
Optimized Software Implementations of
CRYSTALS-Kyber, NTRU, and Saber Using
NEON-Based Special Instructions of ARMv8

Duc Tri Nguyen and Kris Gaj

Geogre Mason University, Fairfax, VA, 22030, USA
{dnguye69,kgaj}@gmu.edu

Abstract. This paper focuses on optimized constant-time software implementations
of three NIST PQC KEM Finalists, CRYSTALS-Kyber, NTRU, and Saber, targeting
ARMv8 microprocessor cores. All optimized implementations include explicit calls to
Advanced Single-Instruction Multiple-Data instructions (a.k.a. NEON instructions).
Benchmarking is performed using two platforms: 1) MacBook Air, based on an Apple
M1 System on Chip (SoC), including four high-performance ’Firestorm’ ARMv8
cores, running with the frequency of around 3.2 GHz, and 2) Raspberry Pi 4, single-
board computer, based on the Broadcom SoC, BCM2711, with four 1.5 GHz 64-bit
Cortex-A72 ARMv8 cores. In each case, only one core of the respective SoC is being
used for benchmarking. The obtained results demonstrate substantial speed-ups vs.
the best available implementations written in pure C. For the ’Firestorm’ core of
Apple M1, NEON implementations outperform pure C implementations in the case of
decapsulation by factors varying in the following ranges: 1.55-1.74 for Saber, 2.96-3.04
for Kyber, and 7.24-8.49 for NTRU, depending on an algorithm’s variant and security
level. For encapsulation, the corresponding ranges are 1.37-1.60 for Saber, 2.33-2.45
for Kyber, and 3.05-6.68 for NTRU. These uneven speed-ups of the three lattice-based
KEM finalists affect their rankings for optimized software implementations targeting
ARMv8.
Keywords: ARMv8 · NEON · Karatsuba · Toom-Cook · Number Theoretic
Transform · NTRU · Saber · Kyber · Latice · Post-Quantum Cryptography

1 Introduction
In July 2020, NIST announced the Round 3 finalists of the Post-Quantum Cryptography
Standardization process. The main selection criteria were security, key/ciphertext sizes,
and performance in software. CRYSTALS-Kyber, NTRU, and Saber are three lattice-based
finalists in the category of encryption/Key Encapsulation Mechanism (KEM).

There exist constant-time software implementations of all these algorithms on various
platforms, including Cortex-M4 (representing the ARMv7E-M instruction set architecture),
RISC-V, as well as various Intel and AMD processor cores. However, there is still a lack of
optimized software implementations for the ARMv8 architecture.

The popularity of ARM is undeniable, with billions of devices connected to the Internet1.
As a result, there is clearly a need to maintain secure communication among these devices
in the age of quantum computers. Without high-speed implementations, the deployment
and adoption of emerging PQC standards may be slowed down.

One of the most recent and popular versions of ARM is ARMv8 (a.k.a. ARMv8-
A). ARMv8 supports two instruction set architectures AArch64 (a.k.a. arm64) and

1https://www.tomshardware.com/news/arm-6-7-billion-chips-per-quarter
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AArch32 (a.k.a. armeabi). The associated instruction sets are referred to as A64 and
A32, respectively. AArch32 and A32 are compatible with an older version of ARM called
ARMv7-A. AArch64 and A64 support operations on 64-bit operands. The first core
compatible with ARMv8 and used in a consumer product was Apple A7, included in
iPhones 5S in 2013.

NEON is an alternative name for Advanced Single Instruction Multiple Data (ASIMD)
extension, mandatory since ARMv7. NEON includes additional instructions that can
perform arithmetic operations in parallel on multiple data streams. It also provides a
developer with 32 128-bit vector registers. Each register can store two 64-bit, four 32-bit,
eight 16-bit, or sixteen 8-bit integer data elements. NEON instructions can perform the
same arithmetic operation simultaneously on the corresponding elements of two 128-bit
registers and store the results in respective fields of a third register. Thus, an ideal speed-up
vs. traditional single-instruction single-data (SISD) ARM instructions varies between 2
(for 64-bit operands) and 16 (for 8-bit operands).

In today’s market, there is a wide range of ARMv8 processor supporting NEON. They
are developed by manufacturers such as Apple Inc., ARM Holdings, Cavium, Fujitsu,
Nvidia, Marvell, Qualcomm, and Samsung. They power the majority of smartphones and
tablets available on the market.

Apple M1 is an ARMv8-based system on a chip (SoC) designed by Apple Inc. for
multiple Apple devices, such as MacBook Air, MacBook Pro, Mac Mini, iMac, and iPad
Pro. The M1 has four high-performance ’Firestorm’ and four energy-efficient ’Icestorm’
ARMv8 cores. Each of them supports NEON. It also includes an Apple-designed eight-core
graphics processing unit (GPU) and a 16-core Neural Engine.

The ARM Cortex-A72 is a core implementing the ARMv8-A 64-bit instruction set. It
was designed by ARM Holdings’ Austin design center. This core is used in Raspberry Pi 4
- a small single-board computer developed in the United Kingdom by the Raspberry Pi
Foundation in association with Broadcom. The corresponding SoC is called BCM2711.
This SoC contains four Cortex-A72 cores.

In this work, we benchmark the performance of three Round 3 PQC finalists using the
’Firestorm’ core of Apple M1 (being a part of MacBook Air) and the Cortex-A72 core
(being a part of Raspberry Pi 4), as these platforms are widely available for benchmarking.
However, we expect that similar rankings of candidates can be achieved using other ARMv8
cores (a.k.a. microarchitectures of ARMv8).

In the case of benchmarking using Intel and AMD processors, it is commonly agreed that
only the results for optimized implementations should be taken into account. For crypto-
graphic algorithms, an optimized implementation targeting these processors almost always
takes advantage of the Advanced Vector Extensions 2 (a.k.a. Haswell New Instructions).
AVX2 was first supported by Intel with the Haswell processor, which shipped in 2013.
Most of the candidates in the NIST PQC standardization process contain such optimized
implementations as a part of their submission packages. In particular, CRYSTALS-Kyber,
NTRU, and Saber contain AVX2 implementations.

The same is not true for implementations targeting ARMv8 cores. Any benchmarking
results available before our work have been based on compiling implementations written
in pure C. Thus, the NEON instructions were not called explicitly by the programmers,
making these implementations quite far from optimal.

Our goal is to fill the gap between proper benchmarking on low-power embedded proces-
sors, such as Cortex-M4 and power-hungry x86-64 platforms (a.k.a. AMD64 platforms). To
do that, we have developed constant-time ARMv8 implementations of three lattice-based
KEM finalists: CRYSTALS-Kyber, NTRU, and Saber.

We have assumed the use of parameter sets supported by all candidates at the beginning
of Round 3. The differences among the implemented algorithms in terms of security,
decryption failure rate, and resistance to side-channel attacks are out of scope for this
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paper.
Contributions. Our work includes the first ARMv8 implementations of three lattice-
based PQC KEM finalists optimized using NEON instructions. Our source code is publicly
available at: https://github.com/GMUCERG/PQC_NEON

2 Previous Work

Initial work that applied NEON to cryptography was published in 2012 by Bernstein et
al. [1]. Subsequent work by Azarderakhsh et al. [2] showed tremendous speed-up in case of
RSA and ECC public key encryption.

The paper by Streit et al. [3] was the first work about the NEON-based ARMv8
implementation of New Hope Simple. This work, published prior to the PQC Competition,
proposed a "merged NTT levels" structure.

Scott [4] and Westerbaan [5] proposed lazy reduction as a part of their NTT implemen-
tation. Seiler [6] proposed an FFT trick, which has been widely adopted in the following
work. Lyubashevsky et al. [7] and Zhou et al. [8] proposed fast implementations of NTT,
and applied them to NTTRU and Kyber, respectively.

