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Abstract. We revisit collision attacks on NTRU, namely Odlyzko’s
meet-in-the-middle attack and Howgrave-Graham’s hybrid attack. We
show how to simplify and improve these attacks with respect to effi-
ciency, analysis and ease of implementation. Our main ingredients are
randomization and geometry: we randomize the attacks by introducing
torus variants of locality sensitive hashing (LSH) and new HNF-like bases
of the NTRU lattice; and we establish a connection between the success
probability of the hybrid attack and the intersection of an n-dimensional
sphere with a random box. We provide mathematical and algorithmic
bounds for such intersections, which is of independent interest. Our new
analyses remain partially heuristic, but are arguably much more sound
than previous analyses, and are backed by experiments. Our results show
that the security estimates of the NTRU finalist in NIST’s post-quantum
standardization need to be revised.

1 Introduction

Due to the on-going NIST standardization [24] of post-quantum cryptography
and the development of fully-homomorphic encryption, it is crucial to analyze
and design the best lattice algorithms. Out of the seven third-round candidates
selected by NIST [24], five [4, 7, 9, 11, 12] are based on the hardness of lattice
problems, such as finding short lattice vectors (SVP) and close lattice vectors
(CVP). For efficiency reasons, many lattice-based schemes (including the five
lattice-based finalists [24]) use secret vectors with very small coordinates, and
possibly sparse. This kind of property can be exploited by collision attacks in-
troduced against the NTRU public-key encryption scheme [16]: Odlyzko’s meet-
in-the-middle attack (described in [16, 18]) and Howgrave-Graham’s hybrid at-
tack [19], the latter combining the former with lattice reduction. It is therefore
very important to analyze the efficiency of such collision attacks: for many pa-
rameters, the hybrid attack is considered the most powerful attack against the
NTRU cryptosystem, by NTRU itself [15] and in the latest NIST submission [7,
8].
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Unfortunately, these collision attacks, especially the hybrid attack, are still
poorly understood (as first pointed out by Schanck [26] and later Wunderer [30]),
for several reasons. First, the attacks are technical and not easy to implement:
they are memory intensive, and the original description of [19] uses functions
whose output is a list whose size varies depending on the input. The hybrid
attack was surprisingly not used in any of the solved NTRU numerical chal-
lenges [27]. As a result, the literature [30, 6, 15, 19] on the hybrid attack has
focused on theoretical analyses involving quite a few heuristics, but for which
very limited experiments have been carried out to support them, if any. Second,
all the analyses so far arguably fail to give a clear full picture. As an example,
the recent analysis of the hybrid attack in NTRU’s NIST submission [7, 8, Sect.
6.4.3] does not follow the analyses [30, 19].

Our results. We revisit Odlyzko’s meet-in-the-middle attack (described in [16,
18]) and Howgrave-Graham’s hybrid attack [19], which both exploit clever col-
lisions to recover the NTRU secret key. We simplify and improve these attacks
both in terms of efficiency and ease of implementation. Our main ingredients
are randomization and geometry. We randomize several steps: this clarifies what
depends on random coins used by the attacker and what depends on the secret
key, and has the benefit of significantly increasing the success of the attack, as
well as analyzing more rigorously the frequency of these collisions. In all previous
versions of the hybrid attacks, there were keys for which the attack would always
fail or require much more time than usual: such keys no longer exist here.

Our analysis removes the most annoying issues in previous analyses of the
hybrid attack: informal arguments on “flipping bits” are replaced by a rigorous
torus variant of locality sensitive hashing, “simplified” distributions are replaced
by provable bounds on a natural modelling asking what proportion of the n-
dimensional unit sphere is covered by a given box, i.e. a product of intervals.

Our work impacts at least the NTRU finalist in the NIST competition: the
security analysis of [7] needs to be revised. We show that the concrete complex-
ities given by the scripts of [7] for the hybrid attack are not reliable, mixing
both overestimates and underestimates. For instance, for the ntruhps2048677

parameter set, the success probability which was not estimated but assumed to
be non-negligible is actually less than 2−46, and at the same time, the meet-in-
the-middle stage can be sped up by a factor roughly 160, 000.

Our most important results deal with the hybrid attack, which is much more
powerful than Odlyzko’s attack. However, because Odlyzko’s attack is much
simpler, it is very helpful as a case study, in order to introduce and explain more
easily some of our key ideas.

Technical overview. At a high-level, a hybrid attack [19] can be explained as
follows. Assume that one is looking for a very short secret vector t ∈ ZN whose
coordinates are all very small integers. This target t belongs to a lattice, which
has a basis of a special shape. Accordingly, the secret vector t is split into three
parts t1|t2|t3 where the number of coordinates of t1, t2 and t3 are respectively
N1, N2 and N3 such that N = N1 +N2 +N3:
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1. The tail part t3 is guessed by meet-in-the-middle techniques. Depending
on the exact distribution of t, it is hoped that if t3 runs over a set L of s
elements, one can build two lists L1 and L2 of roughly

√
s elements, such that

t3 = u1−u2 for some (u1,u2) ∈ L1×L2. Instead of doing a full exhaustive
search on t3 by enumerating over L1×L2, one wants to enumerate only over
u1 ∈ L1 and be able to detect the correct guess by recording collisions in a
later stage, but the success of the detection depends on t1 and t2.

2. The middle part t2 is taken care of by lattice reduction techniques, which are
made possible by the special shape of the starting basis. Roughly speaking,
the shorter t2 is and/or the stronger the lattice reduction algorithm is, the
higher the success probability p. This p dictates our ability to detect the
correct guess (u1,u2) ∈ L1 × L2 by recording collisions, when enumerating
over u1 ∈ L1.

3. The head part t1 is tackled by error-correction techniques and also involves
a success probability, but we will show that this success probability can be
made significantly high, and is therefore much less problematic.

What makes the analysis cumbersome is that we need to analyze all possible
choices ofN1,N2 andN3, and for each choice, we need to estimate the probability
p as well as the running time and output quality of lattice reduction. Otherwise,
it is not possible to determine the optimal choice of parameters. All descriptions
of the hybrid attack adopted this framework, because they all relied on the
Hermite normal form of the NTRU lattice: the only freedom was over the choice
of N1, N2 and N3 and the lists L1 × L2.

Our key contributions are the following. First, we observe that this splitting
t1|t2|t3 is sub-optimal because the target vector t in NTRU is unbalanced. More
precisely, it is well-known that t = g|f can be split in two halves, where g
and f are both binary or ternary polynomials but whose number of non-zero
coefficients can vary significantly. In the historical version [16] as well as the
latest versions [7, 8] of NTRU, g is significantly sparser than f : for instance, in
the ntruhps2048677 parameter set of NIST’s NTRU finalist [7], f has nearly
1.8 times more non-zero coefficients than g. However, the initial splitting t1|t2|t3
forces t3 to be the tail of the f -part, and t1 to be the head of the g-part.
Intuitively, the g-part is the easiest part of the target: it has smaller entropy
than f . Thus, it is unclear why the meet-in-the-middle guessing should target f
(i.e. the part of t with the highest entropy), rather than g. We stress that this
was not the case when the hybrid attack was invented [19], because at that time,
recommended NTRU parameters actually used an f which was sparser than g!

Furthermore, the probability p is strongly influenced by the norm of t2, which
mixes both f and g. If we want to maximize p, it would be better if the middle
part involved more coordinates of g. Finally, because it turns out that error-
correcting techniques are the least problematic part of the attack, one wishes t1
to include the largest coordinates of t, i.e. to involve as many coordinates of f
as possible. In other words, current hybrid attacks (as described in [30, 7]) do
not fully exploit the unbalanced structure of the NTRU secret key.
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To improve the attack, we introduce randomness and exploit more bases
of the NTRU lattice. Instead of decomposing deterministically g|f as t1|t2|t3,
we apply the three-part decomposition over well-chosen random permutations
of the target g|f , in order to minimize the norm of the middle part t2, and
to absorb the densest part of t into t1. But such a modification is not trivial,
because it requires to find bases of the NTRU lattice with the right shape,
and whose existence may not even be guaranteed: we can no longer use the
original Hermite normal form. Fortunately, we observe that experimentally, for
the overwhelming majority of permutations Π of ZN , the (row) Hermite normal
form of the modified NTRU row lattice whose columns have been permuted by
Π has the following crucial properties: the top-left block is q times the identity
matrix, except possibly its very last bottom vectors, and the bottom-right block
is the identity matrix, except possibly its very first front vectors. Permuting
coordinates of the target allows us to mount an optimized hybrid attack which
exploits the known structure of the distribution of the secret key. It also has the
added benefit of making t3 as sparse as possible, and taking better advantage
of the well-known cyclic rotations of NTRU, thereby decreasing the cost of the
meet-in-the-middle stage. For instance, in the ntruhps2048677 parameter set [7],
the best non-local hybrid attack found in [7] used a meet-in-the-middle stage
costing 2144. With our randomization, this cost decreases to 2126.7, giving a
160, 000× speed-up.

Our second key contribution is to introduce randomness at another step of
the hybrid attack, the “error-correction” step where we detect collisions by “ab-
sorbing” the front part t1. In all previous versions of the hybrid attack, the
detection of collisions was done deterministically, which made implementations
cumbersome (due to varying output length caused by flipped bits), and made it
impossible to analyze rigorously the probability of collisions happening, because
one had to argue that some fixed elements behaved randomly. To do so, we in-
troduce a torus variant of locality-sensitive hashing (LSH) which we can analyze
rigorously. The main idea behind our torus LSH is exactly the one underlying
Odlyzko’s collision attack except that we add a crucial randomization: if we split
a torus at random into two halves, then any two close torus elements are very
likely to belong to the same half. This allows us to check efficiently if an input
vector is very close modulo q to a given list of vectors, in time logarithmic in
the number of elements of the list.

