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Abstract. The HFE cryptosystem is one of the best known multivariate
schemes. Especially in the area of digital signatures, the HFEv- variant
offers short signatures and high performance. Recently, an instance of
the HFEv- signature scheme called GeMSS was elected as one of the
alternative candidates for signature schemes in the third round of the
NIST Post Quantum Crypto (PQC) Standardization Project. In this
paper, we propose a new key recovery attack on the HFEv- signature
scheme. Our attack shows that both the Minus and the Vinegar modifi-
cation do not enhance the security of the basic HFE scheme significantly.
This shows that it is very difficult to build a secure and efficient signature
scheme on the basis of HFE. In particular, we use our attack to show
that the proposed parameters of the GeMSS scheme are not as secure as
claimed.
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1 Introduction

Cryptographic techniques such as encryption and digital signatures are an indis-
pensable part of modern communication systems. However, the currently used
schemes RSA and ECDSA become insecure as soon as large quantum computers
arrive. Due to recent progress in the development of such computers, there is
an urgent need for alternatives to these classical schemes which are resistant
against attacks with quantum computers. These are known as post quantum
cryptosystems [5].

One of the main candidates for such schemes are multivariate public key
cryptosystems [14]. Especially in the area of digital signatures, there exist many
promising multivariate schemes. In fact, the multivariate signature scheme Rainbow
is among the three signature schemes in the third round of the NIST standardization
process of post quantum cryptosystems [7]. Another multivariate signature scheme,
GeMMS, is one of the alternative candidates. GeMMS is a special instance of
the well known HFEv- signature scheme, which was first proposed by Patarin
et al. in [24]. The principle idea of HFEv- is to combine the Minus and the
Vinegar modifications with the HFE cryptosystem of [23]. Since the resulting
multivariate quadratic system contains more variables than equations, HFEv-
can only be used for digital signatures.



There exist many attack methods on HFEv-, such as the direct attack [8][25],
the distinguishing attack [12], the differential attack [6], and the MinRank attack
[12]. The most studied attack against HFEv- is the MinRank attack, which
was first proposed by Kipnis and Shamir [21]. Later, many variants of this
technique have been proposed to increase its efficiency [3, 1]. The complexity
of the MinRank attack on HFEv- with minors modeling [3] is given as

O
((

n+ d+ a+ v + 1

d+ a+ v + 1

)ω)
,

where n is the degree of the field extension, d = dlogq(D)e, where D is the degree
bound on the HFE central polynomial, a is the number of Minus equations, v is
the number of Vinegar variables and 2 < ω ≤ 3 is the linear algebra constant.

In this paper, we present an improved MinRank type key recovery attack on
the HFEv- signature scheme. The complexity of our new attack on HFEv- with
minors modeling is

O
((

n+ d+ v + 1

d+ 1

)ω)
.

This implies that the Minus modification does not enhance the security of HFE
type cryptosystems, while the Vinegar modification increases the complexity
of our attack only by a polynomial factor. This shows that the currently used
techniques are insufficient to transform HFE into a secure signature scheme. In
particular, we use our attack to show that the parameters of GeMSS which were
submitted to the NIST Post Quantum Crypto Standardization Project are not
as secure as claimed.

2 The HFEv- Signature Scheme

Let N be the set of positive integers, n, v,D, a ∈ N, q be a prime number, and Fq
be a finite field with q elements. Let µ(X) ∈ Fq[X] be an irreducible polynomial
of degree n. We define a degree n-extension field of Fq by Fqn = Fq[X]/µ(X).
Let φ : Fqn → Fnq be an isomorphism between the field Fqn and the vector space
Fnq defined by

φ(a0 + a1X + . . .+ an−1X
n−1) = (a0, a1, . . . , an−1).