In the area of low-power implementations, most previous work targeted Cortex-M4 [9].
In particular, Botros et al. [10] and Alkim et al. [11] developed ARM Cortex-M4 imple-
mentations of Kyber. Karmakar et al. [12] reported results for Saber. Chung et al. [13]
proposed an NTT-based implementation for an NTT-unfriendly ring, targeting Cortex-M4
and AVX2. We adapted this method to our NTT-based implementation of Saber.

From the high-performance perspective, Gupta et al. [14] proposed the GPU implemen-
tation of Kyber; Roy et al. [15] developed 4× Saber by utilizing 256-bit AVX2 vectors.
Danba et al. [16] developed a high-speed implementation of NTRU using AVX2. Fi-
nally, Hoang et al. [17] implemented the fast NTT-function using ARMv8 Scalable Vector
Extension (SVE).

3 Background

In this section, we introduce cryptographic algorithms implemented in this paper: NTRU
(Section 3.1), Saber (Section 3.2), and Kyber (Section 3.3), followed by the Polynomial
Multiplication (Section 3.4), used in NTRU and Saber, and Kyber.

Polynomial
n q [, p]

1 3 5 1 3 5
Kyber xn + 1 256 3329
Saber xn + 1 256 213, 210

NTRU-HPS Φ1 = x− 1 677 821 − 211 212
−

NTRU-HRSS Φn = xn−1
x−1 701 - 213 -

Table 1: Parameters of Kyber, Saber, and NTRU

https://github.com/GMUCERG/PQC_NEON
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|pk| (B) |ct| − |pk| (B)
1 3 5 1 3 5

Saber 672 992 1312 ↑ 64 ↑ 96 ↑ 160
Kyber 800 1184 1568 ↓ 32 ↓ 96 0

NTRU-HPS 931 1230 − 0 0 −
NTRU-HRSS 1138 -

Table 2: Public key and Ciphertext size of Kyber, Saber, and NTRU

NTRU, Saber, and Kyber use variants of the Fujisaki-Okamoto (FO) transform [18]
to define the Chosen Ciphertext Attack (CCA)-secure KEMs based on the underlying
public-key encryption (PKE) schemes. Therefore, speeding up the implementation of PKE
also significantly speeds up the implementation of the entire KEM scheme.

The parameters of Kyber, Saber, and NTRU are summarized in Table 1. Saber uses
two power of two moduli, p and q, across all security levels. NTRU has different moduli
for each security level. ntru-hrss701 shares similar attributes with ntru-hps and has
parameters listed in the second line for security level 1.

The symbols ↑ and ↓ indicate the increase or decrease of the CCA-secure KEM ciphertext
(|ct|) size, as compared with the public-key size (|pk|) (both in bytes (B)).

3.1 NTRU

Algorithm 1: NTRU CPA Encryption
Input: m ∈ R2, pk = (h), r
Output: c

1 m′ ← Lift(m)
2 c← (r · h +m′) mod (q,Φ1Φn)

Algorithm 2: NTRU CPA Decryption
Input: c, sk = (f, fp,hq)
Output: r,m or fail

1 if c 6= 0 mod (q,Φ1) then
2 return fail
3 a← (c · f) mod (q,Φ1Φn)
4 m← (a · fp) mod (3,Φn)
5 m′ ← Lift(m)
6 r ← ((c−m′) · hq) mod (q,Φn)

The Round 3 submission of NTRU [19] is a merger of the specifications for ntru-hps
and ntru-hrss. The detailed algorithms for encryption and decryption are shown in
Algorithms 1 and 2. The NTRU KEM uses polynomial Φ1 = x− 1 for implicit rejection.
It rejects an invalid ciphertext and returns a pseudorandom key, avoiding the need for
re-encryption, which is required in Saber and Kyber.

The advantage of NTRU is fast Encapsulation (only 1 multiplication) but the downside
is the use of time-consuming inversions in key generation.
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3.2 Saber

Algorithm 3: Saber CPA Encryption
Input: m ∈ R2, pk = (seedA,b), r
Output: ct = (cm,b′)

1 A ∈ Rl×lq ← GenMatrix(seedA)
2 s′ ∈ Rlq ← SampleB(r)
3 b′ ∈ Rlp ← ((A ◦ s′ + h) mod q )� (εq − εp)
4 v′ ∈ Rp ← bT · (s′ mod p)
5 cm ∈ RT ← (v′ + h1 − 2εp−1m mod p)� (εp − εT )

Algorithm 4: Saber CPA Decryption
Input: ct = (cm,b′), sk = (s)
Output: m′

1 v ∈ Rp ← b′T · (s mod p)
2 m′ ∈ R2 ← ((v − 2εp−εT cm + h2) mod p)� (εp − 1)

Saber [19] relies on the hardness of the Module Learning With Rounding problem
(M-LWR). Similarly to NTRU, the Saber parameter p is a power of two. This feature
supports inexpensive reduction mod p. However, such parameter p prevents the best time
complexity multiplication algorithm O(n logn) to be applied directly. The same parameter
n is used across three security levels. Saber encryption and decryption are shown in
Algorithms 3 and 4. The detailed parameters of Saber are summarized in Table 1. Among
the three investigated algorithms, Saber has the smallest public keys and ciphertext sizes,
|pk| and |ct|, as shown in Table 2.

SampleB are samples from the binomial distribution. GenMatrix constructs matrix A
of the dimensions l × l from the 32-byte seedA, where l ∈ {2, 3, 4} for security levels 1, 3,
and 5 respectively. This is a common technique in M-LWR and M-LWE to save bandwidth.
The algorithms for GenMatrix and SampleB can be found in the Saber specification [19].

3.3 Kyber

Algorithm 5: Kyber CPA Encryption
Input: m ∈ R2, pk = (seedA, t̂), r
Output: c = (u, v)

1 nonce← 0;
2 Â

T
∈ Rk×kq ← GenMatrix(seedA, i, j) for i, j ∈ [0, . . . k − 1]

3 r ∈ Rkq ← SampleB(r, nonce++) for i ∈ [0, . . . k − 1]
4 e1 ∈ Rkq ← SampleB(r, nonce++) for i ∈ [0, . . . k − 1]
5 e2 ∈ Rq ← SampleB(r, nonce)
6 r̂← NT T (r)
7 u← NT T −1(Â

T
◦ r̂) + e1

8 v ← NT T −1(t̂T ∗ r̂) + e2 +m

Algorithm 6: Kyber CPA Decryption
Input: sk = (ŝ), c = (u, v)
Output: m

1 m← v −NT T −1(ŝT ∗ NT T (u))

The security of Kyber is based on the hardness of the learning with errors problem in
module lattices, so-called M-LWE. Similar to Saber and NTRU, the KEM construction is
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based on CPA public-key encryption scheme with a slightly tweaked FO transform [18].
Improving performance of public-key encryption helps speed up KEM as well. Kyber
public and private keys are assumed to be already in NTT domain. This feature clearly
differentiates Kyber from Saber and NTRU. The multiplication in the NTT domain has
the best time complexity O(n logn).

The algorithms for encryption and decryption are shown in Algorithms 5 and 6. The
GenMatrix operation generates the matrix Â of the dimensions k × k, where k ∈ {2, 3, 4}.
Additionally, GenMatrix enables parallel SHA-3 sampling for multiple rows and columns,
with the parameters seedA, i, and j. SampleB are samples from a binomial distribution,
similar to GenMatrix. Unlike Saber, SampleB and GenMatrix in Kyber enable parallel
computation. More details can be found in the Kyber specification [19].

3.4 Polynomial Multiplication

In this section, we introduce polynomial multiplication algorithms, arranged from the
worst to the best in terms of time complexity. The goal is to compute the product of two
polynomials in Equation 1 as fast as possible.

C(x) = A(x)×B(x) =
n−1∑
i=0

aix
i ×

n−1∑
i=0

bix
i (1)

Schoolbook Toom− Cook NTT

O(n2) O(n
log(2k−1)

log k ) O(n logn)

3.4.1 Schoolbook Multiplication

Schoolbook is the simplest form of multiplication. The algorithm consists of two loops
with the O(n) space and O(n2) time complexity, as shown in Equation 2.

