
supersingular elliptic curves is by reduction of elliptic curves with CM by a 
small discriminant (which implies small-degree endomorphisms: see [8, 27]), or 
by isogeny walks starting from such curves (where knowledge of the path reveals 
the endomorphism ring, thus requiring trusted setup). A common choice when 
p ≡ 3 (mod 4) is j(E0) = 1728 or a small-degree isogeny neighbour of that 
curve [21]. Various variants of SIDH exist in the literature. 

In [1] the authors propose an n-party key agreement. The idea is to useQn 
`eiprimes of the form p = f − 1 where ` i is the i-th prime number, the i-thi=1 i 

party’s secret isogeny has degree `ei , the i-th participant provides the images ofQ i 
a basis of the n 

`
ej /`ei torsion, and f is a small cofactor. They choose thej=1 j i 

starting curve to be of 1728 and choose the ei in such a way that all the `ei arei 
of roughly the same size. This is an example of an SIDH-like protocol; for this 
protocol to be secure it is required that Problem 1.1 be hard when A = `e1 and1Qn
B = f `ei .i=2 i 

Another example of a SIDH-like scheme is B-SIDH [11]. In B-SIDH, the prime 
has the property that p2 − 1 is smooth (as opposed to just p − 1 being smooth) 
and A ≈ B ≈ p. It would seem that choosing parameters this way one has to 
work over Fp4 but in fact the scheme simultaneously works with the curve and 
its quadratic twist (i.e., a curve which is not isomorphic to the original curve 
over Fp but has the same ) and avoids the use of extension fields. The main 2 

advantage of B-SIDH is that the base-field primes used can be considerably 
smaller than the primes used in SIDH. 

3 Active attacks 

3.1 GPST and variants 

Since SIDH is a key exchange analogous to classical Diffie-Hellman, it is a natural 
question whether parties could use static keys. In 2016 Galbraith, Petit, Shani 
and Ti [18] proposed an active attack on SIDH if one party has a static key. The 
main idea of the attack is to send over maliciously generated torsion points and 
check whether the key exchange was successful or not. After every key exchange 
the adversary will learn one more bit from the secret key. 

In order to describe the attack we define the following oracle which abstracts 
the method described above. 
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Definition 3.1. Let α be a secret integer. Let E, E1, E1 
0 , P, Q be a tuple such 

that P, Q generate E1[A]. Then the oracle returns “true” if E0 ∼= E1/hP + αQi1 
and returns “false” otherwise. 

The motivation for this oracle comes from the way the SIDH key exchange 
is computed. Alice receives φB (PA) and φB (QA) and compoutes the curve 

EB /hφB (PA) + αφB (QA)i. 

The key exchange is successful if both parties computed the same curve (up 
to isomorphism). Unfortunately, there is no way to tell without knowing φB 

whether the points sent over are truly the images of PA and QA under φB or 
are just some other basis of EB [A]. For simplicity we suppose that A = 2n but 
the attack generalizes to arbitrary smooth degree isogeny. 

Remark 3.2. There is a pretty simple attack if one is allowed to send over points 
of order smaller than A. Namely we do a honest key exchange where we send over 
φB (PA), φB (QA)then in the kth step we send over φB (2

k−1PA), φB (2
k−1QA). 

This will essentially reveal the isogeny path from EB to EAB , from which the 
secret is easily deduced. However, such an attack is easily detectable as the order 
of points can be checked by using pairings. 

Let PA + αQA be the secret kernel generator of Alice. The first step of the 
attack is a genuine key exchange: Bob chooses an isogeny φB : E → EB with 
kernel PB + βQB , sends over φB (PA), φB (QA) and computes the common curve 
E/hPA + αQA, PB + βQB i. Let R = φB (PA) and S = φB (QA). Our first goal 
is to determine the least significant bit of α. The trick is to send over EB and 
points R , S + 2n−1R. Then Alice computes EB /hR + α(S + 2n−1R)i which is 
isomorphic to 

– EB /hR + αSi if and only if α is even 
– EB /hR + αS + 2n−1Ri if and only if α is odd. 