Our third most important contribution deals with the middle part t2. Per-
haps the biggest issue with all previous analyses of the hybrid attack is related to
the probability p (known in the NTRU literature as the admissibility probabil-
ity). Its value is critical to evaluate the efficiency of the attack, yet it was unclear
in the literature how to efficiently approximate this probability: as a result, the
NTRU submission [7, Sect. 6.4.3] even ignored p. Experimental methods and
heuristic formulas were proposed, such as in [19, 6, 30], but very limited exper-
imental evidence nor completely rigorous arguments were presented. We show
that all previous efficient methods to assess p were somewhat questionable, po-
tentially leading to exponential errors, and we present new ways to approximate
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p. This is based on a geometric model of p as the probability that a random unit
vector belongs to a certain box, i.e. a product of intervals. A related but distinct
problem was studied by Aono and Nguyen [3]: approximating the volume of the
intersection between a ball and a box. We provide rigorous and efficient methods
to bound p, and use extreme value theory to better understand the asymptotical
behaviour. It is well-known that the n-dimensional unit-sphere is contained in
the box [−1, 1]n, and includes the box [−1/

√
n, 1/

√
n]n. Our work addresses the

problem of “framing” a sphere into a box from a probabilistic point of view:
which boxes are likely to contain a significant proportion of the sphere? We
show that for any fixed α > 0, a random unit vector is very unlikely to belong to

[−α/
√
n, α/

√
n]n, but belongs to [

√
2 lnn
n ,

√
2 lnn
n ]n with at least constant proba-

bility. This is of independent interest: interestingly, it allows to bound the success
probability of Babai’s widely used nearest plane algorithm [5]. Given as input a
basis B of an n-rank lattice L and a target vector t of the form t = v + e where
v ∈ L, Babai’s algorithm returns v in polynomial time if ‖e‖ ≤ r/2 where is r
is the minimal norm of the Gram-Schmidt orthogonalization of B. This bound
is tight in the worst case but is known to be pessimistic in practice. Our work
shows that if e is a random vector in the sphere or in the ball of radius m, then
one can guarantee a constant success probability with a radius m essentially as
large as r

√
n

2 lnn .

Related work. Wunderer [30] pointed out several issues and mistakes in previous
descriptions or uses of the hybrid attack, showing that several security esti-
mates were not reliable. However, his analysis did not significantly differ from
the original analysis of Howgrave-Graham [19], leaving several issues unsolved.
Hoffsteinet al. [17] briefly adapted the hybrid attack to target g (rather than f),
but only in the case where g is invertible in the ring mod q, which is not the
case for NTRU’s NIST submission [7], nor for the original NTRU [16].

Roadmap. Sect. 2 provides background. Sect. 3 revisits Odlyzko’s attack [18] on
NTRU using LSH. Sec. 4 introduces HNF-like bases arising from permutations,
which are useful for our randomization of the hybrid attack. Sect. 5 presents our
randomized hybrid attack incorporating both LSH and permuted HNF, with the
new analysis based on boxed spheres. Sect. 6 deals with the probability that a
random unit vector belongs to a box: can we frame most random unit vectors
into a small box? In Sect. 7, we report experimental results and discuss the
security analysis of the NTRU finalist [7].

2 Preliminaries

General. N is the set of integers ≥ 0. For any finite set U , its number of elements
is #U . For any measurable subset S ⊆ Rn, its volume is vol(S). We use row
representations of matrices. The Euclidean norm of a vector v ∈ Rn is ‖v‖. We
denote by Balln(c, R) the n-dim Euclidean ball of radius R and center c, whose

volume is vol(Balln(R)) = Rn πn/2

Γ (n/2+1) . If c is omitted, we mean c = 0.
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Lattices. A lattice L is a discrete subgroup of Rm, or equivalently the set
L(b1, . . . , bn) = {

∑n
i=1 xibi : xi ∈ Z} of all integer combinations of n linearly

independent vectors b1, . . . , bn ∈ Rm. Such bi’s form a basis of L. All the bases
have the same number n of elements, called the dimension or rank of L, and
the same n-dimensional volume of the parallelepiped {

∑n
i=1 aibi : ai ∈ [0, 1)}

they generate. We call this volume the co-volume of L, denoted by covol(L). The
lattice L is said to be full-rank if n = m. The shortest vector problem (SVP) asks
to find a non-zero lattice vector of minimal Euclidean norm. The closest vector
problem (CVP) asks to find a lattice vector closest to a target vector.

Orthogonalization. For a basis B = (b1, . . . , bn) of a lattice L and i ∈ {1, . . . , n},
we denote by πi the orthogonal projection on span(b1, . . . , bi−1)⊥. The Gram-
Schmidt orthogonalization of the basis B is defined as the sequence of orthogonal
vectors B? = (b?1, . . . , b

?
n), where b?i := πi(bi). πi(L) is a lattice of rank n+ 1− i

generated by πi(bi), . . . , πi(bn), with covol(πi(L)) =
∏n
j=i

∥∥b?j∥∥.

Sublattices and Quotient Lattices. Let L ⊆ Rm be an n-rank lattice. A sublattice
of L is any subgroup M of L. A sublattice M is said to be pure or primitive
if L/M is torsion-free, which is equivalent to the existence of a subspace E
of Rm such that M = L ∩ E, which is also equivalent to the existence of a
basis (b1, . . . , bn) of L such that M = L(b1, . . . , bk−1) for some integer k ∈
{1, . . . , n}. Then the quotient group L/M can be viewed as an (n− k + 1)-rank
lattice, isomorphic to πk(L). So the projected lattices πk(L) can be viewed as
an implementation of quotient lattices. One advantage of viewing a projected
lattice as a quotient lattice is that if two lattice vectors u,v ∈ L have the same
projection πk(u) = πk(v), then we immediately see that u − v ∈ M , i.e.u ≡ v
modulo M .

Statistics. We denote by E() the expectation and V() the variance of a random
variable. The CDF of the Gaussian distribution of expectation 0 and variance σ2

is 1
2 (1+erf( x

σ
√
2
)) where the error function is erf(z) := 2√

π

∫ z
0
e−t

2

dt. The normal

distribution N is the special case σ = 1. The multivariate Gaussian distribution
over Rm of parameter σ selects each coordinate with Gaussian distribution.

Locality Sensitive Hashing (LSH). It was introduced in a breakthrough work by
Indyk and Motwani [20] to find approximate neighbours: LSH is a family of hash
functions such that close inputs are likely to have the same hash and far inputs
are unlikely to have the same hash. We use the following definition. LSH is any
samplable distributionH of hash functions over a set E. This induces a similarity
measure: for any (a, b) ∈ E2, we let σ(a, b) be the probability that H(a) = H(b)
for a random H from H. The LSH is useful if there are real p1 > p2 such that
σ(a, b) ≥ p1 if a and b are close to each other, and σ(a, b) ≤ p2 otherwise. Once
p1 > p2, it is possible to arbitrarily increase the gap by classical techniques [20],
using for instance several independent hash functions.
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The NTRU cryptosystem. The NTRU cryptosystem [16], proposed by Hoffstein,
Pipher and Silverman, works in the ring R = Z[X]/(Xn−1). An element F ∈ R
is seen as a polynomial or a row vector: F =

∑n−1
i=0 Fix

i = [F0, F1, . . . , Fn−1].
To select keys, one uses the set L(d1, d2) of polynomials F ∈ R such that d1
coefficients are equal to 1, d2 coeffients are equal to -1, and the rest are zero.
Depending on the NTRU instantiation, d2 might actually set to zero. There are
two small coprime moduli p < q, such as q = 128 and p = 3.

Historically, the secret keys were f ∈ L(df , df − 1) and g ∈ L(dg, dg) for
some integers df and dg significantly smaller than n, but other NTRU instanti-
ations [15, 17, 8, 7] use different parameters for L, such as binary polynomials
L(d, 0). Here, we focus on the NTRUHPS parameters of NTRU’s NIST submis-
sion [7], one of the seven finalists: f is a random polynomial in {0,±1}n, and
g ∈ L(dg, dg) where 2dg = q/8 − 2. With high probability, f is invertible mod
q. The public key h ∈ R is defined as h = g/f mod q. Thus, in the ring R/qR
which we represent by Znq , we have f ∗ h = g. In this article, it is not required
to know how NTRU encryption or signature works. The polynomial h defines
the so-called NTRU lattice Λh, formed by all (u, v) ∈ R2 such that v ∗ h ≡ u
mod q. Here, we follow the definition of [19], but other papers may use a variant
of Λh, using a permutation of the coordinates. Λh is generated by the rows of
the following lower-triangular matrix, which is its Hermite normal form:

q 0 · · · 0 0 · · · · · · 0

0 q
. . .

...
...

...
...

. . .
. . . 0

...
...

0 · · · 0 q 0 · · · · · · 0
h0 h1 · · · hn−1 1 0 · · · 0

hn−1 h0 · · · hn−2 0 1
. . .

...
...

. . .
. . .

...
...
. . .

. . . 0
h1 · · · hn−1 h0 0 · · · 0 1


.

The lattice Λh contains by definition the following set of n secret short vectors
Sh = {(xi ∗ g, xi ∗ f), 0 ≤ i ≤ n − 1} formed by the secret vector (g, f) and its
n− 1 rotations . In this paper, we choose the same NTRU lattice as in [19].

3 Randomizing Odlyzko’s NTRU Attack with LSH

3.1 Odlyzko’s Attack

Odlyzko’s attack [18, 19] is a clever time/memory trade-off, which was one of
the first attacks on NTRU. Recall that the public key h of NTRU is of the form
h ≡ g/f in R/qR, where the secret keys f and g are small polynomials chosen
uniformly at random from respectively two public subsets F and G ofR/qR. The
simplest attack is exhaustive search: for every (f ′, g′) ∈ F ×G, output (f ′, g′) if
and only if g′ ≡ h ∗ f ′ in R/qR. This naive attack can be sped up by restriction
to F , thanks to the special shape of G: for every f ′ ∈ F , output (f ′, h∗f ′) if and
only if h ∗ f ′ ∈ G. This requires #F polynomial-time operations and negligible
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space. Instead, Odlyzko’s attack requires roughly
√

#F time heuristically and√
#F space rigorously.