Private Key Generation. Randomly generate the central map of HFEv- as

F(X,x1, . . . , xv) =
∑

i, j ∈ N
qi + qj ≤ D

αijX
qi+qj+

∑
i ∈ N
qi ≤ D

βi(x1, . . . , xv)X
qi+γ(x1, . . . , xv),

where αi,j ∈ Fqn , βi : Fvq → Fqn are linear maps and γ : Fvq → Fqn is a quadratic
map in the Vinegar variables x1, x2, . . . , xv. Therefore, F is a map from Fqn×Fvq
to Fqn , To hide the structure of F in the public key, one randomly generates two
affine transformations T : Fnq → Fn−aq and S : Fn+vq → Fn+vq of maximal rank.
The private key consists of the three maps T , F and S.
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Public Key Generation. Let ψ : Fn+vq → Fqn × Fvq be given as ψ = φ−1 × idv,
where φ : Fqn 7→ Fnq is the isomorphism defined above and idv is the identity map

over Fvq . From the special structure of F , we know that F = φ◦F◦ψ : Fn+vq → Fnq
is a quadratic multivariate map. The public key map is

P = T ◦ φ ◦ F ◦ ψ ◦ S : Fn+vq → Fn−aq .

Signature Generation. Let y = (y1, y2, . . . , yn−a) ∈ Fn−aq be a message to be
signed. The process of signature generation works as follows:

1. Compute a pre-image y ∈ Fnq of y under the affine transformation T : Fnq →
Fn−aq and lift it to the extension field, obtaining Y ∈ Fqn .

2. Choose random values for the Vinegar variables (x1, . . . , xv) ∈ Fvq and substitute
them into the central map F to obtain a new map FV (X) : Fqn → Fqn .

3. Find a solution to the equation FV (X) = Y using Berlekamps algorithm.
If the equation has no solution, go to step 2, and randomly choose another
vector (x1, . . . , xv) ∈ Fvq until we can find a solution. Let Ỹ ∈ Fqn be one

of the solutions and set φ(Ỹ ) = (ỹ1, · · · , ỹn) ∈ Fnq . Append the Vinegar
variables of step 2 to it, obtaining ŷ = (ỹ1, · · · , ỹn, x1, · · · , xv) ∈ Fn+vq .

4. Compute z = S−1(ŷ). Then z ∈ Fn+vq is the signature of y .

Signature Verification. To check if z ∈ Fn+vq is indeed a valid signature of the
document y ∈ Fn−a, the receiver simply computes P(z). If P(z) = y holds, the
signature is accepted, otherwise it is rejected.

Efficiency. The most costly step during the signature generation of HFEv- is
the solution of the polynomial equation FV (X) = Ȳ by Berlekamps algorithm.
The complexity of this algorithm is given as

O(Dω +Dn(log(D)log(log(D))log(q))),

(see [14]) where D is the degree of the HFE polynomial, n is the degree of the
extension field Fqn and q is the cardinality of the base field.
A higher value of D therefore slows down the signature generation process of
HFEv- drastically.
One important strategy for the design of HFE based signature schemes was
therefore to choose D small and to compensate for this fact by increasing a and
v.

2.1 Previous Attacks on HFE

Historically, the most efficient attacks against signature schemes of the HFE
type are the direct and the MinRank attack. With regard to the direct attack,
it was discovered that the public systems of HFE and its variants can be solved
much more efficiently than random systems. This phenomenon was analyzed in a
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number of papers [10, 11, 15]. The authors of these papers found that the degree
of regularity of a public HFEv- system is bounded from above by{

(q−1)(d+v+a−1)
2 + 2 if q is even and d+ a is odd,

(q−1)(d+v+a)
2 + 2 otherwise.

Regarding attacks of the MinRank type, many researchers considered the so
called min-Q-rank of the HFE system, which can be seen as the rank of the
quadratic form P lifted to the extension field Fqn . Similar to the degree of
regularity, the min-Q-rank of the HFE system is bounded by the HFE parameters.
However, in our attack, we don’t consider the min-Q-rank of the HFE system,
but perform a MinRank attack over the base field Fq. While it is clear that the
complexity of a direct attack on a system of the HFE type is exponential in d,
a and v [9], our attack shows that this is not the case for MinRank.

3 Preliminaries

For simplification, in the following sections of this paper, we assume that T and
S are linear transformations and q is an odd prime. Our attack method can be
easily extended to the case of affine maps T and S and even characteristic.

3.1 Equivalent Keys

An important notion in this paper is that of equivalent keys. For a multivariate
public key cryptosystem, the concept of equivalent keys is defined as follows.

Definition 1. Let ((T ,F ,S),P) be a key pair of a multivariate public key crypto-
system. A tuple (T ′,F ′,S ′) is called an equivalent private key if and only if

P = T ◦ F ◦ S = T ′ ◦ F ′ ◦ S ′

and F ′ is a valid central map of the cryptosystem, i.e. F ′ has the same algebraic
structure as F .