C(x) =
2n−2∑
k=0

ckx
k =

n−1∑
i=0

n−1∑
j=0

aibjx
(i+j) (2)

3.4.2 Toom-Cook and Karatsuba

Toom-Cook and Karatsuba are multiplication algorithms that differ greatly in terms of
computational cost versus the most straightforward schoolbook method when the degree
n is large. Karatsuba [20] is a special case of Toom-Cook [21, 22] (Toom-k). Generally,
both algorithms consist of five steps: splitting, evaluation, point-wise multiplication,
interpolation, and recomposition. An overview of polynomial multiplication using Toom-k
is shown in Algorithm 7. Splitting and recomposition are often merged into evaluation
and interpolation, respectively.

Examples of these steps in Toom-4 are shown in Equations 3, 4, 5, and 6, respectively.
In the splitting step, Toom-k splits the polynomial A(x) of the degree n− 1 (containing n
coefficients) into k polynomials with the degree n/k − 1 and n/k coefficients each. These
polynomials become coefficients of another polynomial denoted as A(X ). Then, A(X ) is
evaluated for 2k− 1 different values of X = xn/k. Below, we split A(x) and evaluate A(X )
as an example.
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A(0)
A(1)
A(-1)
A( 1

2 )
A(- 1

2 )
A(2)
A(∞)


=



0 0 0 1
1 1 1 1
-1 1 -1 1
1
8

1
4

1
2 1

- 1
8

1
4 - 1

2 1
8 4 2 1
1 0 0 0


·


α3

α2

α1

α0

 (4)



C(0)
C(1)
C(-1)
C( 1

2 )
C(- 1

2 )
C(2)
C(∞)


=



A(0)
A(1)
A(-1)
A( 1

2 )
A(- 1

2 )
A(2)
A(∞)


·



B(0)
B(1)
B(-1)
B( 1

2 )
B(- 1

2 )
B(2)
B(∞)


(5)

A(x) = x
3n
4

n−1∑
i= 3n

4

aix
(i− 3n

4 ) + · · ·+ x
n
4

2n
4 −1∑
i= n

4

aix
(i−n

4 ) +
n
4−1∑
i=0

aix
i

= α3 · x
3n
4 + α2 · x

2n
4 + α1 · x

n
4 + α0

=⇒ A(X ) = α3 · X 3 + α2 · X 2 + α1 · X + α0, where X = x
n
4 . (3)

Toom-k evaluates A(X ) and B(X ) in at least 2k − 1 points [p0, p1, . . . p2k−2], starting
with two trivial points {0, ∞}, and extending them with {±1,± 1

2 ,±2, . . . } for the ease of
computations. Karatsuba, Toom-3, and Toom-4 evaluate in {0, 1,∞}, {0,±1,−2,∞} and
{0,±1,± 1

2 , 2,∞}, respectively.
The pointwise multiplication computes C(pi) = A(pi) ∗ B(pi) for all values of pi in

2k − 1 evaluation points. If the sizes of polynomials are small, then these multiplications
can be performed directly using the Schoolbook algorithm. Otherwise, additional layers of
Toom-k should be applied to further reduce the cost of multiplication.

The inverse operation for evaluation is interpolation. Given evaluation points C(pi)
for i ∈ [0, . . . 2k − 2], the optimal interpolation presented by Borato et al. [23] yields the
shortest inversion-sequence for up to Toom-5.

We adopt the following formulas for the Toom-4 interpolation, based on the thesis of F.
Mansouri [24], with slight modifications:

θ0

θ1

θ2

θ3

θ4

θ5

θ6


=



0 0 0 0 0 0 1
1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1
1

64
1

32
1

16
1
8

1
4

1
2 1

1
64 - 1

32
1

16 - 1
8

1
4 - 1

2 1
64 32 16 8 4 2 1
1 0 0 0 0 0 0



−1

·



C(0)
C(1)
C(-1)
C( 1

2 )
C(- 1

2 )
C(2)
C(∞)


where C(X ) =

6∑
i=0

θiX i (6)

In summary, the overview of a polynomial multiplication using Toom-k is shown in Al-
gorithm 7, where splitting and recomposition are merged into evaluation and interpolation.

Algorithm 7: Toom-k: Product of two polynomials A(x) and B(x)
Input: Two polynomials A(x) and B(x)
Output: C(x) = A(x)×B(x)

1 [A0(X ), . . .A2k−2(X )]← Evaluation of A(x)
2 [B0(X ), . . .B2k−2(X )]← Evaluation of B(x)
3 for i← 0 to 2k − 2 do
4 Ci(X ) = Ai(X ) ∗ Bi(X )
5 C(x)← Interpolation of [C0(X ), . . . C2k−2(X )]
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Toom-k has a complexity O(n
log(2k−1)

log k ). As a result, Toom-3 has a complexity of
O(n

log 5
log 3 )= O(nlog3 5) ≈ O(n1.46), and Toom-4 has a complexity of O(n

log 7
log 4 )= O(nlog4 7) ≈

O(n1.40).

3.4.3 Number Theoretic Transform

The Number Theoretic Transform (NTT) is a transformation used as a basis for a polyno-
mial multiplication algorithm with the time complexity of O(n logn) [25]. This algorithm
performs multiplication in the ring Rq = Zq[X]/(Xn + 1), where degree n is a power of
2. The modulus q ≡ 1 mod 2n for complete NTT, and q ≡ 1 mod n for incomplete NTT,
respectively. Multiplication algorithms based on NTT compute pointwise multiplication of
vectors with elements of degree 0 in the case of Saber, and of degree 1 in the case of Kyber.

Complete NT T is similar to traditional FFT but uses the root of unity in the discrete
field rather than in real numbers. NT T and NT T −1 are forward and inverse operations,
where NT T −1(NT T (f)) = f for all f ∈ Rq. Ci = Ai ∗Bi denote pointwise multiplication
for all i ∈ [0, . . . n − 1]. The algorithm used to multiply two polynomials is shown in
Equation 7.

C(x) = A(x)×B(x)
= NT T −1(C) = NT T −1(A ∗ B) = NT T −1(NT T (A) ∗ NT T (B)) (7)

In Incomplete NT T , the idea is to pre-process polynomial before converting it to the
NTT domain. In Kyber, the Incomplete NTT has q ≡ 1 mod n [8]. The two polynomials
A(x), B(x), and the result C(x) are split to polynomials with odd and even indices, as
shown in Equation 8. A, B, C and A, B, C indicate polynomials in the NTT domain and
time domain, respectively. An example shown in this section is Incomplete NT T used in
Kyber.

C(x) = A(x)×B(x) = (Aeven(x2) + x ·Aodd(x2))× (Beven(x2) + x ·Bodd(x2))
= (Aodd × (x2 ·Bodd) +Aeven ×Beven) + x · (Aeven ×Bodd +Aodd ×Beven)
= Ceven(x2) + x · Codd(x2) ∈ Zq[x]/(xn + 1). (8)

The pre-processed polynomials are converted to the NTT domain in Equation 9. In
Equation 8, we combine β(x2) = x2 · Bodd(x2), because β(x2) ∈ Zq[x]/(xn + 1), so
β(x2) = (−Bodd[n − 1], Bodd[0], Bodd[1], . . . Bodd[n − 2]). From Equation 8, we derive
Equations 10 and 11.

A(x) = Aeven(x2) + x ·Aodd(x2)
=⇒ A = NT T (A)

⇔ [Aeven,Aodd] = [NT T (Aeven),NT T (Aodd)] (9)
(8) =⇒ C = [Ceven, Codd]

where Ceven = Aodd ∗ NT T (x2 ·Bodd) +Aeven ∗ Beven
= Aodd ∗

−−→
Bodd +Aeven ∗ Beven with −−→

Bodd = NT T (β) (10)
and Codd = Aeven ∗ Bodd +Aodd ∗ Beven (11)

After Codd and Ceven are calculated, the inverse NT T of C is calculated as follows:

C(x) = NT T −1(C) = [NT T −1(Codd),NT T −1(Ceven)]
= Ceven(x2) + x · Codd(x2) (12)
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To some extent, Toom-Cook evaluates a certain number of points, while NT T evaluates
all available points and then computes the pointwise multiplication. The inverse NT T
operation has similar meaning to the interpolation in Toom-k. NT T suffers overhead in
pre-processing and post-processing for all-point evaluations. However, when polynomial
degree n is large enough, the computational cost of NT T is smaller than the cost of
Toom-k. The downside of NT T is the NTT friendly ring Rq.