Because of the special shape of F , one actually knows two subsets F1 and F2

of R/qR, such that #F1 and #F2 are both approximately O(
√

#F) and f or
one of its rotations is equal to f1−f2 for some unknown (f1, f2) ∈ F1×F2. Then
h∗f ≡ g implies that h∗f1−h∗f2 ≡ g (mod q) In other words, h∗f1 is close to
h ∗ f2 in the ring R/qR, because h ∗ f1 ≡ g + h ∗ f2 where g is small. To detect
whether a given h ∗ f2 is close to {h ∗ f1, f1 ∈ F1}, Odlyzko introduced a special
deterministic hash function H [18]. More precisely, let H : R/qR → {0, 1}n
with H(

∑n−1
k=0 xiX

i) = (σ(x1), . . . , σ(xn)), where σ : Z/qZ → {0, 1} is defined
by σ(x) = 0 if and only if (x mod q) ≤ bq/2c − 1. Then one precomputes the
list L = {(f1, H(h ∗ f1)), f1 ∈ F1} and sorts it so that any collision in the
second coordinate H(h∗f1) can be detected in logarithmic time. Finally, for each
f2 ∈ F2, compute h ∗ f2 and all the possibilities H1, . . . ,Hm for H(g + h ∗ f2):

1. Represent all the coefficients of h ∗ f2 in {0, . . . , q − 1}.
2. The number m is equal to 2k where k is the number of coefficients of h ∗ f2

in {bq/2c − 1, q − 1}. Let i1, . . . , ik be the indices of these coefficients.
3. Then H1, . . . ,Hm are computed by flipping the k bits of H(h∗f2) at positions
i1, . . . , ik in any possible manner.

4. Check collisions with L: if Hi = H(h∗f1) for some (f1, H(h∗f1)) ∈ L, check
if f1 − f2 is a valid secret key.

Although the attack is simple, it is surprisingly not easy to analyze its running
time rigorously: the analysis of [18] is informal, and makes several implicit as-
sumptions. In 2016, van Vredendaal [29] tried to make the analysis more formal,
but we observe that [29, Lemma 1]and its proof are actually incorrect: see the
appendix.

Clearly, any correct decomposition f = f1 − f2 will be output by the algo-
rithm. The problem is to make sure that the number of operations is not much
bigger than

√
#F :

– the correct H(h∗ f1) must not collide with too many other elements of L: in
the worst case, all elements of L might actually have the same hash H(h∗f1),
which would imply that any collision found in Step 4 already requires

√
#F

operations, and that there might be many collisions.
– the number m must never be too big, so that we can bound the number

of collisions in Step 4. This would require to analyze the distribution of
h ∗ f2 ∈ R/qR, which is non-trivial, because h and f2 are not independent.
Indeed, h is determined by (f, g).

We thus need to make heuristic assumptions, because H is deterministic and few
interesting results are known on the distribution of h ∗ f1 or h ∗ f2. And because
of the flipping bits issue, implementing the attack is not straightforward: this is
why the implementation of [29] restricted the attack to special no-flipping keys.
If we are lucky, both m and the number of collisions in L are polynomial, then
the total running time would be (log #F)

√
#F polynomial-time operations as

announced.
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We modify the attack to make it less heuristic and easier to implement. The
key idea is to randomize the algorithm by randomizing the hash function H: to
do so, we introduce locality sensitive hashing (LSH) on the discrete torus Znq ,
which prevents all the complications related to flipping bits.

3.2 LSH over a discrete torus

We start with the one-dimensional torus: the set Zq of integers modulo q. For
any u ∈ Zq, let σu : Zq → {0, 1} defined by σu(x) = 0 if and only if:

(x− u) mod q ≤ bq/2c − 1.

Thus, σu maps bq/2c “consecutive” elements (starting from u) of Zq into 0, and
the remaining q − bq/2c = dq/2e elements are mapped into 1. If q is a power of
two, σu(x) is simply the most significant bit of (x− u) mod q.

Lemma 1. Let a, b ∈ Zq where q ≥ 2. Let c be the smallest residue of b − a in
absolute value: c = mink∈Z |b − a − kq| ≤ bq/2c. Let u be chosen uniformly at
random from Zq. Then:

Pr
u

(σu(a) 6= σu(b)) =
2c

q
.

Proof. Without loss of generality, we may assume that c = b− a− kq for some
k ∈ Z, otherwise we swap a and b. Then we choose suitable residues: there exist
α ∈ {0, . . . , q − 1} and an integer β ≥ α such that c = β − α and modulo q,
β ≡ b and α ≡ a.

If we represent u by a residue in {0, . . . , q − 1} and look at the function σu
over the positive integers, it is 1 over {0, . . . , u−1}, then 0 over {u, u+1, . . . , u+
bq/2c − 1}, then 1 again over {u+ bq/2c, . . . , u+ q − 1}, and so on. This means
that σu(α) 6= σu(β) if and only if one of the indexes where σu changes is > α
and ≤ β, that is, α < u ≤ β or α < u + bq/2c ≤ β. Note that the two events
α < u ≤ β or α < u + bq/2c ≤ β are incompatible because β − α = c ≤ bq/2c.
And each of these two events has probability c/q, because β − α = c. ut

Corollary 1 Under the same assumptions, if c ∈ {0, 1}, then Pru(σu(a) =
σu(b)) ≥ 1− 2/q. Otherwise, c ≥ 2 and Pru(σu(a) = σu(b)) ≤ 1− 4/q.

Since 1− 2/q > 1− 4/q, σu defines a useful LSH over Zq, if we say that a and b
are close modulo q if and only if the smallest residue of a− b is in {0,±1}.

We deduce a family H(q, n) of hash functions over the discrete torus Znq .
To sample from H(q, n), we choose u1, . . . , un ∈ Zq independently and uni-
formly at random. Then we define H : Znq → {0, 1}n by H(x1, . . . , xn) =
(σu1

(x1), . . . , σun
(xn)). The following is a direct consequence of LSH over Zq:

Theorem 1. Let q ≥ 2. Let a and b ∈ Znq . Let ei = mink∈Z |bi − ai − kq| for
1 ≤ i ≤ n. Let H be chosen uniformly at random from H(q, n). Then:

Pr
H

(H(a) = H(b)) =

n∏
i=1

(1− 2ei
q

).
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Proof. H(x) is of the form (σu1
(x1), . . . , σun

(xn)) where the ui’s are chosen
independently and uniformly at random from Zq. Since the events σui

(ai) =
σui(bi) are independent for 1 ≤ i ≤ n, the result follows from Lemma 1. ut

Thus, the family H(n, q) defines the similarity measure:

σ(a, b) =

n∏
i=1

(1− 2ei
q

).

If ω is the Hamming weight of a− b in Znq , (i.e. the number of non-zero coeffi-
cients), then σ(a, b) ≤ (1−2/q)ω. If we further assume that each of the non-zero
coefficients of a− b is ≡ ±1 modulo q, then σ(a, b) = (1− 2/q)ω.

Th. 1 explains why [29, Lemma 1] and its proofs are incorrect: the “probabil-
ity” studied by the proof of [29, Lemma 1] is claimed to be (1−d/(nq))n ≈ e−d/q,
where g has exactly d coefficients equal to 1, and all other coefficients equal to
zero. But Th. 1 shows that this probability should actually be (1 − 2/q)d: see
the appendix for more details on [29, Lemma 1].

Note that the family H(q, n) has some uniformity property:

Lemma 2. Let H be in H(q, n). Let y ∈ {0, 1}n of Hamming weight k. The
number of preimages x ∈ Znq such that y = H(x) is (q/2)n if q is even, and

bq/2ckdq/2en−k = (q − 1)k(q + 1)n−k2−n if q is odd.

Proof. Indeed, for any u ∈ Zq, the coordinate function σu has bq/2c preimages
of 0, and q − bq/2c = dq/2e preimages of 1. ut

It follows from Lemma 2 that if a ∈ Znq and H ∈ H(q, n) are fixed, and b ∈ Znq
is chosen uniformly at random, the probability that H(a) = H(b) is always
extremely close to (q/2)n.
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3.3 Application to NTRU

Algorithm 1 Simplifying Odlyzko’s attack with LSH

Input: An NTRU public key (h, q), two sets F1 and F2 such that the corre-
sponding secret key f or one of its rotations belongs to {f1 − f2, (f1, f2) ∈
F1×F2}, and an efficient membership test for the set G containing the other
secret key g.

Output: A list of pairs (f1, f2) ∈ F1 ×F2 such that h ∗ (f1 − f2) ∈ G.
1: Select a random hash function H from the LSH family H(q, n) and let R =

Z[X]/(Xn − 1) be the NTRU ring.
2: Compute and sort the list L = {(f1, H(h∗f1)), f1 ∈ F1} where h∗f1 ∈ R/qR

so that collisions over H(h ∗ f1) can be detected in logarithmic time.
3: for f2 ∈ F2 do
4: Compute H(h ∗ f2) where h ∗ f2 ∈ R/qR.
5: for each collision (f1, H(h ∗ f1)) ∈ L such that H(h ∗ f1) = H(h ∗ f2) do
6: Return (f1, f2) if h ∗ (f1 − f2) ∈ G.
7: end for
8: end for

Theorem 1 implies the correctness of Alg. 1, which simplifies Odlyzko’s algo-
rithm using our discrete-torus LSH.

Theorem 2. Let (h, f, g, q) be an NTRU key such that f or one of its rotations
belongs to {f1 − f2, (f1, f2) ∈ F1 × F2}. Let ω be the number of non-zero coef-
ficients of g and assume that all these non-zero coefficients are ±1. Then, over
the choice of H, the probability that Alg. 1, given as input (h, q,F1,F2), outputs
at least one pair (f1, f2) such that h ∗ (f1 − f2) ∈ G is ≥ (1− 2/q)ω.

Proof. There exists (f1, f2) ∈ F1×F2 such that f or one of its rotations is equal
to f1 − f2. For such a pair, the probability (over the H chosen by Alg. 1) that
H(h ∗ f1) = H(h ∗ f2) is ≥ (1− 2/q)ω. If this event holds, the pair (f1, f2) will
be found in Step 5 of Alg. 1, and therefore be output. ut

For instance, for the old NTRU parameter set called ees251ep6 and studied
in [19], the lower bound (1− 2/q)ω is ≈ 28%: it thus suffices to run Alg. 1 four
times with different H to have a high probability of returning a solution. The fact
that this probability is non-negligible is actually not surprising. Asymptotically,
the NTRU parameters satisfy q = Θ(n) and ω ≤ n so (1− 2/q)ω ≥ Ω(1). Thus,
the probability in Th. 2 is lower-bounded by a constant, so a constant number
of executions of Alg. 1 is sufficient to have an overwhelming success probability.