We have

Theorem 1 (Theorem 4.13 in [26]). Let P be a public key of the HFEv-
scheme over Fq. Let v be the number of Vinegar variables, a be the number of
Minus equations and n be the degree of the field extension. Then there exist

nqa+2n+vn(qn − 1)2
v−1∏
i=0

(qv − qi)
n−1∏

i=n−a−1
(qn − qi)

equivalent private keys for the public key P.

Given an HFEv- public key P, our attack finds one of the equivalent private
keys.
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3.2 The MinRank Problem

The search version of the MinRank problem is defined as follows.

Definition 2 (MinRank problem). Given a positive number r and nx matrices
M1,M2, . . . ,Mnx

with m rows and n columns over a field Fq, find a nonzero

vector (x1, x2, . . . , xnx
) ∈ Fnx

q , such that the linear combination M =
nx∑
i=1

xiMi

has rank at most r.

The MinRank problem is an NP-complete problem [4]. The main methods
for solving the MinRank problem are linear algebra search [19], Kipnis-Shamir
modeling [21], minors modeling [18] and support minors modeling [1].

In this paper, we mostly consider the minors modeling of the MinRank attack.
The main idea of this modeling is that the r + 1 minors of the low rank matrix
M are all zero. Since there are

(
n
r+1

)
minors and nx variables x1, . . . , xnx

, this
gives us a highly overdetermined system of equations of degree r+ 1, which can
be solved by e.g. Gröbner basis techniques.

3.3 Matrix Representation of HFEv- Keys

Similar to [3], we represent the HFEv- central map in matrix form.

Proposition 1. Let

F ∗0 =



α00 α01 · · · α0,n−1 γ00 γ01 · · · γ0,v−1
α10 α11 · · · α1,n−1 γ10 γ11 · · · γ1,v−1

...
...

. . .
...

...
...

. . .
...

αn−1,0 αn−1,1 · · · αn−1,n−1 γn−1,0 γn−1,1 · · · γn−1,v−1
β00 β01 · · · β0,n−1 δ00 δ01 · · · δ0,v−1
β10 β11 · · · β1,n−1 δ10 δ11 · · · δ1,v−1

...
...

. . .
...

...
...

. . .
...

βv−1,0 βv−1,1 · · · βv−1,n−1 δv−1,0 δv−1,1 · · · δv−1,v−1


be an (n+ v)× (n+ v) matrix over the field Fqn and

F (X,x1, . . . , xv) = (X,Xq, . . . , Xqn−1

, x1, . . . , xv)F
∗0(X,Xq, . . . , Xqn−1

, x1, . . . , xv)
t

be a polynomial in the quotient ring Fqn [X,x1, . . . , xv]/〈xq1 − x1, . . . , xqv − xv〉.
Then we have for all 0 ≤ k < n

F q
k

(X,x1, . . . , xv) = (X,Xq, . . . , Xqn−1

, x1, . . . , xv)F
∗k(X,Xq, . . . , Xqn−1

, x1, . . . , xv)
t,

where F ∗k ∈ M(n+v)×(n+v)(Fqn), the (i, j)-th entry of F ∗k is αq
k

i−k,j−k for all

0 ≤ i, j, k < n, the (i, n + j)-th entry of F ∗k is γq
k

j−k,i for all 0 ≤ j, k < n,

0 ≤ i < v, the (n+ i, j)-th entry of F ∗k is βq
k

i,j−k for all 0 ≤ i < v, 0 ≤ j, k < n,

and the (n+ i, n+ j)-th entry is δq
k

ij for all 0 ≤ i < v, 0 ≤ j < v, 0 ≤ k < n.
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Proof. If k = 0, we have obviously F q
k