The summary of polynomial multiplication using the incompleteNT T , a.k.a. 1PtNT T ,
is shown in Algorithm 8.

Algorithm 8: 1PtNT T : Product of A(x) and B(x) ∈ Zq[x]/(xn + 1)
Input: Two polynomials A(x) and B(x) in Zq[x]/(xn + 1)
Output: C(x) = A(x)×B(x)

1 [Aodd,Aeven]← NT T (A(x))
2 [Bodd,Beven,

−−→
Bodd]← NT T (B(x))

3 for i← 0 to n− 1 do
4 Ciodd = Aieven ∗ Biodd +Aiodd ∗ Bieven
5 Cieven = Aiodd ∗

−−→
Biodd +Aieven ∗ Bieven

6 C(x)← [NT T −1(Ceven),NT T −1(Codd)]

4 Toom-Cook in NTRU and Saber Implementations

Batch schoolbook multiplication. To compute multiplication in batch, using vector
registers of the NEON technology, we allocate 3 memory blocks for 2 inputs and 1 output
of each multiplication. Inputs and the corresponding output are transposed before and
after batch schoolbook, respectively. To make the transposition efficient, we only transpose
matrices of the size 8×8 and remember the location of each 8×8 block in batch-schoolbook.
A single 8 × 8 transpose operation requires at least 27 vector registers. Thus, memory
spills occur when the transpose matrix is of the size 16× 16. In our experiments, utilizing
batch schoolbook with a matrix of the size 16× 16 yields the smallest latency. Schoolbook
16× 16 has one spill, 17× 17 and 18× 18 cause 5 and 14 spills, respectively, and waste
additional registers to store a few coefficients.

Karatsuba (K2) is implemented in two versions, as original Karatsuba [20], and combined
two layers of Karatsuba (K2×K2), as shown in Algorithms 9 and 10. One-layer Karatsuba
converts one polynomial of the length of n coefficients to 3 polynomials of the length of
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n/2 coefficients. It introduces a zero bit-loss.
Algorithm 9: 2×Karasuba: Evaluate4(A) over points: {0, 1,∞}

Input: A ∈ Z[X] : A(X) =
∑3
i=0 αi ·Xi

Output: [A0(x), . . .A8(x)]← Evaluate4(A)
1 w0 = α0; w2 = α1; w1 = α0 + α1;
2 w6 = α2; w8 = α3; w7 = α2 + α3;
3 w3 = α0 + α2; w5 = α1 + α3; w4 = w3 + w5;
4 [A0(x), . . .A8(x)]← [w0, . . . , w8]

Algorithm 10: 2×Karatsuba: Interpolate4(A) over points: {0, 1,∞}
Input: [A0(x), . . .A8(x)] ∈ Z[X]
Output: A(x)← Interpolate4(A)

1 [α0, . . . α8]← [A0(x), . . .A8(x)]
2 w0 = α0; w6 = α8;
3 w1 = α1 − α0 − α2; w3 = α4 − α3 − α5; w5 = α7 − α6 − α8;
4 w3 = w3 − w1 − w5; w2 = α3 − α0 + (α2 − α6); w4 = α5 − α8 − (α2 − α6);
5 A(x)← Recomposition of [w0, . . . w6]

The Toom-3 (TC3) evaluation and interpolation adopts the optimal sequence from
Bodrato et al. [23,24] over points {0,±1,−2,∞}. To utilize 32 registers in ARM and reduce
memory load and store, the two evaluation layers of Toom-3 are combined (TC3×TC3), as
shown in Algorithm 11. Toom-3 converts one polynomial of the length n to five polynomials
of the length n/3 and introduces a 1-bit loss due to a 1-bit shift operation in interpolation.

Algorithm 11: 2×Toom-3: Evaluate9(A) over points: {0,±1,−2,∞}
Input: A ∈ Z[X]: A(X) =

∑8
i=0 αi ·Xi

Output: [A0(x), . . .A24(x)]← Evaluate9(A)
1 w0 = α0; w1 = (α0 + α2) + α1; w2 = (α0 + α2)− α1;

w3 = ((w2 + α2)� 1)− α0; w4 = α2;
2 e0 = (α0 + α6) + α3; e1 = (α1 + α7) + α4; e2 = (α2 + α8) + α5;

w05 = e0; w06 = (e0 + e2) + e1; w07 = (e0 + e2)− e1;
w08 = ((w07 + e2)� 1)− e0; w09 = e2;

3 e0 = (α0 + α6)− α3; e1 = (α1 + α7)− α4; e2 = (α2 + α8)− α5;
w10 = e0; w11 = (e2 + e0) + e1; w12 = (e2 + e0)− e1;
w13 = ((w12 + e2)� 1)− e0; w14 = e2;

4 e0 = ((2 · α6 − α3)� 1) + α0; e1 = ((2 · α7 − α4)� 1) + α1;
e2 = ((2 · α8 − α5)� 1) + α2; w15 = e0; w16 = (e2 + e0) + e1;
w17 = (e2 + e0)− e1; w18 = ((w17 + e2)� 1)− e0; w19 = e2;

5 w20 = α6; w21 = (α6 + α8) + α7; w22 = (α6 + α8)− α7;
w23 = ((w22 + α8)� 1)− α6; w24 = α8;

6 [A0(x), . . .A24(x)]← [w0, . . . w24]

Toom-4 (TC4) does evaluation and interpolation over points {0,±1,± 1
2 , 2,∞}. The

interpolation adopts the optimal inverse-sequence from [23,24], with the slight modification,
as shown in Algorithms 16 and 17. Toom-4 introduces a 3 bit-loss. A combined Toom-4
implementation was considered but not implemented due to a 6-bit loss and high complexity.

4.1 Implementation Strategy.
Each NEON vector register holds 128 bits. Each coefficient is a 16-bit integer. Hence, we
can pack at most 8 coefficients into 1 vector register. The base case of Toom-Cook is a
schoolbook multiplication, as shown in Algorithm 7, line 4. The pointwise multiplication
is implemented using either the Schoolbook method or additional Toom-k. We use the
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Figure 1: The Toom-Cook implementation strategy for Saber and NTRU-HPS821

notion (k1, k2, . . . ) for the Toom-k strategy at each layer. The Toom-k strategy for the
polynomial of length n follows four simple rules:

1. Utilize available registers by processing as many coefficients as possible.

2. Schoolbook size should be close to 16.

3. The number of polynomials in the batch Schoolbook should be close to a multiple of
8.

4. The Toom-k strategy must generate a minimum number of polynomials.

4.2 Saber
We follow the optimization strategy from Mera et al. [26]. We precompute evaluation and
lazy interpolation, which helps to reduce the number of evaluations and interpolations in
MatrixVectorMul from (2l2, l2) to (l2+l, l), where l is (2, 3, 4) for the security levels (1, 3, 5),
respectively. We also employ the Toom-k settings (k1, k2) = (4, 4) and (k1, k2, k3) = (4, 2, 2)
for both InnerProd and MatrixVectorMul. A graphical representation of a polynomial
multiplication in Saber is shown in Fig. 1. The ↑ and ↓ are evaluation and interpolation,
respectively.

4.3 NTRU
In NTRU, poly_Rq_mul and poly_S3_mul are polynomial multiplications in (q,Φ1Φn)
and (3,Φn) respectively, where Φ1 and Φn are defined in Table 2. Our poly_Rq_mul
multiplication supports (q,Φ1Φn). In addition, we implement poly_mod_3_Phi_n on top
of poly_Rq_mul to convert to (3,Φn). Thus, only the multiplication in (q,Φ1Φn) is imple-
mented.