It remains to analyze the running time of Alg. 1. This will require heuristics,
but significantly less problematic ones than in the original Odlyzko’s attack.
Consider the list L built by Alg. 1. We model this construction by the classic
balls into bins problem, as if we were placing #F1 balls into 2n bins derived
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from H. Then the complexity of Alg. 1 is O((#F1+m#F2) log(#F1)) poly-time
operations, where m is the maximal load, i.e. the maximal number of elements
in a bin. If #F1 ≤ 2n (which typically holds for NTRU parameters) and all the
H(h ∗ f1)’s were independent and uniformly distributed, then it is well-known
that with high probability, we would have m = O( n

logn ). In order for Alg. 1 to
be efficient, it is sufficient to assume that m is polynomial in n for a random H,
which is much weaker than m = O( n

logn ). Specifically, we can make the following

heuristic assumption: Let (f, g, h) be an NTRU key. If a torus-LSH H is chosen
uniformly at random, then with overwhelming probability, the maximal number
of elements in a bin is polynomial in n.

4 Permuted HNF

The Hermite normal form (HNF) of a full-rank integer lattice L ⊆ Zm is the
unique basis whose row matrix H = (hi,j)1≤i,j≤m is lower-triangular such that
all the diagonal coefficients are > 0 and all off-diagonal coefficients are ≥ 0
and strictly less than the diagonal coefficient of their column: in other words,
0 ≤ hi,j ≤ hj,j . It is well-known that the HNF of the NTRU lattice Λh, formed
by all (u, v) ∈ R2 such that v ∗ h ≡ u mod q is the following matrix:

H =



q 0 · · · 0 0 · · · · · · 0

0 q
. . .

...
...

...
...

. . .
. . . 0

...
...

0 · · · 0 q 0 · · · · · · 0
h0 h1 · · · hn−1 1 0 · · · 0

hn−1 h0 · · · hn−2 0 1
. . .

...
...

. . .
. . .

...
...
. . .

. . . 0
h1 · · · hn−1 h0 0 · · · 0 1


.

In this section, we introduce permutation variants of the HNF which will help
to improve the efficiency of the hybrid attack, through randomization.

Let σ be a permutation of {1, . . . ,m}. For any square m×m matrix M , we
denote by M[σ] the m ×m matrix obtained by permuting the n columns of M
using σ: if M = (mi,j) then the (i, j)-th entry of M[σ] is mi,σ(j). For any square
matrix H, we denote by Hσ the following permuted HNF matrix:

1. Let H ′ be the HNF of H[σ].
2. Let Hσ = H ′[σ−1]. It is a basis of the lattice spanned by the rows of H.

Notice that the matrix H has a very special structure: it can be split into
four square blocks, where the diagonal blocks are diagonal matrices (respectively
q times the identity matrix, and the identity matrix itself), and the non-zero
off-diagonal block is circulant. This structure is very important for the hybrid
attack.

However, we observe experimentally that for most permutations σ, the matrix
H also has a very special structure, sufficient to mount a hybrid attack. To give
more intuition on this phenomenon, we start with a particular case.
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4.1 The Reverse HNF Basis

In typical instantiations of NTRU, the secret polynomial g is such that g(1) ≡
0 (mod q), which prevents g and h from being invertible in the polynomial ring
mod q. However, it is known [22] that h is likely to be pseudo-invertible, which
means that there would exist a polynomial h̃ such that h ∗ h̃ ∗ t ≡ t in the ring
modulo q for any polynomial t such that t(1) ≡ 0 (mod q). In that case, we can
identify the permuted HNF corresponding to the reverse permutation:

Lemma 3. Let R = Z[X]/(Xn − 1) Let (f, g) ∈ R2 such that f is invertible
mod q and g(1) ≡ 0 (mod q). Let h ∈ R defined as h = g/f mod q. Let σ =
(2n 2n−1 · · · 1) be the reverse permutation over {1, . . . , 2n} and H be the HNF
of the NTRU lattice Λh. If h is pseudo-invertible with pseudo-inverse h̃, then Hσ

is the following lower anti-triangular matrix:

Hσ =



0 · · · · · · 0 0 · · · 0 0 q
...

...
... . .

.
0 q 0

...
... 0 . .

.
. .
.
. .
. ...

... 0 0 q 0 · · · 0
0 · · · · · · 0 1 1 · · · 1 1
0 · · · 0 q 0 0 · · · · · · 0
... . .

.
1 q − 1 a0,0 a0,1 . . . a0,n−1

0 . .
.

0 q − 1 a1,0 a1,1 . . . a1,n−1

0 1 . .
. ...

...
...

... . . .
...

1 0 · · · 0 q − 1 an−1,0 an−1,1 . . . an−1,n−1


,

where the polynomial ai(X) =
∑n−1
j=0 ai,jX

j satisfies ai(X) ≡ h̃(X)∗(Xi−Xn−1)
modulo q.

Proof. Since this matrix has determinant qn, which is equal to the co-volume of
Λh, it suffices to show that all row vectors belong to Λh. Clearly, the first n− 1
row vectors belong to Λh because they are q-vectors. The n-th row also belongs
to Λh because h(1) ≡ 0 mod q. For any t(X) = Xi − Xn−1, we have t(1) ≡ 0
mod q, so h ∗ h̃ ∗ (Xi −Xn−1) ≡ Xi −Xn−1 and therefore h ∗ ai ≡ Xi −Xn−1,
This proves that the last n row vectors belong to Λh. ut

This reverse HNF is different from the original HNF: the bottom half vectors
are no longer circular rotations of each other; and the n-th row vector is not a
q-vector. However, it does have the properties required to run a hybrid attack,
which we specify below.

4.2 The Shape of Permuted HNF

In order for a permuted HNF (b1, . . . , bm) to be used to launch a hybrid attack,
the following properties are required:

– The first r vectors must be q-vectors, that is q-multiples of canonical vectors
(all coordinates equal to zero, except one equal to 1), in no particular order.
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– The last k Gram-Schmidt vectors (b?m−k+1, . . . , b
?
m) must be canonical vec-

tors, in no particular order.

For the initial HNF H, one may take r = n and k = n, and for the reverse HNF,
one may take r = n−1 and k = n−1, but such large values are not necessary: a
hybrid attack only requires r and k not to be too small, such as a fraction of n.
Experimentally, we observe that for most permutations σ, the permuted HNF
Hσ satisfies the required properties for r and k nearly equal to n:

– If σ is such that σ({1, . . . , n}) = {1, . . . , n}, then we will have r = n and
k = n like in the initial HNF.

– If σ is such that σ({1, . . . , n}) = {n+ 1, . . . , 2n}, hen we will have r = n− 1
and k = n− 1 like in the reverse HNF

– For general σ, the smallest possible values of n− r and n− k are very small
in practice. As an illustration, Table 1 reports the experimental distribution
of n − r and n − k (for maximal r and k) for about hundred 1018-rank
lattices corresponding to the ntruhps2048509 parameter set, with σ chosen
uniformly at random. We do not know any precise theoretical justification for
this phenomenon: it would be interesting to have a model for the distribution
of n− r and n− k, in the spirit of [21].

Values 0 1 2 3 4 5 6 7 8 9 10 11 12
n− k 25% 31% 23% 9% 4% 3% 1% 1% 1% 0% 0% 0% 1%
n− r 25% 24% 25% 11% 4% 7 % 2% 1% 0% 0% 0% 0% 0%

Table 1. Distribution of n− r and n− k for ntruhps2048509 lattices of rank 1018.

However, we have a combinatorial explanation why n− r should be small, which
we omit. It is based on the fact that the first r vectors of Hσ are q-vectors if and
only if the sublattice M generated by the q-vectors (qZeσ(i))1≤i≤r is a primitive
sublattice of the NTRU lattice Λh.

5 Randomizing the Hybrid Attack with LSH and
Permuted HNF

In this section, we present our new hybrid attacks. We will not recall the original
hybrid attack [19], because previous presentations of the hybrid attack such
as [19, 15, 30] are fairly technical, relying heavily on matrices. Instead, we will
adopt a more algebraic point of view: we first describe the main underlying ideas,
then present the new hybrid attack.
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5.1 Enumerating Cosets

We are interested in finding a target vector t in some lattice L. To make the
problem meaningful, the target t must have a special property, such as being
short, or being very close to some given point in the subpace spanned by L.
Accordingly, we assume that it is possible to check efficiently if a given vector
is equal to the target t. In the hybrid attack, such a check is easy: the target is
any element of Sh, i.e.any rotation of the secret vector derived from the secret
polynomials f and g.

Many lattice algorithms, including the hybrid attack, but also the NewHope
Unique-SVP attack [2] analyzed in [1], as well as Ducas’ projected sieve [10], find
the target t by first searching its coset as follows. Let M be a pure sublattice
of a lattice L: M might be thought of as a random variable, such as the lattice
generated by the first d vectors of some “random” reduced basis of L. Then
the quotient group L/M is torsion-free, and can be viewed as a lattice, namely
the projection of L over span(M)⊥. This orthogonal projection implements the
canonical surjection π : L→ L/M defined by π(x) = x +M .

One benefit of viewing L/M as a quotient lattice rather than a projected
lattice is that if two lattice vectors u,v ∈ L have the same projection π(u) =
π(v), then we immediately see that u − v ∈ M , that is: u ≡ v modulo M . We
call lifting any function ` : L/M → L which can invert π, that is, π(`(y)) = y
for all y ∈ L/M . Thus, a lifting selects a residue in a coset x +M .

Identifying the Target Coset. Assume that we are able to confine the target
coset π(t): more precisely, we are given a subset T ⊆ L/M such that π(t) ∈ T .
We provide a few examples below:

– In the NewHope attack [2, 1] on Unique-SVP, the target is the unique short-
est vector. If the basis is sufficiently reduced, it is argued that t and one of
the last basis vectors are likely to have the same projection by π. Thus, the
subset T is small, formed by the projection of a few basis vectors.

– In Ducas’ projected sieve [10], T consists of all the short vectors of L/M
below a certain radius, and it is built by running a sieve algorithm on the
quotient lattice L/M . Here, the number of elements of T is exponential in
the rank of L/M .

– In [13, Sect. 5.2], Gama and Nguyen reported experimental results on NTRU
lattices in which T was formed by the shortest vectors of L/M , found by
applying strong reduction algorithms on L/M .

– In the final stage of the hybrid attack, T is a list of candidates for the target
coset, much smaller than the initial list.