(X,x1, · · · , xv) = F (X,x1, · · · , xv). Now

we consider the case of 1 ≤ k < n. Since xq
k

i = xi for all 1 ≤ i ≤ v, we have

F q
k

=
n−1∑
i=0

n−1∑
j=0

αq
k

ij X
qi+k+qj+k

+
v−1∑
i=0

n−1∑
j=0

(βq
k

ij + γq
k

ji )xiX
qj+k

+
v−1∑
i=0

v−1∑
j=0

δq
k

ij xixj

=
n−1+k∑
i=k

n−1+k∑
j=k

αq
k

i−k,j−kX
qi+qj +

v−1∑
i=0

n−1+k∑
j=k

(βq
k

i,j−k + γq
k

j−k,i)xiX
qj +

v−1∑
i=0

v−1∑
j=0

δq
k

ij xixj

Then it can be divided as follows

F q
k

=
n−1∑
i=k

(
n−1+k∑
j=k

αq
k

i−k,j−kX
qi+qj

)
+
n−1+k∑
i=n

(
n−1+k∑
j=k

αq
k

i−k,j−kX
qi+qj

)
+
v−1∑
i=0

n−1∑
j=k

(βq
k

i,j−k + γq
k

j−k,i)xiX
qj +

v−1∑
i=0

n−1+k∑
j=n

(βq
k

i,j−k + γq
k

j−k,i)xiX
qj +

v−1∑
i=0

v−1∑
j=0

δq
k

ij xixj .

That is

F q
k

=
n−1∑
i=k

(
n−1∑
j=k

αq
k

i−k,j−kX
qi+qj +

n−1+k∑
j=n

αq
k

i−k,j−kX
qi+qj

)

+
n−1+k∑
i=n

(
n−1∑
j=k

αq
k

i−k,j−kX
qi+qj +

n−1+k∑
j=n

αq
k

i−k,j−kX
qi+qj

)
+
v−1∑
i=0

n−1∑
j=k

(βq
k

i,j−k + γq
k

j−k,i)xiX
qj +

v−1∑
i=0

n−1+k∑
j=n

(βq
k

i,j−k + γq
k

j−k,i)xiX
qj +

v−1∑
i=0

v−1∑
j=0

δq
k

ij xixj .

Thus we have

F q
k

=
n−1∑
i=k

(
n−1∑
j=k

αq
k

i−k,j−kX
qi+qj +

k−1∑
j=0

αq
k

i−k,j−k+nX
qi+qj+n

)

+
k−1∑
i=0

(
n−1∑
j=k

αq
k

i−k+n,j−kX
qi+n+qj +

k−1∑
j=0

αq
k

i−k+n,j−k+nX
qi+n+qj+n

)
+
v−1∑
i=0

n−1∑
j=k

(βq
k

i,j−k + γq
k

j−k,i)xiX
qj +

v−1∑
i=0

k−1∑
j=0

(βq
k

i,j−k+n + γq
k

j−k+n,i)xiX
qj+n

+
v−1∑
i=0

v−1∑
j=0

δq
k

ij xixj .

Since Xqn = X we obtain by reducing the index of coefficients modulo n

F q
k

=
n−1∑
i=k

(
n−1∑
j=k

αq
k

i−k,j−kX
qi+qj +

k−1∑
j=0

αq
k

i−k,j−kX
qi+qj

)

+
k−1∑
i=0

(
n−1∑
j=k

αq
k

i−k,j−kX
qi+qj +

k−1∑
j=0

αq
k

i−k,j−kX
qi+qj

)
+
v−1∑
i=0

n−1∑
j=k

(βq
k

i,j−k + γq
k

j−k,i)xiX
qj +

v−1∑
i=0

k−1∑
j=0

(βq
k

i,j−k + γq
k

j−k,i)xiX
qj +

v−1∑
i=0

v−1∑
j=0

δq
k

ij xixj .

Grouping the sums back together, we get

F q
k

=
n−1∑
i=0

n−1∑
j=0

aq
k

i−k,j−kX
qi+qj +

v−1∑
i=0

n−1∑
j=0

(βq
k

i,j−k + γq
k

j−k,i)xiX
qj +

v−1∑
i=0

v−1∑
j=0

δq
k

ij xixj

= (X,Xq, · · · , Xqn−1

, x1, · · · , xv)F ∗k(X,Xq, · · · , Xqn−1

, x1, · · · , xv)t,
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where F ∗k ∈ M(n+v)×(n+v)(Fqn), the (i, j)-th entry of F ∗k is αq
k

i−k,j−k for all

0 ≤ i, j, k < n, the (i, n+j)-th entry of F ∗k is γq
k

j−k,i for all 0 ≤ j, k < n, 0 ≤ i < v,

the (n + i, j)-th entry of F ∗k is βq
k

i,j−k for all 0 ≤ i < v, 0 ≤ j, k < n, and the

(n+ i, n+ j)-th entry is δq
k

ij for all 0 ≤ i < v, 0 ≤ j < v, 0 ≤ k < n. �

Proposition 2 (Proposition 2.1 in [3]). Let (θ1, θ2, · · · , θn) ∈ Fnqn be a vector
basis of Fqn over Fq and

M =


θ1 θ

q
1 · · · θ

qn−1

1

θ2 θ
q
2 · · · θ

qn−1

2
...