Let EAB = EB /hR+αSi. Now sending (E, EB , R, S +2n−1R, EAB ) to the oracle 
determines the least significant bit of α: if the oracle returns true, then α is even, 
otherwise α is odd. Pn−1

In order to compute the remaining bits of α, we write α in the form αi2
i .i=0Pk−1

Let sk denote the partial sum sk = αi2
i . Suppose now that we have alreadyi=0 

computed sk and our goal is to compute αk. Then we send over the following 
points: 

(1 − sk2
n−k−1)R, S + 2n−k−1R 

Then Alice computes EB /h(1 − 2n−k−1)R + αS +2n−k−1Ri which is isomorphic 
to EAB if αk is even and isomorphic to EB /hR + αS + 2n−1Ri if α is odd. This 
implies that knowing sk we can compute αk by one oracle call. It is clear that 
after n calls to the oracle we retrieve the static secret key α. 

There are various countermeasures against the GPST attack. The most effi-
cient and standard way is to use the Fujisaki-Okamoto transform. This is how the 
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IND-CCA2-secure scheme SIKE [21] is obtained. However, for some applications 
this is not desirable, namely when both parties’ keys are static. 

In 2017 Azarderaksh et al. [2] introduced a variant of SIDH called k-SIDH. 
The main idea is the following. Alice and Bob choose k different secret isogenies 
(al of Alice’s isogenies are of degree 2m and all of Bob’s isogenies are of degree 3l) 
and they compute k2 SIDH key-exchanges (as each pair of secrets corresponds 
to one key exchange). Finally, they hash the k2 different j-invariants to obtain 
a shared secret. The efficiency of k-SIDH is navigated by the size of k. Public 
key sizes grow linearly in k and the number SIDH key exchanges is a quadratic 
function of k. In the original paper [2] the authors gave a brief security analysis 
and suggested to use k = 60. Such a large k makes the scheme very impractical, 
so it is important to have a clearer security analysis of k-SIDH. In particular, 
is 2-SIDH secure? In [15] Dobson et al. demonstrated an attack against 2-SIDH 
which generalizes to larger k. The complexity of the attack is exponential in 
k but it breaks the scheme in polynomial time for small k. They suggest that 
k = 46 is already potentially a secure choice. Their attack in the k = 2 case is far 
from trivial as the GPST attack does not generalize in a straightforward manner 
(it gives an exponential complexity even in the k = 2 case). Their key idea is 
to compute additional information at each step. In GPST one only has to keep 
track of the computed bits of α. In the 2-SIDH attack on the other hand, one 
has to compute each step in the isogeny graph plus preimages of certain points. 
The bottleneck of the algorithm is the computation of these various preimages 
as they require a lot of oracle calls. 

Since k-SIDH is quite impractical, it is natural to attempt to speed it up. Jao 
and Urbanik [35] proposed a way of lowering the number of key exchanges by 
using automorphisms of the starting curves. This way one secret corresponds to 
three curves which lowers the size of the public keys and the communication cost. 
However. the attack from [15] can be extended to the Jao-Urbanik scheme [3] in a 
way that actually exploits the relationship between the three isomorphic curves. 
If you compare state-of-the-art attacks on both schemes, then the analysis in [3] 
suggests that k-SIDH is actually more efficient (this may change in the future if 
an improved attack on k-SIDH cannot be adapted to the Jao-Urbanik scheme). 
Jao and Urbanik also suggest to switch from 2-isogenies to 11 or 13-isogenies as 
it increases the attack complexity more than it increases computational costs. 

It is still an open problem whether there exists some variant of k-SIDH which 
is efficient and avoids these known attacks. 

3.2 Fault attacks 

In GPST attack and its variants, one party purposely produces erroneous torsion 
points, and recovers information on the secret key from (changes in) the shared 
curve EAB . When fault attacks are feasible, an alternative approach is to force 
the other party to make faulty computations. 

In SIDH protocol, isogenies are computed in a sequential way, as the composi-
tion of several low degree isogenies. In [20], a loop-abort fault attack is described 
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where one party can force the other one to stop that computation after an ar-
bitrary number of steps, and return the current curve rather than the final one. 
This provides an oracle similar to the one used in the GPST attack, and the key 
can be recovered similarly. 

In [34], another fault model is considered where some register value is replaced 
by a random value during computation. If this happens to a register containing 
part of the x-coordinate of PB , then the resulting x coordinate is still a point 
on the curve with a probability roughly 1/2, but is likely to have an order that 
is not coprime with deg φA. As a result its image will reveal part of the isogeny, 
more precisely multiplying the image by the cofactor (its order divided by the 
gcd between its order and deg φA) produces a point in the kernel of its dual. We 
refer to [34] for details. 