NTRU-HPS821. According to Table 1, we have 4 available bits from a 16-bit type. The
optimal design that meets all rules is (k1, k2, k3, k4) = (2, 3, 3, 3), as shown in Fig. 1. Using
this setting, we compute 125 schoolbook multiplications of the size 16× 16 in each batch,
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Figure 2: Toom-Cook implementation strategy for NTRU-HRSS701 and NTRU-HPS677

with 3 batches in total.

NTRU-HRSS701. With 3 bits available, there is no option other than
(k1, k2, k3, k4) = (2, 3, 3, 3), similar to ntru-hps821. We apply the TC3× TC3 evaluation
to reduce the load and store operations, as shown in Fig. 2.

NTRU-HPS677. With 5 bits available, we could pad the polynomial length to 702
and reuse the ntru-hrss701 implementation. However, we improve the performance by
27% on Cortex-A72 by applying the new setting (k1, k2, k3, k4) = (3, 4, 2, 2), which utilizes
4 available bits. This requires us to pad the polynomial length to 720, as shown in Fig. 2.

5 NTT in Kyber and Saber Implementations
5.1 NTT
As mentioned in Section 3.4.3, the NTT implementation consists of two functions. Forward
NTT uses the Cooley-Tukey [25] and Inverse NTT uses the Gentleman-Sande [27]
algorithms. Hence, we define the zeroth, first, . . . seventh NTT level by the distance
of indices in power of 2. For example, in the first and second level, the distances are 21

and 22, respectively. For simplicity, we consider 32 consecutive coefficients, with indices
starting at 32i, for i ∈ [0, . . . 7], as a block. The index traversals of the first 5 levels are
shown in Fig. 3. Each color defines four consecutive indices.

NTT level 0 to 4. In the zeroth and first level, we utilize a single load and interleave
instruction vld4q_s16 to load data to 4 consecutive vector registers [r0, r1, r2, r3]. The
computation between registers [r0, r1], [r2, r3] and [r0, r2], [r1, r3] satisfy the distances 20

and 21 in the zeroth and first level respectively. This feature is shown using curly
brackets on the left and right of the second block in Fig. 3.

In the second and third level, we perform 4 × 4 matrix transpose on the left-half
and right-half of four vector registers, with the pair of registers [r0, r1], [r2, r3] and [r0, r2],
[r1, r3] satisfying the second and third level respectively. See the color changes in the
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Figure 3: Index traversals up to the fourth level of NTT

third block in Fig. 3.
In the fourth level, we perform 4 transpose instructions to arrange the left-half and

right-half of two vector pairs [r0, r1] and [r2, r3] to satisfy the distance 24. Then, we swap
the indices of two registers [r1, r2] by twisting the addition and subtraction in butterfly
output. Doing it converts the block to its original order, used originally in the memory.
See the memory block and the fourth block in Fig. 3.

NTT level 5 to level 6. In the fifth level, we create one more block of 32 coeffi-
cients and duplicate the steps from previous levels. We process 64 coefficients and utilize
8 vector registers [r0, . . . r3], [r4, . . . r7]. It is obvious that the vector pairs [ri, ri+4] for
i ∈ [0, . . . 3] satisfy the distance 25 in the butterfly. The sixth level is similar to the
fifth level. Two blocks are added and duplicate the process from the NTT levels 0 to 5.
Additionally, 128 coefficients are stored in 16 vector registers as 4 blocks, the operations
between vector pairs [ri, ri+8], for i ∈ [0, . . . 7], satisfy the distance 26.

NTT level 7 and n−1. The seventh level is treated as a separate loop. We unroll the
loop to process 128 coefficients with the distance 27. Additionally, the multiplication with
n−1 in Inverse NTT is precomputed with a constant multiplier at the last level, which
further saves multiplication instructions.

5.2 Range Analysis
The Kyber and Saber NTT use 16-bit signed integers. Thus, there are 15 bits for data and
1 sign bit. With 15 bits, we can store the maximum value of −215 ≤ β · q < 215 before
an overflow. In case of Kyber (β, q) = (9, 3329). In case of Saber, q = (7681, 10753) and
β = (4, 3), respectively.

Kyber. The optimal number of Barrett reductions in Inverse NTT is 72 points, as
shown in Westerbaan [5] and applied to the reference implementation. After Barrett
reduction has been changed from targeting 0 ≤ r < q to − q−1

2 ≤ r < q−1
2 , coefficients grow

by at most q instead of 2q in absolute value at the level 1. We can decrease the number of
reduction points further, from 72 to 64. The indices of 64 lazy reduction points in Kyber
can be seen in Table 3.

Level Indices Total
4 32→ 35, 96→ 99, 160→ 163, 224→ 227 16
5 0→ 7, 64→ 71, 128→ 135, 192→ 199 32
6 8→ 15, 136→ 143 16

Table 3: Barrett reduction over 64 points in Inverse NTT of Kyber
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Saber. In Twisted-NTT [6, 13], we can compute the first 3 levels without additional
reductions. We can apply range analysis and use Barrett reduction. Instead, we twist
constant multipliers to the ring of the form Zq[x]/(xn − 1) in the third level, which not
only reduces coefficients to the range −q ≤ r < q, but also reduces the number of modular
multiplications at subsequent levels. This approach is less efficient than regular NTT uses
Barrett reduction in neon, however the performance different is negligible due to small
β = 3.

5.3 Vectorizing modular reduction

In Algorithms 12 and 13, we show the implementations of the vectorized multiplication
modulo a 16-bit q and vectorized central Barrett reduction, respectively. Both implemen-
tations are expressed using NEON intrinsics. Neon intrinsics are function calls that the
compiler replaces with an appropriate Neon instruction or a sequence of Neon instructions.
Intrinsics provide almost as much control as writing assembly language, but leave the
allocation of registers to the compiler.

Inspired by Fast mulmods from [6,13], in Algorithm 12, we use four smull_s16 multiply
long and one mul_s16 multiply instructions. We use the unzip instructions to gather 16-bit
low and high half-products. Unlike AVX2, ARMv8 does not have an instruction similar to
vpmulhw. Therefore, dealing with 32-bit products is unavoidable. In Algorithm 12, lines
1 → 4 can be simplified with 2 AVX2 instructions vpmullw, vpmulhw. Similarly, lines
6→ 8 can be simplified with a single high-only half-product vpmulhw. The multiplication
by q−1 in line 5 can be incorporated into lines 1→ 2 to further save one multiplication.
In total, we use twice as many multiplication instructions as compared to the code for
AVX2 [13]. In the vectorized Barrett reduction, used in both Kyber and Saber, we use
three multiplication instructions – one additional multiplication as compared to AVX2, as
shown in Algorithm 13.

Algorithm 12: Vectorized multiplication modulo a 16-bit q
Input: B = (BL, BH), C = (CL, CH), R = 216

Output: A = B ∗ (CR) mod q
1 T0 ← smull_s16(BL, CL)
2 T1 ← smull_s16(BH , CH)
3 T2 ← uzp1_s16(T0, T1)
4 T3 ← uzp2_s16(T0, T1)
5 (AL, AH)← mul_s16(T2, q

−1)
6 T1 ← smull_s16(AL, q)
7 T2 ← smull_s16(AH , q)
8 T0 ← uzp2_s16(T1, T2)
9 A← T3 − T0

Algorithm 13: Vectorized central Barrett reduction
Input: B = (BL, BH), constant V = (VL, VH), Kyber:(i, n) = (9, 10)
Output: A = B mod q and −q/2 ≤ A < q/2

1 T0 ← smull_s16(BL, VL)
2 T1 ← smull_s16(BH , VH)
3 T0 ← uzp2_s16(T0, T1)
4 T1 ← vadd_n_s16(T0, 1� i)
5 T1 ← shr_n_s16(T1, n)
6 A← mls_s16(B, T1, q)
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6 Methodology
ARMv8 NEON intrinsics are used for ease of implementation and to take advantage
of the compiler optimizers. These optimizers have built-in knowledge on how to best
translate intrinsics to assembly language instructions. As a result, some optimizations
may be available to reduce the number of NEON instructions. The optimizer can expand
the intrinsic and align the buffers, schedule pipeline, or make adjustments depending on
the platform architecture2. In our implementation, we always keep vector register usage
under 32 and examine assembly language code obtained during the development process.
We acknowledge the compiler spills to memory and hide load/store latency in favor of
pipelining multiple multiplication instructions.