Imagine that we could enumerate the set T : for each u ∈ T , we would like to
be able to decide if u = π(t), and in that case, recover t.

Lifting the Target Coset. Given u ∈ T , the simplest strategy is to select a
lifting ` and check if `(u) = t. By enumerating T , we will recover the target t
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if and only if `(π(t)) = t. The success of this method depends on the choice of
lifting `, as well as the exact properties of the target t.

The simplest lifting is the following lifting introduced historically by Her-
mite [14], which corresponds to LLL’s so-called size-reduction and Babai’s near-
est plane algorithm [5]:

Definition 1. Let B = (b1, . . . , bd) be a basis of a lattice M . For any lattice
L such that M is a pure sublattice of L, we denote by `LB the map: L/M → L
defined as: for any x ∈ L/M , `LB(x + M) is the unique point y ∈ L such that
π(y) = x and τ(y) ∈ P(B?), where π : L→ L/M is the canonical surjection, τ
is the orthogonal projection over span(M) and

P(B?) = {
d∑
i=1

xib
?
i ,−1/2 ≤ xi < 1/2}.

Thus, this map lifts cosets using Babai’s nearest plane algorithm: for any preim-
age z ∈ L of x by π, we apply Babai’s nearest plane algorithm to (−z, B) to
obtain z′ ∈M such that τ(z′ + z) ∈ P(B?), and we let y = z′ + z. This lifting
can be computed in polynomial time, but there are of course more expensive
liftings. In fact, any deterministic CVP approximation algorithm defines a lift-
ing. An extreme case would be the Voronoi lifting in which one replaces Babai’s
nearest plane algorithm with a CVP algorithm: this replaces P(B?) in the defi-
nition by the Voronoi cell of M . This lifting is expensive, but it is still cheaper
than solving CVP on the full lattice L, because M has lower rank.

Lifting Success Probability. Since many algorithms [10, 2, 1, 19] are based
on Hermite’s lifting `LB , it is important yet non-trivial to analyze its success
probability: we’d like to assess how likely is `LB(π(t)) = t, which is equivalent to
τ(t) ∈ P(B?).

For the final stage of the hybrid attack, this actually won’t be a problem at
all, because there, M is an orthogonal sublattice, so B is an orthogonal basis, and
if t is a shortest lattice vector, we will necessarily have `LB(π(t)) = t. However,
for completeness, we discuss the general case, and it will be useful for other parts
of the algorithm.

In the projected sieve [10], this issue is loosely analyzed: it uses the well-
known sufficient condition for τ(t) ∈ P(B?) that ‖τ(t)‖ ≤ min1≤i≤d ‖b?i ‖/2, and
it argues that the latter condition is very likely to be satisfied for the setting
of [10]. Since the sufficient condition is not believed to be tight, this is only a
rough analysis.

The articles [19, 15, 1, 31, 6] all require at some point to estimate the prob-
ability that τ(t) ∈ P(B?). They all make the usual assumption that span(M)
is a random subspace, so that τ(t) is a random projection of t. However, this
is not sufficient to estimate the probability. To make it possible, they further
assume that the coordinates of τ(t) along the axes of the parallelepiped P(B?)
are independent and have the same distribution: this distribution is assumed to
be Gaussian in [15, Assumption 5], whereas [1, Sect. 4.3] and [6, Discussion of
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Heuristic 4] (reused in [31]) use other distributions, such as the “square root” of
some Beta distribution. This is a very strong assumption, which does not hold
for a random unit vector. In particular, the independence assumption implies
that the probability can be expressed as a product of elementary probabilities:
these elementary probabilities can be derived from the CDF of the underlying
distribution, related to the error function erf for [19, 15] or the Beta function
for [1, 31, 6].

Unfortunately, we argue that such models are oversimplifying and may lead
to questionable estimates. To see this, consider the following concrete example:
imagine to simplify that P(B?) is the unit-volume box H = [−1/2, 1/2]n and
that τ(t) is actually a point chosen uniformly at random in the n-dimensional
ball Bn = Balln(

√
n/12) of radius

√
n/12. The ball Bn contains the unit-volume

ball whose radius is equivalent to
√

n
2πe . B has asymptotical volume 1√

nπ

√
πe
6

n

where
√

πe
6 ≈ 1.193. [3, Th. 3] proves that vol(Hn ∩ Bn) converges to 1/2 as n

grows to infinity, which implies that the probability that a random point in Hn

belongs to Bn converges to 1/2, and that the probability that a random point

in Bn belongs to Hn is equivalent to
√
nπ
2

√
6
πe

n

. The latter probability is also

the probability that a random point in the unit ball belongs to [−
√

3
n ,
√

3
n ]n

Yet, heuristic estimates like [19, 15, 31, 1] lead instead to a completely differ-
ent approximation. For instance, the methodology of [19, 15] would heuristically
model a random point of Balln(

√
n/12) as a point whose coordinates are inde-

pendent and normally distributed with expectation µ = 0 and standard deviation
σ =

√
1/12. This would estimate vol(H ∩ Balln(

√
n/12)) as:

vol

(
Balln

(√
n

12

))(
erf

(
1

2σ
√

2

))n
∼ (eπ/6)n√

πn

(
erf

(
1

2σ
√

2

))n
=

αn√
πn

,

where α ≈ 1.094 > 1. So we would think that the intersection volume grows
exponentially in n, though it actually converges to 1/2.

Instead, we suggest the following method: first, identify or model the distribu-
tion of ‖τ(t)‖, then, for the mean and or the most likely values R of ‖τ(t)‖, esti-
mate the probability that a vector chosen uniformly at random from the sphere of
radius R belongs to P(B?). Because the sphere is invariant by rotation, the prob-
ability remains the same if P(B?) is replaced by the box

∏n
i=1[−‖b?i ‖/2, ‖b?i ‖/2].

We will address the technical problem of estimating this probability in Sect. 6.

We now discuss the distribution of ‖τ(t)‖. Let u = (u1, . . . , un) be a point
chosen uniformly at random from the unit sphere Sn−1: we do so by letting ui =

xi/
√∑n

j=1 x
2
j , where x1, . . . , xn are independent, normally distributed random

variables. Denote the k-th truncation of u by τk(u) = (u1, . . . , uk) for 1 ≤ k ≤ n.
Note that

‖τk(u)‖2 =

∑k
i=1 x

2
i∑n

i=1 x
2
i

=

∑k
i=1 x

2
i∑k

i=1 x
2
i +

∑n
i=k+1 x

2
i

=
X

X + Y
,
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where X has distribution Gamma(k/2, 2) and Y has distribution Gamma((n−
k)/2, 2). Hence, ‖τk(u)‖2 has distribution Beta(k/2, (n− k)/2).

We deduce that if t ∈ Rn has norm R and span(M) is a random subspace of
dimension d, then ‖τ(t)‖2 follows some Beta distribution of expectation R2d/n.
We note that the general problem of computing Pr(X ∈ H) where ‖X‖2 follows
some Beta distribution, and H is a n-dimensional box has not been studied in
the literature. To the best of our knowledge, only the special case where the
Beta distribution corresponds to the uniform distribution over a ball has been
studied in [3].

However, we stress that the analysis must be adapted to each situation. For
instance, in the case of the hybrid attack, we will see that t is a short integer
vector such as a ternary or binary vector, and span(M) will be generated by
some randomly chosen canonical vectors. Then each coordinate of τt is a a small
integer, such as 0,±1. Then ‖τ(t)‖2 only takes finitely many values, all integral.
So a rigorous estimate would compute the probability distribution of the discrete
random variable ‖τ(t)‖2, and for any integer m, would also compute Pr(X ∈ H)
where X is chosen uniformly at random from the sphere of radius

√
m.

5.2 Close Points in a Torus

We started by assuming that we could directly enumerate the target coset π(t):
this is done in the final stage of the hybrid attack, but not in the first stage.
Instead, the first stage speeds up such an enumeration somewhat like in a sieve
algorithm. Namely, imagine that the list T can be expressed as a product: assume
that we know two subsets U, V ⊆ L/M such that there exists (u,v) ∈ U × V
such that π(t) = u− v. This equality can be characterized as follows:

Lemma 4. Let M be a pure sublattice of a lattice L, with π : L → L/M the
canonical surjection, and ` : L/M → L any lifting inverting π. Let (t,u,v) ∈
L× (L/M)2. Then π(t) = u− v if and only if:

t + `(v)− `(u) ∈M.

Proof. If π(t) = u−v, then π(t+`(v)) = π(`(u)) and therefore: t+`(v)−`(u) ∈
M. Reciprocally, if t + `(v) − `(u) ∈ M then π(t + `(v) − `(u)) = 0 and the
result follows by linearity of π and definition of the lifting. ut

Thus, if π(t) = u− v, then we have in the torus span(M)/M :

τ(t) + τ(`(v)) ≡ τ(`(u)). (1)

If the target t is a short vector, then its projection τ(t) is also short, which
means that τ(`(v)) and τ(`(u)) are close to each other in the torus span(M)/M .

Hence, the problem has been transformed into identifying close pairs: can we
find all (u,v) ∈ U × V such that τ(`(u)) and τ(`(v)) are close modulo M? We
just need to narrow down the initial list U×V enough to speed up the coset enu-
meration. We now discuss two ways to tackle this problem efficiently, depending
on the shape of the torus, namely whether the sublattice M is orthogonal or
not. The hybrid attack will combine both.
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5.3 Orthogonal Sublattices: Torus LSH

We assume here that the pure sublattice M is orthogonal, and that we know an
orthogonal basis (q1, . . . , qr) of M . In Sect. 3, we introduced a family of H(q, n)
of hash functions over the discrete Znq : this construction can easily be adapted
to the torus span(M)/M . In fact, if the qi’s were all q-vectors, we could simply
reuse it after a suitable change of coordinates. In the general case, we simply
replace the discrete torus by the continuous torus as follows. Let T = R/Z. For
any u ∈ T, let σ′u : T→ {0, 1} defined by σ′u(x) = 0 if and only if:

(x− u) mod 1 ≤ 1/2.

We have the continuous variant of Lemma 1:

Lemma 5. Let a, b ∈ T. Let c be the smallest residue of b− a in absolute value:
c = mink∈Z |b − a − k| ≤ 1/2. Let u be chosen uniformly at random from T.
Then:

Pr
u

(σ′u(a) 6= σ′u(b)) = 2c.