4 Reduction to the endomorphism ring computation 
problem 

Computing the endomorphism of a supersingular elliptic curve is a classical 
problem in computational number theory. Given an elliptic curve E defined over 
a finite field of characteristic p, the problem is to find End(E). The first algorithm 
to solve this is described in Kohel’s thesis [25] and was later improved by Delfs-
Galbraith [14] to a running time of Õ(p1/2). The most recent algorithm [16] is 
a slight variation with essentially the same complexity O(log(p)2p1/2). The best 
known quantum algorithm is due to Biasse, Jao and Sankar [4] and has a running 
time of Õ(p1/4). 

It is a natural to ask how finding isogenies between supersingular elliptic 
curves relates to computing endomorphism rings. The KLPT algorithm [24] im-
plies that if one knows the endomorphism rings of both curves, then one can 
compute an isogeny between them. For cryptographic applications, a much more 
natural question is the following. Let φ be a secret isogeny of degree d between 
E1 and E2. Find φ if the endomorphism rings of E1 and E2 are known. 

Let us first recall some facts about isogenies between supersingular elliptic 
curves. Let E1, E2 be supersingular elliptic curves defined over F2 . Then the setp 
Hom(E1, E2) of isogenies between E1 and E2 has a very specific structure. First, 
Hom(E1, E2) is a Z-lattice as the integer linear combination of isogenies from 
E1 to E2 is again an isogeny from E1 to E2. Furthermore, let σ1 ∈ End(E1), 
σ2 ∈ End(E2) and φ ∈ Hom(E1, E2). Then φ ◦ σ1 ∈ Hom(E1, E2) and σ2 ◦ φ ∈ 
Hom(E1, E2). In other words Hom(E1, E2) is a left End(E2) and a right End(E1)-
module. In particular the next lemma shows that Hom(E1, E2) is isomorphic to 
a left ideal of End(E2): 

Lemma 4.1. [36, 42.2.7] Let Hom(E2, E1) denote the set of isogenies from E2 

to E1 and let O1 and O2 denote the endomorphism rings of E1 and E2 respec-
tively. Let I be a connecting ideal of O1 and O2 and let φI denote the correspond-
ing isogeny. Then the map φ∗ 

I : Hom(E1, E2) → I, ψ 7→ ψ◦φI is an isomorphism 
of left O1-modules. 



7 Torsion point attacks on “SIDH-like” cryptosystems 

One can also show that the rank of Hom(E1, E2) as a Z-lattice is 4. The KLPT 
algorithm also implies that if the endomorphism rings of E1 and E2 are known, 
then one can compute a Z-basis of Hom(E1, E2) as it is isomorphic to a con-
necting left ideal. Note that such a basis is given as elements of the quaternion 
algebra and not as rational maps as their degree can be large and not smooth 
(thus writing down the coefficients of the rational functions would take expo-
nential time in log p). 

The first algorithm relating endomorphism ring comutation and computing 
isogenies of a specific degree is from [18]. The main observation is that in SIDH√ 
the secret isogeny has degree approximately p. Heuristically, such an isogeny 
should be in general the shortest isogeny between two randomly selected curves, 
which gives the following attack. Compute a Z-basis of Hom(E1, E2) using the 
KLPT algorithm. Then find the shortest element in Hom(E1, E2) using the LLL-
algorithm. Heuristically, this should be the secret isogeny one is looking for. The 
authors demonstrate this with experiments in MAGMA. 

The algorithm implies that in SIDH if the endomorphism ring of E and EA is 
known, then one can recover the secret isogeny φA in polynomial time. However, 
in B-SIDH the respective curves are no longer close (the curves are roughly p 
apart), thus the algorithm from [18] fails. It is a natural question whether one 
can extend the algorithm from [18] to be applicable to B-SIDH as well. This is 
especially important because for B-SIDH such an attack would be more efficient 
than a meet-in-the-middle attack (which is currently not true for SIDH). 