...
. . .

...

θn θ
q
n · · · θq

n−1

n


be the matrix whose columns are the Frobenius powers of the basis elements. We
can express the morphism φ : Fqn → Fnq as

V 7→ (V, V q, · · · , V q
n−1

)M−1.

Its inverse φ−1 : Fnq → Fqn is given as

(v1, v2, · · · , vn) 7→ V,

where V is the first component of the vector (v1, v2, · · · , vn)M . More generally,
we have

(v1, v2, · · · , vn) ·M = (V, V q, · · · , V q
n−1

).

In this paper, we choose

M =


1 1 · · · 1

θ θq · · · θq
n−1

...
...

. . .
...

θn−1 (θn−1)q · · · (θn−1)q
n−1

 , (1)

where θ is a generator of Fqn . Define

M̃ =

(
M 0
0 Iv

)
∈M(n+v)×(n+v)(Fqn), (2)

where Iv is the v × v identity matrix. According to Proposition 1, we have

(v1, v2, · · · , vn, x1, · · · , xv) · M̃ = (V, V q, · · · , V q
n−1

, x1, · · · , xv),

where vi, xj ∈ Fq, 1 ≤ i ≤ n, 1 ≤ j ≤ v and V ∈ Fqn .

7



Proposition 3. Let pi ∈ Fq[x1, x2, · · · , xn+v] be the public key polynomials of
HFEv- and Pi be the matrix representing the quadratic form of pi, 0 ≤ i < n−a.
Let the central map of HFEv- be

F = (X,Xq, · · · , Xqn−1

, x1, · · · , xv)F ∗0(X,Xq, · · · , Xqn−1

, x1, · · · , xv)t,

where F ∗0 ∈M(n+v)×(n+v)(Fqn). Let S ∈M(n+v)×(n+v)(Fq) and T ∈Mn×(n−a)(Fq)
be the matrices representing the linear parts of S and T . Then(

M̃−1S−1P0(S−1)t(M̃−1)t, · · · , M̃−1S−1Pn−a−1(S−1)t(M̃−1)t
)

=
(
F ∗0, · · · , F ∗n−1

)
M−1T (3)

Proof. Similar to Lemma 2 in [3].

Denote U = M̃−1S−1 ∈M(n+v)×(n+v)(Fqn) andW = M−1T ∈Mn×(n−a)(Fqn),
then Equation (3) can be rewritten as(

UP0U
t, · · · , UPn−1U t

)
=
(
F ∗0, · · · , F ∗n−1

)
W. (4)

4 Our Key Recovery Attack on HFEv-

In this section we describe our key recovery attack on the HFEv- signature
scheme. Let q, n, v,D, a be the parameters of HFEv- and denote d = dlogq(D)e.
In this paper, we assume that 0 ≤ a < n − 2d − 1. Note that this condition is
fulfilled for all practical parameter sets for HFEv-.1

Our attack consists of two steps. In the first step, we recover an equivalent linear
transformation S by solving a MinRank problem over the base field Fq. In the
second step, we use this equivalent linear map to recover equivalent maps F and
T . By doing so, we obtain an equivalent HFEv- private key which allows us to
generate signatures for arbitrary messages.

4.1 Recovering an Equivalent Linear Transformation S

In this subsection, we will present our technique of finding an equivalent map S.
We first show that the right hand side of (4) is a matrix of rank ≤ d and then
show how to recover S by solving a MinRank problem.

Proposition 4. Let F ∗0, · · · , F ∗n−1 and W = [wij ] be the matrices of Equation
(4) and ai be the first row of matrix F ∗i (i = 0, 1, . . . , n−1). Let Q be the matrix

given as Q = W t ·

 a0

...
an−1

. Then the rank of Q is at most d = dlogq(D)e.