Similarly, we deduce a family H(q1, . . . , qr) of hash functions over span(M)/M
by: To sample from H(q1, . . . , qr), we choose u1, . . . , ur ∈ T independently
and uniformly at random. Then we define H : span(M)/M → {0, 1}n by
H(
∑r
i=1 xiqi) = (σu1

(x1), . . . , σur
(xr)) where x1, . . . , xr ∈ T. We obtain the

following analogue of Th. 1:

Theorem 3. Let M be a lattice having an orthogonal basis (q1, . . . , qr). Let a
and b ∈ span(M)/M : a =

∑r
i=1 aiqi and b =

∑r
i=1 biqi where ai, bi ∈ R/Z. Let

ei = mink∈Z |bi−ai−k| for 1 ≤ i ≤ r. If H is chosen uniformly at random from
H(q1, . . . , qr), then:

Pr
H

(H(a) = H(b)) =

r∏
i=1

(1− 2ei).

This suggests to solve (1) as follows: if τ(t) is short, then the probability (over
H) that H(τ(`(u))) = H(τ(`(v))) will be high, so we select a random hash
function H from H(q1, . . . , qr) and sort all H(τ(`(v))) for v ∈ V . Then one can
detect all collisions with H(τ(`(u))) for u ∈ U .

To conclude this section, we give elementary results on the distribution of the
hash function: we will not need these results, they are just given for intuition.

If a is fixed and b is chosen uniformly at random from b ∈ span(M)/M , then
the ei’s are independent and have uniform distribution over [0, 1/2]. Then each
Xi = ln(1− 2ei) satisfies the requirements of the central limit theorem:

Lemma 6. Let e be a random variable with uniform distribution over [0, 1/2).
Then the random variable X = ln(1− 2e) satisfies:

E(X) = −1, V (X) = 2, σ(X) = 1.

Proof. X has range (−∞, 0] and pdf ex. ut
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This allows us to prove the following:

Theorem 4. Let M be a lattice having an orthogonal basis (q1, . . . , qr). Let
a ∈ span(M)/M . Let b ∈ span(M)/M be chosen uniformly at random. Denote
by δ(a, b) = PrH(H(a) = H(b)) where H is chosen uniformly at random from
H(q1, . . . , qr). Then for any x ∈ R

lim
r→∞

Pr
b

(δ(a, b) ≤ ex
√
r−r) =

1 + erf((x+ 1)/
√

2)

2
.

Lemma 7. Let L be a lattice having an orthogonal basis (q1, . . . , qr). Let H
be in H(q1, . . . , qr). Let y ∈ {0, 1}n. The set of preimages x ∈ Tn such that
y = H(x) has measure vol(L)/2n.

5.4 Arbitrary Sublattices: the Admissibility Trick

It does not seem easy to build an efficient LSH over an arbitrary torus if M is
not orthogonal. However, if the vector t+ `(v)− `(u) of M is actually zero and t
is short, it will imply that `(v) and `(u) are close to each other, which suggests
the following definition:

Definition 2. We say that (t,u,v) ∈ L× (L/M)2 is `-admissible if and only if
π(t) = u− v and the following equation holds in L:

t + `(v) = `(u).

This is a nice case: if (t,u,v) is `-admissible, then we can retrieve the target t
as t = `(u)− `(u).

If π(t) = u−v, the second condition is in general unlikely to happen, because
L/M is infinite (as while as rank(M) < rank(L)). But if t is short and if we
choose Hermite’s lifting for `, it turns out to be possible. For this lifting, we
have the following criterion for admissibility:

Lemma 8. Let B be a basis of a pure sublattice M of L, and τ be the orthogonal
projection over span(M). Assume that (t,u,v) ∈ L×(L/M)2 is such that π(t) =
u− v. Then (t,u,v) is `LB-admissible if and only if

τ(t + `LB(v)) ∈ P(B?).

Proof. Let ` = `LB . If (t,u,v) is `-admissible, then: t + `(v) = `(u). Thus,
τ(t + `(v) = τ(`(u)) ∈ P(B?) by definition of `LB .

Reciprocally, if τ(t + `(v) ∈ P(B?), the fact that π(t + `(v)) = `(u) implies
that `(u) = t + `(v) by definition of `LB (unicity). ut

The condition τ(t + `LB(v)) ∈ P(B?) of Lemma 8 can be rewritten as τ(t) +
τ(`LB(v)) ∈ P(B?). Notice that by definition of `LB , we know that τ(`LB(v)) ∈
P(B?). This suggests the following model:
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Definition 3. The admissibility model states that with respect to admissibility,
τ(t) and τ(`LB(v)) behave like independent vectors chosen chosen uniformly at
random from respectively the sphere of radius R and P(B?).

As usual in cryptanalysis, we stress that this is only an idealized model which
we do not expect to hold formally (since t and v are related to each other):
experiments with the attack will check if the model is realistic. The second
assumption that a random-looking vector in P(B?) has uniform distribution is
usual in lattice cryptanalysis: it appeared in attacks [23] against lattice-based
signatures. We already discussed the first assumption in the overview (Sect. 5.1):
if τ(t) has varying norm, we may use the distribution of ‖τ(t)‖ to identify the
most likely norms.

In the admissibility model, the probability that (t,u,v) is `LB-admissible
can be identified with the probability that x + y ∈ P(B?) when x and y are
chosen uniformly at random from respectively the sphere of radius R and P(B?).
This is close to [6, Heuristic 4]. Because the sphere is invariant by rotation, the
latter probability is also the probability that a random vector in the sphere of
radius R belongs to H − e where H =

∏n
i=1[−‖b?i ‖/2, ‖b?i ‖/2] and e is chosen

uniformly at random from the box H. By scaling, we are thus interested in the
distribution of the probability that a random unit vector belongs to a random
box H ′: previous analyses [30, 19] implicitly attempted to heuristically estimate
the mean of this distribution, but we observe that this distribution has intuitively
(and experimentally) high variance, and it is therefore more useful to study the
distribution. Hence, the admissibility model allows us to reduce the problem of
approximating the probability of admissibility to approximating the probability
that a random unit vector belongs to a given box: we will address this question
in details in Sect. 6.

5.5 The Full Hybrid Attack

We now have all the ingredients to describe the hybrid attack, which is sum-
marized by Alg. 2. Let L be the NTRU lattice we wish to attack. We choose a
random permutation σ of {1, . . . , 2n} tailored to the distribution of the secret
key (f, g): we require that σ({1, . . . , n}) = {1, . . . , n} if f is sparser than g, or
σ({1, . . . , n}) = {n+1, . . . , 2n} if g is sparser than f . We compute the permuted
HNF Hσ = (c1, . . . , c2n) of L, which we can assume to have the following special
shape (see Sect. 4):

– The first r vectors c1, . . . , cr are q-vectors: they generate an orthogonal pure
sublattice Λ = L(c1, . . . , cr) isomorphic to qZr.

– The last k Gram-Schmidt vectors c?2n−k+1, . . . , c
?
2n are canonical vectors: If

we define the pure sublattice M = L(c1, . . . , cm) where m = 2n − k, this
means that the lattice L/M is isomorphic to the integer lattice Zk.

The third isomorphism theorem is essential to the hybrid attack:

L/M ' L/Λ

M/Λ
(2)
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Next, we prepare the meet-in-the-middle stage:

– We define two subsets U and V of L/M such that there exists (u,v) ∈ U×V
and a rotation t of the secret key such that π(t) = u − v, where π is the
canonical surjection L→ L/M .

– Compute a reduced basis B = (b1, . . . , bd) of the lattice M/Λ, aiming at
maximizing min1≤i≤d ‖b?i ‖. It is well-known that this amounts to reduce the
dual lattice of M/Λ.

By the isomorphism (2), we can view π(t),u,v as elements of (L/Λ)/(M/Λ).

The basis B defines a lifting `
L/Λ
B from L/M to L/Λ. If the triplet (t+Λ,u,v) ∈

L/Λ×(L/M)2 is `
L/Λ
B -admissible, then by definition the following equality holds

in L/Λ:

t + Λ = `
L/Λ
B (u)− `L/ΛB (v) (3)

But (3) means that we can express the target coset t+Λ as a difference of candi-

date cosets in respectively `
L/Λ
B (U) and `

L/Λ
B (V ). Because we know a basis of Λ

consisting only of q-vectors and because the projection of t over Λ is very short,
we can solve (3) by Torus LSH, as in Odlyzko’s attack (Sect. 3), as explained
in Sect. 5.3. More precisely, let ` be the lifting from L/Λ to L defined by the
q-vectors corresponding to Λ, and τ be the orthogonal projection over span(Λ):
τ simply takes the coordinates corresponding to the q-vectors defining Λ. We
let ψ : L/Λ → Zrq be the map defined by ψ(w) = (x1, . . . , xr) mod q where the
integers xi’s are defined by the decomposition of τ(`(w)) =

∑r
i=1 xieji over the

canonical vectors eji ’s defining span(Λ).
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Algorithm 2 The Randomized Hybrid Attack

Input: An NTRU public key (h, n, q), two positive integers r and k.
Output: A secret vector in Sh.
1: Select a random permutation σ of {1, . . . , 2n} optimized for the distribution

of the secret key (f, g).
2: Compute the permuted HNF Hσ = (c1, . . . , c2n), which defines the sublat-

tices Λ and M spanned by respectively its first r and 2n− k vectors.
3: Compute a random reduced basis B = (b1, . . . , bd) of the lattice M/Λ, aim-

ing at maximizing min1≤i≤d ‖b?i ‖ to increase the admissibility probability.

4: Define (possibly randomly) two subsets U and V of L/M such that there
exists (u,v) ∈ U × V and a target t ∈ Sh such that π(t) = u − v, where π
is the canonical surjection L→ L/M .

5: Define the map ψ : L/Λ→ Znq as in Sect. 5.5.
6: Select a random hash function H from the LSH family H(q, r) defined in

Sect 3.
7: Compute and sort the list L = {(u, H(ψ(`

L/Λ
B (u))),u ∈ U} so that collisions

over H(ψ(`
L/Λ
B (u))) can be detected in logarithmic time.

8: for v ∈ V do
9: Compute H(ψ(`

L/Λ
B (v))).