The main idea of [33] is that one can exploit the torsion information provided 
to generalize the attack from [18] to a wide variety of parameters. Note that the 
algorithm in [18] did not use the torsion information at all; it solely relied on the 
curves being close. We sketch the attack from [33]. Similarly, one computes an 
LLL-reduced basis of Hom(E1, E2), let these be φ1, φ2, φ3, φ4. Then the secretP4
isogeny φ can be written as φ = i=1 xiφi where the xi are integers. Using the 
torsion information provided one can determine the xi modulo B by solving a 
system of linear equations. Why is this information useful? The reason is that an 
LLL-reduced basis has the property that one can bound the xi using the smallest 
degree element in Hom(E1, E2) and the degree of the secret isogeny. This way 
if |xi| < B/2, then a modulo B solution can be uniquely lifted to an integer√ 
solution. This way one can retrieve the secret isogeny whenever A/B < 8 p. 
When looking at SIDH or B-SIDH as a key exchange, one can assume that 
B > A, so this should apply to any reasonable instantiation of SIDH. 

It is still an open problem whether one can recover a secret isogeny of de-
gree d between curves with known endomorphism rings in general. Indeed, both 
previously described algorithms use some extra information, namely closeness of 
the curves or torsion-point information. 

5 Shifted endomorphism attacks 

In this section we discuss algorithms for the SSI-T problem. The central questions 
are the following: 
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– For which parameters A, B, p can one solve SSI-T in polynomial time? 
– For which parameters A, B, p can we do better than generic meet-in-the-

middle algorithms? 

The first work in this area is Petit’s algorithm [29], which was first improved 
in [6] and then further improved in [13]. The starting point is the following. Let 
φ : E1 → E2 be an isogeny of degree A and suppose we know the action of φ on 
the B-torsion. Let θ ∈ End(E1) (given by some efficient representation). Then 
one knows how φ ◦ θ ◦ φ̂ acts on E2[B]. Furthermore, this is also true for any τ 
of the form φ ◦ θ ◦ φ̂ + [d] for any integer d. Why is this useful? The key idea 
of [29] is to choose θ in a way that deg(φ ◦ θ ◦ φ̂ + [d]) = Be for some small e. 
Let τ = φ ◦ θ ◦ φ̂ + [d]. Then one can decompose τ as ψ ◦ η where deg(ψ) = B 
and deg(η) = e. One knows ψ as the action of τ is known on E2[B], and η can 
be computed by a generic meet-in-the-middle algorithm. Finally, one can obtain 
ker(ψ̂) as the intersection ker(τ − [d]) ∩ E2[A]. 

The key part of the attack is the appropriate choice of θ, which requires 
knowledge of (at least part of) the endomorphism ring of E1. However, in many 

2 3applications E1 is the special curve defined by the equation y = x +x for which 
the structure of the endomorphism is known. Finding a suitable endomorphism 
θ ∈ End(E1) then is equivalent to finding an integer solution (a, b, c, d, e) with 
small e to the following equation: 

2A2(pa + pb2 + c 2) + d2 = Be. (1) 

There is a natural strategy for solving this equation. First one solves it mod-
ulo A2 by choosing d and e appropriately. Then one checks whether Be − d2 is 
a square modulo p. If not, then one chooses a different d and e. If it is, then one 

Be−d2 2−c2 A2finds c such that c ≡ (mod Be 
A 
− 
2 
d2 
). Finally, one checks whether p is 

the sum of two squares. If yes, then one finds a, b using Cornacchia’s algorithm. 
If not, then one starts over with a new d and e. It can be shown that heuristi-
cally, one does not need to iterate too many times. This is a simple algorithm 

2but it fails for many parameter sets. The reason for this is that c is usually 
of size O(p2) meaning that for many parameters even though one does not get 

Be−d2 2−c 
local obstructions, the number A2 is negative, hence never a sum of two p 

squares. In [29] it is shown that this does not happen when A > p and B > A4 

in which case one can solve SSI-T in polynomial time. 
Follow-up papers improve on Petit’s original algorithm by relaxing the condi-

tion on θ and relating the algorithm to different equations. In [6] the authors use 
triangular decompositions and certain endomorphisms with many eigenvalues to 
derive the following equation: 

2A2(pa + pb2 + c 2) + d2 = B2 e. (2) 

In [13] the authors derive two new improvements: the dual isogeny method and 
the Frobenius method. The dual isogeny method also reduces to Equation 2 but 
uses a more direct approach. Namely if one can find θ such that deg(φ ◦ θ ◦ φ̂+ 
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[d]) = B2e, then τ = φ ◦ θ ◦ φ̂+ [d] can be decomposed as τ = ψ ◦ η ◦ ψ0 where 
deg(ψ) = deg(ψ0) = B and deg(η) = e. The isogenies ψ and η can be computed 
in a similar fashion as before. The isogeny ψ0 can be computed by essentially 
looking at τ(E2[B]). Another way to understand this approach is the following. 
Even though τ is not known apriori, its action on E2[B] is known. Thus one can 
look at τ as a 2 × 2 matrix with entries from Z/BZ. One can derive ψ by looking 
at the kernel of this matrix and one can compute ψ0 by looking at the image of 
this matrix. 