1 Indeed, a ≥ n−2d+1 implies that the number n−a of equations in the public system
is bounded from above by 2d + 1. Defending the scheme against brute force attacks
would therefore require a high value of d which would make the scheme completely
impractical.
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Proof. We have

Q =


w11a0 + w21a1 + · · ·+ wn1an−1
w12a0 + w22a1 + · · ·+ wn2an−1

· · ·
w1,n−aa0 + w2,n−aa1 + · · ·+ wn,n−aan−1

 = W t ·


a0

a1

· · ·
an−1


Due to the construction of the matrices F ∗i(i = 0, 1, . . . , n− 1), we have

a0

a1

· · ·
an−1

 =

A1

0
A2

 ,

where A1 is an 1× (n+ v) matrix and A2 is a (d− 1)× (n+ v) matrix. That is,
this matrix has only d non-zero rows, therefore its rank is at most d. Therefore
the rank of Q is at most d. �

Theorem 2. Let P0, P1, . . . , Pn−a−1 and U be the matrices of Equation (4), the
vector u = (u0, u1, · · · , un+v−1) be the first row of U and bi = (u0, u1, . . . , un+v−1)Pi,
(i = 0, 1, . . . , n − a). Define Z ∈ M(n−a)×(n+v)(Fqn) as the matrix whose row
vectors are the bi. Then the rank of Z is at most d.

Proof. From Equation (4) and Proposition 4, we know that the rank of ZU t is
not more than d. Thus the rank of Z is at most d. �

Proposition 5. Let A = [aij ] be an n×m matrix over Fq, B = M−1A = [bij ] ∈
Mn×m(Fqn). Then

bij = bqi−1,j , for all i, j, with 0 ≤ i < n, 0 ≤ j < m.

That is, each row is obtained from the previous one using a Frobenius application.
Therefore, the whole matrix B is completely defined by any of its rows.

Proof. Let (ε1, ε2, · · · , εn) be a dual basis of (θ1, θ2, · · · , θn) of Fqn over Fq, then
we have

M−1 =


ε1 ε2 · · · εn
εq1 εq2 · · · εqn
...

...
. . .

...

εq
n−1

1 εq
n−1

2 · · · εqn−1

n

 .

Thus bij =
n−1∑
k=0

akjε
qi

k+1 for all i, j, 0 ≤ i < n, 0 ≤ j < m. Since aqij = aij and the

linearity of Frobenius, we have

bqi−1,j =

(
n−1∑
k=0

akjε
qi−1

k+1

)q
=

n−1∑
k=0

aqkj(ε
qi−1

k+1 )q =

n−1∑
k=0

akjε
qi

k+1 = bij

for all i, j, 0 < i ≤ n, 0 ≤ j < m. �
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Proposition 5 implies that we only need to find one row of matrix U =
M̃−1S−1 to recover the first n rows of U . Let u0, u1, · · · , un+v−1 be the first
row of U . We assume that u0, u1, · · · , un+v−1 are unknowns. Since we need to
find only one of the equivalent HFEv- private keys, we can fix u0 = 1 [20]. Since
the rank of Z is at most d, we can find the ui (i = 1, . . . , n + v − 1) by soving
a MinRank Problem over the base field. This can be done by using any of the
methods presented in Section 3. Our method to recover S can be summarized
as shown in Algorithm 1.

Algorithm 1 Recovering an Equivalent Linear Transformation S

Input: HFEv- parameters (q, n, v,D, a), matrices (P0, · · · , Pn−a−1) representing the

quadratic forms of the public key polynomials, matrix M̃ (see Equation (2)).
Output: Equivalent linear transformation S.

1. Set bi = (1, u1, · · · , un+v−1)Pi, 0 ≤ i < n − a, where (u1, · · · , un+v−1) are
unknowns.

2. Construct a matrix Z whose row vectors are bi, 0 ≤ i < n − a. According to
Theorem 2, the rank of Z is at most d.

3. Solve the MinRank Problem with matrix Z using one of the methods described
in Section 3. Denote the solution by u0, u1, · · · , un+v−1.

4. Set U =



u0 u1 · · · un+v−1

uq
0 uq

1 · · · uq
n+v−1

...
...

. . .
...

uqn−1

0 uqn−1

1 · · · uqn−1

n+v−1

r00 r01 · · · r0,n+v−1

...
...