10: for each collision (u, H(ψ(`
L/Λ
B (u)))) ∈ L such that H(ψ(`

L/Λ
B (u))) =

H(ψ(`
L/Λ
B (v))) do

11: Lift `
L/Λ
B (u) − `L/ΛB (v) ∈ L/Λ as w ∈ L using the orthogonal basis of

Λ.
12: Return w if w ∈ Sh.
13: end for
14: end for

The correctness of the hybrid attack relies entirely on the admissibility con-
dition:

Theorem 5. Let (h, f, g, q, n) be an NTRU key defining a lattice L and a set
of short target lattice vectors Sh = {(xi ∗ g, xi ∗ f), 0 ≤ i ≤ n − 1} ⊆ L. If

U, V, Λ,B selected by Alg. 2 on input (h, q, n) are such that there exists an `
L/Λ
B -

admissible triplet (t,u,v) ∈ Sh × U × V , then, over the choice of H in Line 6,
the probability that Alg. 2 returns t is ≥ (1 − 2/q)ω where ω is the number of
non-zero coordinates of the orthogonal projection of t over span(Λ).

Proof. If (t,u,v) is `
L/Λ
B -admissible, then the proof is identical to Th. 2. The

statement follows from Th. 1. ut

Asymptotically, the NTRU parameters satisfy q = Θ(n) and ω ≤ r so (1 −
2/q)ω ≥ Ω(1). Thus, the probability in Th. 5 is lower-bounded by a constant: In
the attack parameters of NTRUHPS [7], we have q ≥ 2048 and r ≤ 150 so the
success probability (assuming admissibility) of one trial is ≥ 85%.
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If there is no admissible triplet, the attack won’t work, but we can rerun it
with a different choice of B, Λ and even U and V . Independently of the success
probability, it remains to analyze the running time of one run in Alg. 2. This will
require heuristics, but significantly less problematic than in the original hybrid
attack, similarly to Odlyzko’s attack. The crucial lines are:

– Line 3: lattice reduction. Several models have been proposed in the past
few years to approximately estimate the running time required by lattice
reduction for a given output quality: they are used by all the lattice-based
NIST finalists.

– Line 4: how to define the meet-in-the-middle sets U and V , depending on
the distribution of f and g. In [7], it is assumed that if η is the entropy of
π(t), then we can build U and V of size approximately 2η/2. We will discuss
the construction of U and V in Sect. 5.6.

– Line 10: like in Alg. 1, we model the construction of the list L built by Alg. 2
by the balls into bins problem, and we discuss the maximal load N , i.e. the
maximal number of elements in a bin. If #U ≤ 2r (which typically holds for

NTRU parameters) and all the hashes H(ψ(`
L/Λ
B (u)))’s were independent

and uniformly distributed, then it is well-known that with high probability,
we would have N = O( r

log r ). In order for Alg. 2 to be efficient, it is suffi-
cient to assume that N is polynomial in r for a random H, which is much
weaker than N = O( r

log r ). Specifically, we can make the following heuristic

assumption: Let (f, g, h) be an NTRU key. If a torus-LSH H is chosen uni-
formly at random, then with overwhelming probability, the maximal number
of elements in a bin is polynomial in r.

5.6 Optimization

The hybrid attack relies on many parameters, which makes finding the best
hybrid attack tricky. One key issue is to balance the cost of lattice reduction
(Line 3) with that of the meet-in-the-middle stage (Line 4).

We now discuss the generation of U and V . The coordinates of π(t) are
usually of two types:

Uniform Coordinates. Here, they are uniformly random in {0, 1} or ±1. In
that case, one can set the cardinal of both U and V to exactly the square root
of the total number of possibilities, by splitting the coordinates in two halves:
one half defining U , and the other half defining V .

Sparse coordinates. Here, they can be regrouped in such a way that the
coordinates are chosen uniformly at random with a prescribed number of 1 and
−1. (with either only 0 and 1, or with nearly the same number of 1 and −1). In
that setting, it is also possible to select U and V of size nearly the square root
of the total number of possibilities.. To do this, we apply Coppersmith’s trick
for meet-in-the-middle algorithms [28] to solve the low-hamming weight discrete
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logarithm, by choosing U and V randomly. Assume that the prescribed number
of non-zero coordinates is 2c to be chosen among 2b coordinates (we select even
parameters for simplicity). Then we select at random b coordinates among the
2b coordinates, and define U by considering all choices of c non-zero coordinates
among those b. The set V is obtained by doing the same thing over the remaining
b coordinates. The probability that a fixed combination is covered by our choice
of (U, V ) is

(
2c
c

)(
2b−2c
b−c

)
/
(
2b
b

)
. Once the non-zero coordinates have been guessed,

we assign all possible signs, and it can be checked that the number of elements
of U and V is close to the square root of exhaustive search.

There is a further optimisation for the case of sparse coordinates, which our
permuted HNF can boost. In the previous paragraph, we assumed we knew the
number of non-zero coordinates 2c, but that freedom over c can be exploited: the
smaller the c, the faster the exhaustive search. Consider a target vector (g, f).
In the initial hybrid attack [19], one was targetting the last k coordinates of
f , because f was sparser than g, and because the attack only used the HNF,
and not other bases. Howgrave-Graham [19]then computed experimentally for
all possible choices of k and 2c the probability that there exists at least one
target t ∈ Sh such that the last k coordinates of t contained exactly 2c non-zero
coordinates. However, when we take the last k coordinates, they are consecutive:
we observe that the number of non-zero coordinates in the last k coordinates
of the rotations are correlated. Intuitively and experimentally, to minimize the
number of non-zero coordinates, it is better to select k coordinates at random,
rather than k consecutive coordinates, to decrease the effects of correlations
between rotations. If f is sparser than g, we would choose these k coordinates
among the n coordinates of f , and if g is sparser than f (as in NTRU’s NIST
submission), we would pick them among the n coordinates of g.

6 Boxed Spheres

To analyze lattice enumeration with discrete pruning, Aono and Nguyen [3]
studied the following mathematical problem: approximate vol(B ∩H), where B
is the ball of center c ∈ Rn and radius R, and H is an arbitrary box, i.e. a
product of intervals

H = {(x1, . . . , xn) ∈ Rn s.t. αi ≤ xi ≤ βi},

where the αi’s and βi’s are given as input. They proposed several methods to
approximate the volume, but none was guaranteed to be efficient and provable
in high dimension. More precisely, they gave two Fourier-based series expansions
for vol(B ∩H) by sligthly generalizing the works of respectively Constales and
Tibken [25], and a heuristic practical method based on the Laplace transform
which works well in practice until at least dimension 150: however, it is unclear
how well would the method behave in much higher dimension, while some of the
NTRU parameters require a dimension over 800.

In this section, motivated by our analysis of the hybrid attack, we study a
slightly different problem, where the ball is replaced by a sphere: we are again
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given an arbitrary box H =
∏n
i=1[αi, βi], but this time, we want to approximate

the probability that a random point in the sphere S of center c ∈ Rn and
radius R belongs to H. There is a connection with the previous problem, as
Prx∈S(x ∈ H) ≤ Prx∈B(x ∈ H) = vol(B ∩H)/vol(B) where B is the ball with
the same center and radius as S. As in [3], without loss of generality, we may
assume that c = 0 after suitable translation, and R = 1 after suitable scaling,
which means that S is the unit sphere Sn−1 in Rn. In our setting, our boxes H
all include zero, that is αi ≤ 0 ≤ βi for all i, so we will restrict to this setting
to simplify notation, but we stress that our methods can be generalized with
suitable modifications.

6.1 Elementary Bounds

Let H =
∏n
i=1[αi, βi]. We want to bound the probability p(n,H) =

Prx∈Sn−1(x ∈ H). It is well-known that the uniform distribution over Sn−1
can be obtained by picking a vector y ∈ Rn with independent coordinates from
the normal distribution N , and returning the unit vector x = y/‖y‖. Here,
‖y‖2 follows a χ2 distribution of parameter n. This gives rise to the following
elementary bounds:

Lemma 9. Let H =
∏n
i=1[αi, βi] such that αiβi ≤ 0 for all i. Then for any

m ≥ 0:

p(n,H) ≥

(
n∏
i=1

Pr
y←N

(αim ≤ y ≤ βim)

)
− Pr

y←Nn
(‖y‖ < m),

and

p(n,H) ≤

(
n∏
i=1

Pr
y←N

(αim ≤ y ≤ βim)

)
+ Pr

y←Nn
(‖y‖ > m)

Proof. We pick at random y = (y1, . . . , yn)← Nn.
If ‖y‖ ≥ m and αim ≤ yi ≤ βim for all i, then αi ≤ yi

‖y‖ ≤ βi because

αiβi ≤ 0, which implies that y/‖y‖ ∈ H. The lower bound on p(n,H) follows
from the independence of the n events αim ≤ yi ≤ βim.

Assume that y/‖y‖ ∈ H with ‖y‖ ≤ m. Then αi ≤ yi/‖y‖ ≤ βi and αiβi ≤ 0
implies that αim ≤ yi ≤ βim. This gives the upper bound on p(n,H). ut

Despite the simplicity of Lemma 9, we can already derive non-trivial results:

Corollary 1. Let α > 0 and ε > 0 be fixed. Then:

– When n grows to ∞, Prx∈Sn−1
(x ∈ [− α√

n
, α√

n
]n) converges to 0 and

Prx∈Sn−1
(x ∈ [−α ln1/2+ε n√

n
, α ln1/2+ε n√

n
]n) converges to 1.

– Let 0 < β < 1, an =
√

2 lnn and bn = 1/an. If β + ε < 1 then for all

sufficiently large n: Prx∈Sn−1(x ∈ [±an−bn ln(− ln(β+ε))√
n−
√
n lnn

]n) ≥ β. If β > ε then

for all sufficiently large n: Prx∈Sn−1
(x ∈ [±an−bn ln(− ln(β−ε))√

n+
√
n lnn

]n) ≤ β
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Proof. Take m =
√
n+
√
n lnn. Classical tail bounds on the χ2 distribution

guarantee that Pry←Nn(‖y‖ > m) ≤ e−(ln
2 n)/3 for all sufficiently large n. But

Pry←N (|y| ≤ α√
n
m) = Pry←N (|y| ≤ α

√
1 + lnn√

n
) ≤ Pry←N (|y| ≤ 2α) for all

sufficiently large n. We conclude since Pry←N (|y| ≤ 2α) is a constant < 1.