One can solve Equation 2 with the same method as the one presented for 
solving Equation 1. This provides a polynomial-time method whenever B > pA. 
However, heuristics show that a solution should exist for a much wider variety of 
parameters for example when p ≈ AB and B > A4 , but finding such a solution 
is still an important open problem. Why would an algorithm to compute these 
solutions be interesting? In variations and applications of SIDH one often uses 
special primes in order to be able to carry out computations over small extension 
fields. In particular there are two classes of primes which are used: SIDH primes 
of the form p = ABf − 1 where f is a small cofactor and B-SIDH primes where 
p2 − 1 = AB and A, B are smooth. For SIDH primes the previous approaches 
fail as in both approaches B > p. For B-SIDH primes the dual isogeny approach 
already has some impact: namely when B > A2 , then one can solve the SSI-T 
problem in polynomial time. This has no impact on the actual scheme proposed 
in B-SIDH [11] because there the parameters are balanced. 

The main idea of the Frobenius approach outlined in [13] is the following. 
In the dual approach η needed to have small degree, as it was computed by a 
generic meet-in-the-middle algorithm. However, when the degree of η is a small 
multiple of p, then it can also be computed by applying the Frobenius and then 
brute-forcing the rest. This results in an alternative equation: 

2A2(pa + pb2 + c 2) + d2 = B2 pe. (3) 

Now one can solve this equation by first setting c = 0 and d = pd0 and dividing 
by p. Then one obtains the equation 

2A2(a + b2) + pd02 = B2 e. (4) 

Now the solving strategy is similar as before but one does not have to solve 
B2 e−pd02 

modulo p this time, just modulo A2 and then hope that is a sumA2 

of two squares. If not, then one can again iterate until a solution is found. 
This algorithm is implemented and can be found at https://github.com/ 
torsion-attacks-SIDH/6party. 

The main appeal of the Frobenius method is that it runs in polynomial time 
whenever B > 

√ 
pA2 . In particular this applies when p ≈ AB and B > A5 . 

Note that it still does not apply to SIKE as there A ≈ B. However, the choice 
of choosing balanced parameters in SIKE is essentially is only motivated by 
having the same security level for Alice and Bob. In many SIDH applications 
the parameters are not balanced [5],[22] and future protocols nay arise using 
unbalanced parameters. 

https://github.com/torsion-attacks-SIDH/6party
https://github.com/torsion-attacks-SIDH/6party
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All the previously described attacks run in polynomial time. However, it also 
makes sense to look at exponential-time attacks which outperform generic meet-
in-the-middle algorithms. A general framework for these types of attacks is the 
following. One first guesses part of the secret isogeny and then one runs a torsion-
point attack possibly with a larger e. If the torsion-point attack fails, then one 
guesses a different starting isogeny. This way one can obtain improvements for 
parameter sets which are less unbalanced. The state-of-the-art in this regard is 
summarized in Figure 1. 

β 

4 

3 

2 

1 

1 2 3 α 

Fig. 1. Performance of attacks from [13]. Here A ≈ p α and B ≈ p β . Parameters (α, β) 
above the red, orange and yellow curves are parameters admitting a polynomial-time 
attack, an improvement over the best classical attacks, and an improvement over the 
best quantum attacks respectively. Parameters below the upper dashed line are those 
allowing AB | (p 2 − 1) as in [11]. Parameters below the lower dashed line are those 
allowing AB | (p − 1) as in [21, 22]. 