. . .
...

rv−1,0 r01 · · · r0,n+v−1


, where rij , 0 ≤ i < v, 0 ≤ j < n+ v are

randomly chosen from the finite field Fq such that U is invertible.

5. Compute S′ = (M̃U)−1.
6. Return S′.

4.2 Recovering Equivalent Maps F and T

In this subsection we show how, having found an equivalent linear transformation
S, we can recover equivalent maps F and T by solving several systems of
(non)linear equations.

Proposition 6. Let (q, n, v,D, a) be the parameters of HFEv-, Pi (0 ≤ i <
n − a),M , U,W,F ∗j(0 ≤ j < n) be the matrices of Equation (4). We set d =
dlog2De. Assume that U is known, then F ∗0 can be recovered by solving a linear
system with n− a− 1 variables, (d+ a) · (n+ v) additional linear equations in at
most d+ v variables, and

(
v+1
2

)
univariate polynomial equations of degree qd.

10



Proof. From Equation (4) we know that W = M−1T ∈ Mn×(n−a)(Fqn). Let

W =

(
W1

W2

)
, where W1 ∈Ma×(n−a)(Fqn) and W2 ∈M(n−a)×(n−a)(Fqn). Since

M is invertible and the entries of T are randomly chosen from Fq , the probability

of W2 being singular is 1 −
n−a∏
i=1

(1 − 1
qi ). According to Theorem 1, there are at

least qn equivalent maps T , thus the probability that all matrices W2 associated

to the equivalent maps T are singular is approximately (1 −
n−a∏
i=1

(1 − 1
qi ))q

n

.

Therefore we find an invertible matrix W2 with overwhelming probability. We
multiply both sides of Equation (4) by W−12 , obtaining

(
UP0U

t, · · · , UPn−a−1U t
)
W−12 =

(
F ∗0, · · · , F ∗n−1

)(W1W
−1
2

In−a

)
, (5)

where In−a is the (n− a)× (n− a) identity matrix. Let (w̃0, w̃1, . . . , w̃n−a−1) be

the first column of W−12 and (l̃0, l̃1, . . . , l̃a−1, 1, 0, . . . , 0) be the first column of(
W1W

−1
2

In−a

)
, then Equation (5) yields

n−a−1∑
k=0

w̃kUPkU
t =

a−1∑
i=0

l̃iF
∗k + F ∗a.

We multiply both sides by l̃−10 , obtaining

n−a−1∑
k=0

l̃−10 w̃kUPkU
t = F ∗0 +

a−1∑
i=1

l̃−10 l̃iF
∗i + l̃−10 F ∗a.

Denoting wk = l̃−10 w̃k, (k = 0, 1, · · · , n−a−1), and li = l̃−10 l̃i, (i = 1, 2, · · · , a−1),

la = l̃−10 yields
n−a−1∑
k=0

wkUPkU
t =

a∑
i=1

liF
∗i + F ∗0. (6)

Note that
a∑
i=1

liF
∗i+F ∗0 =

 F ′0 0 F ′1
0 0 0

F
′t
1 0 F ′2

 ∈M(n+v)×(n+v)(Fqn), where F ′0 = [f ′ij ]

is a (d + a) × (d + a) diagonal band symmetric matrix of width 2d − 1, that is
f ′ij = 0, if |i−j| ≥ d, F ′1 ∈M(d+a)×v(Fqn), F

′t
1 ∈Mv×(d+a)(Fqn) is the transpose

of F ′1 , F ′2 ∈Mv×v(Fqn) is a symmetric matrix .
Assume that w0, w1, . . . , wn−a−1 are unknowns. Since we need to find only

one of the equivalent HFEv- private keys, we can fix w0 = 1 [26]. Due to the

fact that U is known and the special structure of the matrix
a∑
i=1

liF
∗i + F ∗0,

we obtain from Equation (6) d(n − a − d) linear equations in the n − a − 1
variables w1, w2, · · · , wn−a−1. Since 0 < a < n − 2d − 1, we have d(n − a −

11



d) ≥ n − a − 1. Therefore, by solving these linear equations, we get a solution
(w′0, w

′
1, w

′
2, · · · , w′n−a−1) with w′0 = 1. Thus Equation (6) can be rewritten as

n−a−1∑
k=0

w′kUPkU
t =

a∑
i=1

liF
∗i + F ∗0. (7)

Now we will find l1, · · · , la and F ∗0 from Equation (7). We know that F ∗0

has the form

F ∗0 =

F0 0 F1

0 0 0
F t1 0 F2

 ,

where F0 = [αij ] ∈Md×d(Fqn) is a symmetric matrix, F1 = [γij ] ∈Md×v(Fqn),
F t1 ∈ Mv×d(Fqn) is the transpose of F1 and F2 = [δij ] ∈ Mv×v(Fqn) is a
symmetric matrix . According to Proposition 1 we can represent F ∗k (1 ≤ k ≤
n− 1) by the entries of F ∗0.