Benchmarking setup.
Our benchmarking setup for ARMv8 implementations included MacBook Air with Apple

M1 SoC and Raspberry Pi 4 with Cortex-A72 @ 1.5 GHz. For AVX2 implementations,
we used a PC based on Intel Core i7-8750H @ 4.1 GHz. Additionally, in Tables 4 and
9, we report benchmarking results for the newest x86-64 chip in supercop-20210125 [28],
namely AMD EPYC 7742 @ 2.25 GHz. There is no official clock frequency documentation
for Apple M1 CPU. However, independent benchmarks strongly indicate that the clock
frequency of 3.2 GHz is used3.

We use PAPI [29] library to count cycles on Cortex-A72. In Apple M1, we rewrite the
work from Dougall Johnson4 to perform cycles count5.

In terms of compiler, we used clang 12.0 (default version) for Apple M1 and clang
11.1 (the most recent stable version) for Cortex-A72 and Core i7-8750H. All benchmarks
were conducted with the compiler settings -O3 -mtune=native -fomit-frame-pointer.
We let the compiler to do its best to vectorize pure C implementations, denoted as
ref to fairly compare them with our neon implementations. Thus, we did not employ
-fno-tree-vectorize option.

The number of executions on ARMv8 Cortex-A72 and Intel i7-8750H was 1, 000, 000.
On Apple M1, it was 10, 000, 000 to force the benchmarking process to run on the high-
performance ’Firestorm’ core. The benchmarking results are in kilocycles (kc).

7 Results
Speed-up vs. pure C implementations.

In Table 4, we summarize benchmarking results, expressed in clock cycles for a) C only
implementation (denoted as ref), running on Apple M1; b) NEON implementation (denoted
as neon), running on Apple M1; and c) AVX2 implementation (denoted as avx2), running
on AMD EPYC 7742. The column ref/neon represents the speed-up of the NEON imple-
mentation over the C only implementation. The column avx2/neon represents the speed-up
of the NEON implementation running on Apple M1 vs. the avx2 implementation running
on AMD EPYC 7742. assumingthatbothprocessorsoperatewiththesameclockfrequency.

The speed-up of the NEON implementation over the C only implementation is the
smallest for Saber and the largest for NTRU. For encapsulation, the speed-ups vary in
the ranges 1.37-1.60 for Saber, 2.33-2.45 for Kyber, and 3.05-3.24 for NTRU-HPS. For
NTRU-HRSS, it reaches 6.68. For decapsulation, the corresponding speed-ups vary in
the ranges 1.55-1.74 for Saber, 2.96-3.04 for Kyber, and 7.89-8.49 for NTRU-HPS. For
NTRU-HRSS, it reaches 7.24.

2https://godbolt.org/z/5qefG5
3https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested
4https://github.com/dougallj
5https://github.com/GMUCERG/PQC_NEON/blob/main/neon/kyber/m1cycles.c

https://godbolt.org/z/5qefG5
https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested
https://github.com/dougallj
https://github.com/GMUCERG/PQC_NEON/blob/main/neon/kyber/m1cycles.c
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Algorithm ref (kc) neon (kc) avx2 (kc) ref/neon avx2/neon
E D E D E D E D E D

lightsaber 50.9 54.9 37.2 35.3 41.9 42.2 1.37 1.55 1.13 1.19
kyber512 75.7 89.5 32.6 29.4 28.4 22.6 2.33 3.04 0.87 0.77
ntru-hps677 183.1 430.4 60.1 54.6 26.0 45.7 3.05 7.89 0.43 0.84
ntru-hrss701 152.4 439.9 22.8 60.8 20.4 47.7 6.68 7.24 0.90 0.78
saber 90.4 96.2 59.9 58.0 70.9 70.7 1.51 1.66 1.18 1.22
kyber768 119.8 137.8 49.2 45.7 43.4 35.2 2.43 3.02 0.88 0.77
ntru-hps821 245.3 586.5 75.7 69.0 29.9 57.3 3.24 8.49 0.39 0.83
firesaber 140.9 150.8 87.9 86.7 103.3 103.7 1.60 1.74 1.18 1.20
kyber1024 175.4 198.4 71.6 67.1 63.0 53.1 2.45 2.96 0.88 0.79

Table 4: Execution time of Encapsulation and Decapsulation for three security levels.
ref and neon: results for Apple M1. avx2: results for AMD EPYC 7742. kc-kilocycles.

The only algorithm for which the NEON implementation on Apple M1 takes fewer
clock cycles than the AVX2 implementation on AMD EPYC 7742 is Saber. The speed-up
of Apple M1 over this AMD processor varies between 1.13 and 1.22, depending on the
operation and the security level.
Rankings. Based on Table 5, the ranking of C only implementations on Apple M1
is consistently 1. Saber, 2. Kyber, 3. NTRU (with the exception that NTRU is not
represented at level 5). The advantage of Saber over Kyber is relatively small (by a factor of
1.24-1.49 for encapsulation and 1.31-1.63 for decapsulation). This advantage decreases for
higher security levels. The advantage of Saber over NTRU is more substantial, 2.71-3.00 for
encapsulation and 6.10-8.01 for decapsulation. This advantage decreases between security
levels 1 and 3.

For NEON implementations, running on Apple M1, the rankings change substantially,
as shown in Table 6. For encapsulation at level 1, the ranking becomes 1. NTRU, 2.
Kyber, 3. Saber, i.e., reversed compared to pure C implementations. For all levels and
both major operations, Kyber and Saber swap places. At the same time, the differences
between Kyber and Saber do not exceed 29% and slightly increase for higher security
levels.

The rankings for pure C implementations do not change when a high-speed core of
Apple M1 is replaced by the Cortex-A72 core, as shown in Table 7. Additionally, the
differences between Saber and Kyber become even smaller.

The ranking of NEON implementations also does not change between Apple M1 and
Cortex-A72, as shown in Table 8. However, at level 1, NTRU is almost in tie with Kyber.
For all other cases, the advantage of Kyber increases as compared to the rankings for
Apple M1.

Finally, in Table 9, the rankings for AVX2 implementations running on the AMD
EPYC 7742 core are presented. For encapsulation, at levels 1 and 3, the rankings are
1. NTRU, 2. Kyber, 3. Saber. Compared to the NEON implementations, the primary
difference is the no. 1 position of NTRU at level 3. For decapsulation, the rankings are
identical at all three security levels. The advantage of Kyber over Saber is higher than for
NEON implementations.
NTT implementation. In Table 10, the speed-ups of neon vs. ref are reported for the
forward and inverse NTT of Kyber, running on Cortex-A72. These speed-ups are 5.77
and 7.54 for NTT and inverse NTT, respectively. Both speed-ups are substantially higher
than for the entire implementation of Kyber, as reported in Table 4. There is no official
NTT-based reference implementation of Saber released yet. Therefore, we analyzed cycle
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Rank C Apple M1
E kc ↑ D kc ↑

1 lightsaber 50.9 1.00 lightsaber 54.9 1.00
2 kyber512 75.7 1.49 kyber512 89.5 1.63
3 ntru-hrss701 152.4 3.00 ntru-hps677 430.4 7.84
4 ntru-hps677 183.1 3.60 ntru-hrss701 439.9 8.01
1 saber 90.4 1.00 saber 96.2 1.00
2 kyber768 119.8 1.32 kyber768 137.8 1.43
3 ntru-hps821 245.3 2.71 ntru-hps821 586.5 6.10
1 firesaber 140.9 1.00 firesaber 150.8 1.00
2 kyber1024 175.4 1.24 kyber1024 198.4 1.31

Table 5: Ranking of investigated candidates for C only implementations in terms of
Encapsulation and Decapsulation on Apple M1 processor. The baseline is the smallest
number of cycles for each security level.