All these attacks assume that the starting curve is a special curve, namely 
the curve with j-invariant 1728 (the attack extends naturally to starting curves 
close to this curve). Starting from a random curve thwarts all these attacks. 
However, in certain scenarios it is not easy to detect that the starting curve 
was honestly generated (e.g., by taking a random walk starting from the curve 
2 3y = x + x). Thus a natural question is the following: given A, B, p can one 

maliciously construct a starting curve for SIDH from which one can retrieve the 
secret key in polynomial time? When B > A2 , then the answer is yes. The main 
idea is looking at Equation 2 from a different perspective. In previous approaches 
one was looking for a specific θ on a specific starting curve. Instead one can try 
to look for the curve and the endomorphism together. This way one can look for 
θ in the entire quaternion algebra Bp,∞ instead of restricting to one maximal 
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order. This way we get Equation 2 but a, b, c do not need to be integers, only 
2pa + pb2 + c2 has to be an integer as it is the norm of an endomorphism (only 

integral elements of Bp,∞ arise as endomorphisms). This way we can solve the 
equation modulo A2 and then one is left with the equation: 

B2e − d2 
2 2 pa + pb2 + c = 

A2 

Since we are now looking for rational solutions, we find a nontrivial zero of the 
2 2 − B

2 e−d2 2homogeneous equation pa + pb2 + c z . This has a zero if and only ifA2 

B2e − d2 is a quadratic residue modulo p, so again we have to iterate a couple of 
times for this to occur. Then one can find a solution using Simon’s algorithm [32]. 
This way one has found θ but not the curve. Finding the curve can be obtained 
by finding a maximal order containing θ and translating it to a supersingular 
elliptic curve whose endomorphism ring is isomorphic to that order. In [13] the 
curves containing such a θ are called (A, B)-backdoor curves. The number of 
these curves is exponential in log p. Note that the condition for the existence of 
such a curve is B > A2 , so it does not depend on p. However, again this seemingly 
does not apply to balanced SIDH parameters. Even though one cannot break 
SIDH in polynomial time from a backdoor starting curve, in [13] it is shown that 
one can derive algorithms which even though are exponential, are faster than 
meet-in-the-middle algorithms. 

This seems to suggest that against all intuition it is probably safer to instan-
2 3tiate SIDH starting from y = x + x, then from a random curve if there is no 

guarantee that the curve was generated honestly. Note that for SIDH one can 
actually derive a random starting curve by multiparty computation techniques 
but in many applications such an approach might not be feasible. 

Finally, all these methods are ineffective if one could hash onto the super-
singular isogeny graph, i.e., generate a random supersingular curve whose en-
domorphism ring is unknown to everyone. The techniques of this section again 
highlight the importance of the hashing problem. 

6 Quantum hidden shift attack 

In this Section we present a quantum subexponential algorithm for the SSI-T 
problem for certain parameter sets. One of the main fundamental differences 
between SIDH and CSIDH is that CSIDH is clearly based on a group action,√ 
namely the class group of Z[ −p] acts freely and transitively on supersingular 
elliptic curves defined over Fp. It is well-understood how to compute the action 
of an ideal class of smooth norm on a given curve E. Furthermore, since the 
class group is commutative, the action provides a commutative group action 
which realizes the Hard Homogeneous Spaces concept of Couveignes [12]. In the 
SIDH setting one does not have similar natural group action due to the non-
commutative nature of the full endomorphism ring (quaternion maximal orders 
have class groups but they are non-commutative). The implications of this are 
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twofold: on one hand this makes SIDH less flexible (i.e., it is harder to derive fur-
ther schemes from the core idea) on the other hand it possibly makes it immune 
to Kuperberg’s algorithm. 

There is however a different framework that applies to general supersingular 
elliptic curves as well. Let f : I → O be an injective one-way function and let G 
be a finite abelian group acting freely and transitively on I. Furthermore, suppose 
that if f(i) is known (but i is not necessarily known), then one can compute 
f(g ∗ i). We call such an oracle a malleability oracle. In [26] it is shown that if 
one has access to a malleability oracle, then one can invert f in subexponential 
time. It is also shown that this framework applies to CSIDH and is essentially 
the same attack as the one proposed by Child, Jao and Soukharev [10]. However, 
surprisingly one can apply this framework to the SSI-T problem as well. 

Let E be a supersingular elliptic curve. Let I be the set of cyclic subgroups 
of order A, and let O be the set of supersingular elliptic curves at distance A 
from E. Then f : I → O is defined by the mapping f(hKi) = E/hKi. Let θ be 
an endomorphism of E and let E/hXi be a curve of distance A from E. Then 
if the degree of θ is coprime to A, then E/hθ(X)i is also a curve of distance 
A from E. Let O = End(E). Then this idea defines an action of (O/AO)∗ on 
the curves of distance A from E. It can be shown that (O/AO)∗ ∼= GL2(Z/AZ). 
Since θ and λθ where λ ∈ Z define the same action, it is actually more natural 
to consider the action of P GL2(Z/AZ) on the set of curves of distance A from 
E. There are several questions at this point: 

1. Is f injective? 
2. Since P GL2(Z/AZ) is non-commutative, how to choose the acting group G? 
3. How do you compute E/hθ(X)i without knowing X? 