For the second statement, take m =
√
n−
√
n lnn. Similarly, it is known that

Pry←Nn(‖y‖ < m) ≤ e−(ln2 n)/3. But Pry←N (|y| ≤ α ln1/2+ε n√
n

m) ≥ Pry←N (|y| ≤
α ln1/2+ε n

2 ) for all sufficiently large n. Tail bounds on the normal distribution

then guarantee that Pry←N (|y| ≤ α ln1/2+ε n
2 )n converges to 1, which concludes

the first item.
For the second statement, we use a classical result from extreme value theory:

the maximum Xn of n independent normal variables follows approximately a
Gumbel distribution. More precisely, for any real x, the probability that Xn ≤
an + xbn converges to e−e

−x

as n grows to ∞. To conclude, we choose x such
that e−e

−x

= β± ε and use the previous tail bounds for the χ2 distribution with
m =

√
n±
√
n lnn. ut

Note that asymptotically: an−bn ln(− ln(β+ε))√
n−
√
n lnn

∼ an−bn ln(− ln(β−ε))√
n+
√
n lnn

∼
√

2 lnn
n .

6.2 Algorithmic Bounds

Lemma 9 immediately gives rise to efficient algorithms to compute lower and
upper bounds on the probability p(n,H). It suffices to perform an exhaustive
search over m, using the range of the χ2 distribution: for instance, one selects
the best lower bound and the best upper bound among many values of m. To
compute the bound, it suffices to compute the cdf of the normal distribution, and
that of the χ2 distribution, which are readily available in sage and the boost

library. Depending on H, the bounds obtained may not be tight, especially when
p(n,H) is small, but they are rigorous and easy to compute. They can also be
helpful to guess when Monte Carlo sampling estimates are feasible.

7 Experiments and NTRU’s NIST submission

We implemented the new hybrid attack and performed various experiments to
check estimates. In this section, we report on these experiments, and discuss the
security estimates given in NTRU’s NIST submission with respect to the hybrid
attack.

7.1 Reproducing Howgrave-Graham’s experiments

In [19], Howgrave-Graham reported limited experimental results: he imple-
mented a toy example for N = 53. We experimented with the same toy exam-
ple, taking the same distribution. We checked the reliability of the admissibility
model, by comparing the actual probability with that of the model. For a given
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NTRU key, we identified all the triplets (t,u,v) such that t had the right number
of zeros in the last k coordinates (as in [19]). Then we generated a large number
of random LLL-reduced bases for M/Λ and for each triplet, we counted how
many bases made the triplet admissible. The average admissibility probability
was 0.01837 ≈ 2−5.7, which is a bit higher than reported in [19]: however, it
should be noted that the admissibility defined in [19] is slightly different from
ours, because [19] also took into account the q-vectors, while we separate the
LSH part from the admissibility part.

Under the admissibility model, we computed the idealized admissibility prob-
ability by repeatedly sampling over a sphere and a box: we obtained an average
probability of 2−5.3 but with a high standard deviation of the order of the expec-
tation. This means that the admissibility probability is not precise, and should
only be interpreted as a rough order of magnitude. This can intuitively be ex-
plained as follows: the admissibility probability involves a randomization over a
box, but it is well-known that in high dimension, most of the mass is located in
the boundaries of the box, so when the box gets moved randomly, it will change
significantly. We note that the experimental probability is consistent with the
admissibility model. We also observe that in accordance with the admissibility
model, the triplets for which the norm of τ(t) was shorter had experimentally
the highest probability of being admissible.

Table 2 compares the figures of [19, Table p164] with approximate admissi-
bility probability obtained by sampling, as well as the bounds of Sect. 6. Our
figures are consistent with [19].

N Row number ps Lower bound on ps ps by sampling Upper bound on ps
in [19, Table p164] from [19]

53 1 2−6.3 2−6.6 2−5.3 2−3.6

107 2 2−8.6 2−9.2

251 3 2−6.8 2−6.4

251 4 2−13 2−11.8

251 5 2−20.4 2−19.3 2−19.2 2−12

Table 2. Comparison of average admissibility probabilities

7.2 Security estimates of NTRU’s NIST submission

First, we discovered several inconsistencies between the NTRU documentation [7]
and what is actually implemented in the pari/gp scripts (included in the NTRU
submission package) used to evaluate the cost of various attacks and to generate
safe parameters.

In particular, the parameter s is defined in [7, Sect. 6.4.1] as s = (q/8 −
2)/(n− 1) with a correct numerical example, while the script actually computes
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s as s =
√

(q/8− 2)/n. This parameter s is needed to approximate the norm
of τ(t) for checking admissibility, as well as to estimate the cost of the meet-in-
the-middle-search.

The document [7] assumes that the meet-in-the-middle search is performed
over k coordinates of f , even though f is much more dense than g. However, the
script works as if the meet-in-the-middle search was performed over k coordinates
of g, as if the attack was able to replace f by g, which is not consistent with the
description of the attack: we are able to do that because we can use the reverse
HNF basis and other permuted HNF.

To illustrate the issues, we consider the ntruhps2048677 parameter set: [7,
Table 6] and the script identifies the best non-local hybrid attack as follows. After
some exhaustive search, the script outputs k = 217 and r = 676 − 550 = 126,
and estimates the cost of the MITM stage to be 2144, matching approximately
the cost of a SVP-oracle in blocksize 494. If we were performing an exhaustive
search over 217 ternary coordinates, it would cost 3217 so the cost of the MITM
stage should have been ≈

√
3217 ≈ 2172 � 2144. This proves that the script is

not consistent with [7]. Looking at the script, the announced 2144 is obtained by
estimating the entropy η of 217 coordinates of g, and return 2η/2. However, if
we target the coordinates of g, we can obtain much better figures thanks to our
permuted HNF, as explained in Sect. 5.6. We performed experiments to see how
good was the complexity 2144: if we select 218 coordinates at random among the
first n coordinates, there is an experimental probability ≥ 20% that at least one
of the n target vectors has exactly 64 non-zero coordinates (among the 218),
and a probability ≥ 50% that at least one of the n target vectors has at most
64 non-zero coordinates. By Sect. 5.6, we would find such a combination for an
MITM cost of 2126.7, nearly 160,000 times faster. Here, the figure 2126.7 does not
take into account the 20% probability: if we take it into account, then we can
obtain even better trade-offs by targetting 52 non-zero coordinates for an overall
MITM cost of 2125.4.

However, this does not mean that the whole attack can be sped up by the
same factor, since the script selects parameters to balance the cost of lattice
reduction with that of MITM: here, only MITM would be much faster, whereas
lattice reduction would remain as expensive. So we modified the NTRU scripts
to take into account our improved MITM search. The revised scripts output new
figures for the best hybrid attack, for a total cost of 2136, that is 8 bits less of
security.

However, we turned our attention to the admissibility probability which was
admittedly ignored in [7]. For again the initial best hybrid attack selected by
the script (that is, k = 217 and r = 676 − 550 = 126), our methods of Sect. 6
show that the admissibility probability is ≤ 10−14 ≈ 2−46, and possibly much
smaller since we obtain an average lower bound on the order of 3×10−21 ≈ 2−68.
This is because the condition on the last Gram-Schmidt norm of the reduced
basis B was not correctly identified in [7]: we need a bigger norm to increase the
admissibility probability.
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Hence, the hybrid attack cost estimates provided by NTRU’s scripts are not
reliable: there is a mixture of significant underestimates and overestimates, which
makes precise comparisons with other attacks very debatable. The security esti-
mates need to be revised, but the same rigour must be applied to the estimates
of other lattice attacks assessed by the script, such as the primal attack.
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and D. Stehlé. “CRYSTALS-Dilithium – Submission to round 2 of the
NIST post-quantum project”. Mar. 2019.



REFERENCES 31

[12] P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T.
Prest, T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang. “Falcon: Fast-
Fourier Lattice-based Compact Signatures over NTRU”. Mar. 2019.

[13] N. Gama and P. Q. Nguyen. “Predicting Lattice Reduction”. In: Proc. of
Eurocrypt ’08. LNCS. Springer - Verlag, 2008, pp. 31–51.

[14] C. Hermite. “Extraits de lettres de M. Hermite à M. Jacobi sur différents
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A Flaws in Analyses of Odlyzko’s Attack

A.1 The 2003 Analysis of Howgrave-Graham, Silverman and Whyte

The analysis of [18] is informal, and makes several implicit assumptions.

A.2 The 2016 Analysis of van Vredendaal

In 2016, van Vredendaal [29] tried to make the analysis of [18] more formal,
but we explain in this subsection that [29, Lemma 1]and its proof are actually
incorrect. [29, Lemma 1] claims that if f and g are randomly chosen of degree
n− 1 with d coefficients set to 1, and under the assumption that the public key
h is uniformly distributed over R, the probability that g will change the address
of −f2h is (1− d

nq )n ≈ e−d/q.
First, there is a typo in [29]: it should be the probability that g does not

change the address, otherwise the statement would not match the proof. Second,
we notice that the assumptions of the Lemma are inconsistent. The public key h
is not independent from f and g, it is actually determined by them, so it is not
meaningful to assume that h is uniformly distributed. Third, the proof of [29,
Lemma 1] actually assumes that −f2h is uniformly distributed over R, which
does not follow from the assumption on h, as f2 and h are not independent.

We now explain how one could try to correct [29, Lemma 1]. We know from
our own analysis that g will change a sign in −f2h if and only if there is a 1-
coefficient of g such that the corresponding coefficient in −f2h is equal to 0 or
q/2. So if we assume that −f2h is uniformly distributed over R, the probability
that a coefficient in −f2h is equal to 0 or q/2 is equal to 2/q. But there are
exactly d coefficients of g equal to 1, the rest being equal to 0. So if we further
assume that g is randomly chosen of degree n − 1 with d coefficients set to

http://dx.doi.org/10.1112/S1461157016000206
http://eprint.iacr.org/2016/733
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1, we get that the probability of g not changing any sign is (1 − 2/q)d, which
is independent of n. This already explains why [29, Lemma 1] was wrong: the
probability should be independent of n. However, our model is still debatable,
but less than in [29]: g and −f2h are actually not independent, since h depends
on g by definition.

The right way of avoiding these issues is to follow our methodology, by in-
troducing randomness in the hashing.
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