Rank neon Apple M1
E kc ↑ D kc ↑

1 ntru-hrss701 22.7 1.00 kyber512 29.4 1.00
2 kyber512 32.5 1.43 lightsaber 35.3 1.20
3 lightsaber 37.2 1.63 ntru-hps677 54.5 1.85
4 ntru-hps677 60.1 2.64 ntru-hrss701 60.7 2.06
1 kyber768 49.2 1.00 kyber768 45.7 1.00
2 saber 59.9 1.22 saber 58.0 1.27
3 ntru-hps821 75.7 1.54 ntru-hps821 69.0 1.51
1 kyber1024 71.6 1.00 kyber1024 67.1 1.00
2 firesaber 87.9 1.23 firesaber 86.7 1.29

Table 6: Ranking of investigated candidates for NEON implementations in terms of
Encapsulation and Decapsulation on Apple M1 processor. The baseline is the smallest
number of cycles for each security level.

Rank C Cortex-A72
E kc ↑ D kc ↑

1 lightsaber 154.8 1.00 lightsaber 165.9 1.00
2 kyber512 184.5 1.19 kyber512 223.4 1.35
3 ntru-hrss701 458.7 2.96 ntru-hps677 1,346.7 8.12
4 ntru-hps677 570.8 3.69 ntru-hrss701 1,353.4 8.16
1 saber 273.4 1.00 saber 294.5 1.00
2 kyber768 298.9 1.09 kyber768 349.1 1.19
3 ntru-hps821 748.1 2.74 ntru-hps821 1,830.0 6.21
1 firesaber 427.3 1.00 firesaber 460.9 1.00
2 kyber1024 440.6 1.03 kyber1024 503.8 1.09

Table 7: Ranking of investigated candidates for C only implementations in terms of
Encapsulation and Decapsulation on Cortex-A72 core. The baseline is the smallest
number of cycles for each security level.
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Rank neon Cortex-A72
E kc ↑ D kc ↑

1 ntru-hrss701 93.6 1.00 kyber512 94.1 1.00
2 kyber512 95.3 1.02 lightsaber 131.2 1.39
3 lightsaber 130.1 1.39 ntru-hps677 205.8 2.19
4 ntru-hps677 181.7 1.94 ntru-hrss701 262.9 2.79
1 kyber768 151.0 1.00 kyber768 149.8 1.00
2 saber 213.6 1.41 saber 215.4 1.44
3 ntru-hps821 232.6 1.54 ntru-hps821 274.5 1.83
1 kyber1024 223.8 1.00 kyber1024 220.7 1.00
2 firesaber 321.6 1.44 firesaber 329.6 1.49

Table 8: Ranking of investigated candidates for NEON implementations in terms of
Encapsulation and Decapsulation on Cortex-A72 core. The baseline is the smallest
number of cycles for each security level.

Rank avx2 AMD EPYC 7742
E kc ↑ D kc ↑

1 ntru-hrss701 20.4 1.00 kyber512 22.5 1.00
2 ntru-hps677 25.9 1.27 lightsaber 42.1 1.87
3 kyber512 28.3 1.39 ntru-hps677 45.7 2.03
4 lightsaber 41.9 2.05 ntru-hrss701 47.6 2.11
1 ntru-hps821 29.9 1.00 kyber768 35.2 1.00
2 kyber768 43.4 1.45 saber 57.3 1.63
3 saber 70.9 2.37 ntru-hps821 70.7 2.01
1 kyber1024 63.0 1.00 kyber1024 53.1 1.00
2 firesaber 103.3 1.64 firesaber 103.7 1.95

Table 9: Ranking of investigated candidates for AVX2 implementations in terms of
Encapsulation and Decapsulation on AMD EPYC 7742 processor. The baseline is the
smallest number of cycles for each security level.
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Cortex-A72 ref neon ref/neon
Apple M1 NTT NTT−1 NTT NTT−1 NTT NTT−1 Levels

Cortex-A72
saber - - 1,991 1,893 - - 0→ 7
kyber 8,500 12,533 1,473 1,661 5.8 7.5 1→ 7

Apple M1
saber - - 539 531 - - 0→ 7
kyber 3,211 5,118 413 428 7.8 12.0 1→ 7

Table 10: Cycle counts of the NEON-based NTT implementation on Cortex-A72 and
Apple M1

Cortex-A72 Level 1 (kilocycles) Level 3 (kilocycles)
1500 MHz ref neon ref/neon ref neon ref/neon

Level 1: ntru-hrss701 | ntru-hps677, Level 3: ntru-hps821
poly_Rq_mul 426.8 70.1| 55.0 6.09 | 7.78 583.9 83.5 6.99
poly_S3_mul 432.8 72.2| 56.1 5.99 | 7.76 588.7 83.1 7.08

Saber: Toom-Cook | NTT
InnerProd 27.7 18.1| 22.5 1.53 | 1.23 41.4 25.0| 31.5 1.64 | 1.31
MatrixVectorMul 55.2 40.2| 37.0 1.37 | 1.49 125.7 81.0| 71.3 1.55 | 1.76

Kyber
VectorVectorMul 44.4 7.1 6.3 59.7 9.9 6.1
MatrixVectorMul 68.1 10.7 6.4 117.5 19.3 6.1

Table 11: Cycle counts for the implementations of polynomial multiplication in NTRU,
Saber, and Kyber measured in kilocycles – neon vs. ref

counts in the forward and inverse NTT transform for our NEON-based implementation
only without comparing it with any reference implementation.

NTT and Toom-Cook multiplication. In Table 11, cycle counts for the implementa-
tions of polynomial multiplication in NTRU, Saber, and Kyber are reported. ntru-hrss701
and ntru-hps677 share the implementation of the polynomial multiplication in the ref
implementation. In the neon implementation of poly_Rq_mul, the ntru-hps677 takes
55.0 kilocycles, which corresponds to the speed-up of 7.78 over ref, as compared to
6.09 for ntru-hrss701. In the case of Saber, the two numbers for neon and ref/neon
represent Toom-Cook and NTT-based implementations, respectively. The Toom-Cook
implementation of InnerProd shows better speed across security levels 1, 3, and 5. In
contrast, for MatrixVectorMul, the NTT-based implementation outperforms Toom-k
implementation for all security levels. When Saber uses NTT as a replacement for the
Toom-Cook implementation on Cortex-A72 and Apple M1, performance gains in encap-
sulation are (−1%,+2%,+5%) and (−15%,−13%,−14%). For decapsulation, they are
(−4%,−2%,+2%) and (−21%,−18%,−19%), respectively. In most cases, these gains are
negative. Overall, they do not warrant replacing the use of the Toom-Cook algorithm by
an algorithm based on NTT.

In Table 12, we summarize results for key generation executed on Cortex-A72 and
Apple M1. The NTRU key generation was not implemented as it requires inversion. As
a result, it is both time-consuming to implement and has a much longer execution time.
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By using neon instructions, the key generation for Kyber is sped up, as compared to the
reference implementation, by a factor in the range 2.03–2.15 for Cortex-A72 and 2.58–2.91
for Apple M1. For Saber, the speed-ups are more moderate in the ranges 1.13–1.29 and
1.41–1.55, respectively.

