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In this talk we will discuss the state of the formal verifcation of the two NIST PQC standardization 
process submissions Kyber and Saber. 

Formal Verifcation 
Throughout most of history, the security properties of cryptographic schemes have been proven by 
means of hand-written security proofs. However, the innovation and development in the feld of 
cryptography has led to a signifcant increase in the complexity of cryptographic schemes. As such, 
hand-written security proofs have become substantially more diÿcult to carry out correctly. In 
fact, multiple instances of security proofs exist which, despite the fact that they were extensively 
scrutinized and considered to be correct, turned out to be fawed. Even worse, in some of these 
cases, the corresponding cryptographic scheme was additionally found to be insecure [1]. These 
instances clearly exemplify the importance and diÿculty of properly constructing and verifying a 
cryptographic scheme and its security proof. 

In addition to the above concern, even if a cryptographic scheme and its security proof are completely 
correct, implementation errors may still invalidate any of the scheme’s properties and guarantees. As 
a result, despite the scheme being completely sound at the design level, no e˙ective security might 
be provided at all. Akin to the previous concern, ample examples exist of faulty implementations of 
sound cryptographic systems allowing for security compromises [2]. This signifes the importance of 
sound and secure implementations of cryptography. 

In part to remedy the aforementioned issues, the feld of computer-aided cryptography was estab-
lished. This feld of research seeks to develop approaches to the construction of cryptography that 
utilize computers to formally verify and guarantee any related correctness, eÿciency and security 
claims. The utilization of computers in this manner signifcantly reduces the complexity of the 
manual labor required in verifying the security and correctness of a scheme and its implementations, 
while simultaneously providing a consistently high level of rigorousness. This enables the procure-
ment of a higher level of confdence in the security and correctness of a cryptographic scheme and 
its implementations. 

General Formal Verifcation Process 
Recent progression in the feld of computer-aided cryptography demonstrates that a general formal 
verifcation process can be applied to real-world cryptographic systems [3]. Particularly, given the 
scheme’s specifcation and (hand-written) security proof, this process allows one to formally verify 
any scheme and its implementations. Additionally, the process does not depend on any concrete 
tools, provided they allow one to perform the desired verifcation task. Nevertheless, the choice of 
tool may signifcantly impact the diÿculty of the process, depending on, for example, the properties 
to verify or the type of proof used. Abstractly, the process goes as follows. First, one formalizes the 
scheme’s specifcation, security properties and security proof. Subsequently, the specifed scheme is 
formally verifed to possess the desired security properties by means of the formalized security proof. 
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Afterwards, an implementation of the scheme can be formally verifed to be functionally correct 
with respect to the scheme’s specifcation. As such, the implementation is shown to correspond 
to a specifcation that, in turn, is verifed to possess certain desirable properties, implying the 
implementation also possesses these properties. Finally, depending on the available and utilized 
tools, several other properties of the implementation can be verifed. Examples of such properties 
are memory-safety and constant-time behaviour. 

EasyCrypt 
EasyCrypt is a tool predominantly aimed at formally verifying the security properties of crypto-
graphic constructions [4, 5]. To this end, the tool adopts the code-based approach to provable secu-
rity; that is, security properties and hardness assumptions are modeled as probabilistic programs. 
Moreover, the tool’s higher-order ambient logic, standard library, and built-in mechanisms allow for, 
among others, extensive mathematical reasoning, di˙erent types of proofs (e.g., game-playing and 
simulation-based), and modular construction of cryptographic systems. 

Albeit more conveniently applied at the design level, EasyCrypt can be employed both at the design 
and the implementation level. Especially with the development of frameworks such as Jasmin, 
utilizing EasyCrypt to verify the functional correctness and constant-time properties of concrete 
implementations is made signifcantly less complex. 

At the time of writing, EasyCrypt does not yet allow for analysis considering quantum adversaries. 
Nevertheless, an ongoing project is attempting to implement the support for such analysis. 

Jasmin 
Jasmin is a framework designed for implementing high-assurance and high-speed cryptography [6]. 
The framework comprises a programming language, a compiler, and several tools for (partially) au-
tomated verifcation of desirable program properties. In particular, the framework’s tools assist the 
developer in formally proving a Jasmin implementation is memory-safe, constant-time, and function-
ally correct. Here, contrary to the tool for memory-safety, the tools for constant-time and functional 
correctness are not fully automated; as such, verifying these properties still requires some manual 
labor, although this e˙ort is minimal for the constant-time property. Specifcally, given a Jasmin 
implementation, these tools generate EasyCrypt code aimed at verifying their respective property; 
subsequently, this code can be used to actually verify the considered property in EasyCrypt. 

Current PQC Projects 
This presentation will present the progress of two formal verifcation projects of PQC competition 
fnalists: one for Kyber and one for Saber. The eventual goal of both projects is identical and two-
fold; specifcally, both projects aim to (1) formally verify the IND-CCA2 security of (the specifcation 
of) their respective KEM and (2) formally verify the functional correctness, memory-safety, and 
constant-time properties of a reference and an optimized implementation of their respective KEM. 
For this purpose, both projects use EasyCrypt and Jasmin. 

At the time of writing, the progress of both projects is as follows. For both Kyber and Saber, a 
reference and optimized implementation have been constructed in Jasmin. In addition, the Kyber 
project has formally verifed the IND-CPA property and (1 - �)-correctness bound of the (specifcation 
of the) PKE, the functional correctness and memory-safety of the reference implementation, and the 
memory-safety of the optimized implementation. The Saber project has formally verifed the IND-
CPA property of the PKE scheme, and the memory-safety of both implementations. 

Although it seems unfortunate that analysis considering quantum adversaries is not yet possible in 
EasyCrypt, formal verifcation in the classical setting already provides valuable insight into these 
schemes and their properties. Additionally, in recent work, Unruh formally verifed the Fujisaki-
Okamoto transform in his qRHL-tool [7]. As such, building on this work, verifying the schemes in 
the classical setting also increases the confdence in the correctness and security of the schemes when 
considering quantum adversaries. 
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