The first two questions are mere technicalities. One can split I in a way so 
that for each subset f is injective. In addition one can restrict to an abelian 
subgroup of P GL2(Z/AZ) to make the action free and transitive on each of 
these subsets. 

The answer to question 3 is more involved and this is the only part where 
the attack uses torsion point images. Let EX = E/hXi and let φ : E → EX be 
a secret isogeny of degree A. Suppose we know the action of φ on E[B]. Our 
goal is to compute E/hθ(X)i for an endomorphism θ. One has a commutative 
diagram described in Figure 2. Instead of focusing on the isogeny from E to 
E/hθ(X)i we can go the other way on the diagram. Namely from E to EX and 
then from EX to E/hθ(X)i. The second step can be computed if the degree of 
θ divides B as we know the action of φ on the B-torsion. However, in general θ 
will not satisfy this property. The way to go around this issue is the following. 
Since we are working in O/AO we can choose a different representative of the 
coset containing θ. This means that we can switch from θ to any θ0 which has the 
exact same action on the A-torsion. Now the goal is to find a θ0 ∈ End(E) such 
that θ0 = θ + Aθ00 where θ00 ∈ End(E) and the degree of θ0 divides B. This can 
be achieved for special θ-s which one has to take into account when selecting the 
subgroup G of P GL2(Z/AZ) for the group action. A particular choice for which 
this feasible is to use θ-s from Z[i] and the starting curve E with j-invariant 
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1728. Further improvements are also possible by using the Frobenius isogeny in 
a similar fashion to shifted endomorphism ring attacks. The conclusion is that 
the attack runs in subexponential time whenever B > pA4 . 

Even though this is a worse attack complexity then the ones achieved with 
shifted endomorphisms, this attack highlights the fact that for certain parameter 
sets an efficient group action on the SIDH keyspace is possible. This further 
highlights how the SSI-T problem is different from the pure isogeny problem. 

ϕ 
E EA 

θ 

E E/θ(ker ϕ) ∼= EA/ϕ(ker θ) 

Fig. 2. SIDH key exchange instance with isogenies ϕ and the endomorphism θ. 

7 Open problems 

There are various open problems that remain. Probably the most interesting 
questions is whether shifted endomorphism attacks and hidden shift attacks can 
be combined in some fashion. So far these attacks exploit torsion information in 
a different fashion so a common approach could be beneficial. 

Furthermore, there is plenty of room for improvement in both approaches 
separately. In the dual isogeny approach, finding better solutions to Equation 
2 is a clear path for improvement. Furthermore, in [13] there is an outline of a 
uniform approach which encompasses both the dual and the Frobenius approach. 
Possibly a more general viewpoint could also lead to improvements. 

In the quantum attack the current approach only utilizes a small fraction of 
P GL2(Z/AZ) in order to fit the framework needed for Kuperberg’s algorithm. 
A natural way of extending this result could be to use a larger acting group and 
relating the issue of finding the secret isogeny to a hidden subgroup problem as 
opposed to a hidden shift problem. 

Finally, all these approaches apply to elliptic curves. It is natural to study 
higher genus analogues of the SSI-T problem and whether the approaches gen-
eralize to higher genera. 

8 Conclusion 

SIKE’s security relies on the “pure” isogeny problem (given two curves, find an 
isogeny between), but also on a variant which, among other specificities, provides 
the attacker with the images of some torsion points through the isogeny. 
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Several attacks have exploited similar information, starting from the GPST 
active attacks [18], continuing with torsion point passive attacks [13, 29] and 
most recently an attack contradicting the folklore intuition that hidden shift at-
tacks cannot be applied to SIDH-like protocols because of their non commutative 
nature [26]. These attacks have improved over time: while [29] only worked for 
very unbalanced parameters, the latest improvements from [13] lead to a quan-
tum attack with complexity similar (up to polylogarithmic factors) to previously 
known (non torsion point) attacks for SIKE parameters and a polynomial attack 
on a group key exchange from [1] for any number of parties greater than 6. 

Future will tell whether these and other ideas will eventually affect the secu-
rity of SIKE. 
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