Keygen Cortex-A72(kc) Apple M1(kc)
ref neon ref/neon ref neon ref/neon

lightsaber 134.9 119.5 1.13 44.0 31.2 1.41
kyber512 136.7 67.4 2.03 59.3 23.0 2.58
saber 237.3 192.9 1.23 74.4 51.3 1.45
kyber768 237.7 110.7 2.15 104.9 36.3 2.89
firesaber 370.5 286.6 1.29 119.2 77.0 1.55
kyber1024 371.9 176.2 2.11 162.9 55.9 2.91

Table 12: Key generation time for Saber and Kyber over three security levels measured
in kilocycles (kc) - Cortex-A72 vs. Apple M1

8 Conclusions
The rankings of lattice-based PQC KEM finalists in terms of speed in software are
substantially different for C only implementations and implementations sped-up using
SIMD instructions of ARMv8 and Intel processors. At the same time, these rankings
are similar for NEON implementations and AVX2 implementations. The biggest changes
are the lower positions of ntru-hps677 and ntru-hps821 for NEON implementations.
Based on the results obtained to date, the optimal algorithms for implementing polynomial
multiplication in ARMv8 using NEON instructions are NTT for CRYSTALS-Kyber and
Toom-Cook for NTRU and Saber.
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A NEON vs. AVX2
Our benchmarks show that in Saber, NTT performs better in avx2 than in the neon
implementation, as shown in Table 14. We believe that the gap is caused by the lack of
an instruction of ARMv8 equivalent to vmulhw. In the case of Kyber, we consistently
achieve ref/neon ratio greater than 9.0 in VectorVectorMul NTT−1(t̂ ∗ NTT (r)) and
MatrixVectorMul NTT−1(Â ∗NTT (r)), as shown in Table 11.

In Table 6, neon and avx2 implementations of Kyber are the fastest in decapsulation
across all security levels. In the neon implementation of Kyber, the leftover bottleneck is
SHAKE128/256. Although we implemented a 2×KeccakF1600 permutation function that
utilizes 128-bit vector registers, the performance gain is only 25%. We expect that the
speed-up will be greater when there is hardware support for SHA-3. In the avx2/neon
comparison, the neon implementations of MatrixVectorMul, VectorVectorMul, and NTT
have the performance at the levels of 25%→ 27% of the performance of avx2 (see Table 15).
However, for the entire encapsulation and decapsulation, these differences are significantly
smaller (see Table 4).

In the case of Saber, we selected the Toom-Cook implementation approach for ref,
neon, and avx2. The neon consistently outperforms avx2. Please note that the ref
implementations of Saber and NTRU employ similar Toom-k settings as the neon and
avx2 implementations. In addition, the neon Toom-k multiplications in InnerProd,
MatrixVectorMul perform better than the NTT implementations, as shown in Table 14.

The performance of neon for ntru-hps677 and ntru-hps821 are very close to the
performance of avx2. Additionally, when compared to the ref implementation, the
decapsulation speed-up of neon is consistently greater than 7.

NTRU (cycles) ref neon avx2 ref/neon avx2/neon
677-poly_Rq_mul 134,965 11,571 5,848 11.66 0.51
677-poly_S3_mul 137,657 11,857 6,426 11.61 0.54
701-poly_Rq_mul 133,765 15,580 5,902 8.59 0.38
701-poly_S3_mul 136,514 15,975 6,159 8.55 0.39
821-poly_Rq_mul 186,136 17,148 8,744 10.85 0.51
821-poly_S3_mul 189,189 17,538 8,685 10.79 0.50

Table 13: The NTRU multiplication benchmark on Apple M1 vs. Core i7-8750H
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Saber (cycles) ref neon avx2 ref/neon avx2/neon
poly_ntt 539 161 0.30
poly_invntt_tomont 519 145 0.28
InnerProd-1 8,006 3,184 4,248 2.51 1.33
InnerProd-3 11,825 4,345 6,253 2.72 1.44
InnerProd-5 16,064 5,318 8,446 3.02 1.59
InnerProd-NTT-1 6,117 1,796 0.29
InnerProd-NTT-3 8,470 2,475 0.29
InnerProd-NTT-5 10,839 3,171 0.29
MatrixVectorMul-1 16,002 6,640 7,556 2.41 1.14
MatrixVectorMul-3 35,499 14,029 15,014 2.53 1.07
MatrixVectorMul-5 64,343 21,591 25,412 2.98 1.18
MatrixVectorMul-NTT-1 10,077 2,976 0.30
MatrixVectorMul-NTT-3 18,931 5,575 0.29
MatrixVectorMul-NTT-5 30,393 9,018 0.30

Table 14: SABER multiplication benchmark on Apple M1 vs Core i7-8750H AVX2.

Kyber (cycles) ref neon avx2 ref/neon avx2/neon
poly_ntt 3,211 413 125 7.77 0.30
poly_invntt_tomont 5,118 428 131 11.96 0.31
VectorVectorMul-1 17,319 1,858 493 9.32 0.27
VectorVectorMul-3 23,317 2,545 658 9.16 0.26
VectorVectorMul-5 29,632 3,271 841 9.06 0.26
MatrixVectorMul-1 26,830 2,809 770 9.55 0.27
MatrixVectorMul-3 46,454 4,910 1,247 9.46 0.25
MatrixVectorMul-5 70,084 7,651 1,908 9.16 0.25

Table 15: The Kyber multiplication benchmark on Apple M1 vs. Core i7-8750H AVX2

Input Length Output Length 2× ref neon 2×ref/neon
32 1,664 15,079 11,620 1.30
32 3,744 33,249 26,251 1.27
32 6,656 57,504 45,658 1.26

Table 16: SHAKE128 performance with dual-lane 2×KeccakF1600 neon vs. 2×ref,
benchmark on Apple M1.
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B Toom-Cook algorithms
B.1 Toom-3

Algorithm 14: Toom-3: Evaluate3(A) over points: {0,±1,−2,∞}
Input: A ∈ Z[X] : A(X) =

∑2
i=0 αi ·Xi

Output: [A0(x), . . .A4(x)]← Evaluate3(A)
1 w0 = α0; w1 = (α0 + α2) + α1; w2 = (α0 + α2)− α1;
2 w3 = ((w2 + α2)� 1)− α0; w4 = α2;
3 [A0(x), . . .A4(x)]← [w0, . . . w4]

Algorithm 15: Toom-3: Interpolate3(A) over points: {0,±1,−2,∞}
Input: [A0(x), . . .A4(x)] ∈ Z[X]
Output: A(x)← Interpolate3(A)

1 [α0, . . . α4]← [A0(x), . . .A4(x)]
2 e1 = (α1 − α2)� 1; e2 = α2 − α0; e3 = (α3 − α1)/3;
3 w0 = α0; w4 = α4; w2 = e2 + e1 − α4;
4 w3 = (e2 − e3)� 1 + (α4 � 1); w1 = e1 − w3;
5 A(x)← Recomposition of [w0, . . . w4]

B.2 Toom-4

Algorithm 16: Toom-4: Evaluate4(A) over points: {0,±1,± 1
2 , 2,∞}

Input: A ∈ Z[X] : A(X) =
∑3
i=0 αi ·Xi

Output: [A0(x), . . .A6(x)]← Evaluate4(A)
1 w0 = α0; e0 = α0 + α2; e1 = α1 + α3; w1 = e0 + e1; w2 = e0 − e1;
2 e0 = (4 · α0 + α2)� 1; e1 = 4 · α1 + α3; w3 = e0 + e1; w4 = e0 − e1;
3 w5 = (α3 � 3) + (α2 � 2) + (α1 � 1) + α0; w6 = α3;
4 [A0(x), . . .A6(x)]← [w0, . . . w6]

Algorithm 17: Toom-4: Interpolate4(A) over points: {0,±1,± 1
2 , 2,∞}

Input: [A0(x), . . .A6(x)] ∈ Z[X]
Output: A(x)← Interpolate4(A)

1 [w0, . . . w6]← [A0(x), . . .A6(x)]
2 w5 += w3; w4 += w3; w4 �= 1; w2 += w1; w2 �= 1;
3 w3 −= w4; w1 −= w2; w5 −= w2 · 65; w2 −= w6; w2 −= w0;
4 w5 += w2 · 45; w4 −= w6; w4 �= 2; w3 �= 1;
5 w5 −= w3 � 2; w3 −= w1; w3 /= 3; w4 −= w0 � 4;
6 w4 −= w2 � 2; w4 /= 3; w2 += w4; w5 �= 1; w5 /= 15;
7 w1 −= w5; w1 −= w3; w1 /= 3; w3 += 5 · w1 w5 −= w1;
8 A(x)← Recomposition of [w0,−w1, w2, w3,−w4, w5, w6]
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