Assume that l1, . . . , la, αij (0 ≤ i ≤ j < d), γij(0 ≤ i < d, 0 ≤ j < v),
δij(0 ≤ i ≤ j < v) are unknowns. Then we can recover F ∗0 as follows.

– From the first row of matrix equation (7), we can find a linear system in the
variables α0j (0 ≤ j < d) and γ0j (0 ≤ j < v) of the form

α00+θ00 = 0, · · · , α0,d−1+θ0,d−1 = 0, γ00+θ0,d = 0, · · · , γ0,v−1+θ0,d+v−1 = 0.

Thus we can obtain the first row of F ∗0 by solving this linear system.
– Once the first row of F ∗0 is known, we can obtain from the second row of

matrix equation (7) a linear system in the variables l1 and α1j(1 ≤ j < d)
and γ1j(0 ≤ j < v). By solving this linear system we can obtain the second
row of F ∗0 and l1.

– Similarly, if a ≤ d, we can obtain l1, · · · , la, F0 and F1 using the first d rows
of matrix equation (7). If a > d, we can obtain l1, · · · , ld, F0 and F1 by using
the first d rows of matrix equation (7) and ld+k(1 ≤ k ≤ a− d) by using the
(d+ k)-th row of matrix equation (7). Thus we obtain l1, · · · , la, F0 and F1.

– Once l1, · · · , la, F0 and F1 are known, we get from the last v rows of matrix
equation (7),

(
v+1
2

)
univariate polynomial equations of the form

d∑
k=0

λijkδ
qk

ij + ηij = 0,

where λijk, ηij ∈ Fqn , 0 ≤ i ≤ j < v. Solving these equations we obtain δij
and then recover F ∗0.

– Once F ∗0 is known, we can obtain an equivalent central map as

F ′ (X,x1, . . . , xv)

= (X,Xq, · · · , Xqn−1

, x1, · · · , xv)F ∗0(X,Xq, · · · , Xqn−1

, x1, · · · , xv)t.

�
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Proposition 7. Let (q, n, v,D, a) be the parameters of HFEv-, Pi (0 ≤ i <
n − a), S, T,M, F ∗j (0 ≤ j < n) be the matrices of Equation (3). Assume that
S, Pi(0 ≤ i < n − a),M, F ∗j(0 ≤ j < n) are known, then T can be recovered by
solving n− a linear systems in n variables.

Proof. Equation (3) can be rewritten as

(P0, · · · , Pn−a) =
(
SMF ∗0M tSt, · · · , SMF ∗n−1M tSt

)
M−1T. (8)

Let (t1k, t2k, · · · , tnk) be the entries of the k-th (k = 1, 2, · · · , n − a) column
of T . Since S, Pi (0 ≤ i < n − a),M, F ∗j(0 ≤ j < n) are known, we obtain

from Equation (8) a linear system with n(n+1)
2 equations in the n variables

(t1k, t2k, · · · , tnk) for all (k = 1, 2, · · · , n − a). We can recover T by solving
(n− a) of these linear systems. �

The process of recovering the maps F and T of our equivalent HFEv- key is
summarized in Algorithm 2 .

Algorithm 2 Recovering Equivalent Maps F and T
Input: HFEv- parameters (q, n, v,D, a), Frobenius matrix M (see (1)), matrices

(P0, · · · , Pn−a−1) representing the quadratic forms of the public key polynomials,
recovered linear map S.

Output: Equivalent private maps F and T .

1. Let w0, w1, · · · , wn−a−1 be unknowns and w0 = 1. Get a linear system with
d(n− d− a) equations in the n− a− 1 variables wi, (1 ≤ i < n− a− 1) from
matrix equation (6). as shown in the proof of Proposition 6. By solving this
linear system we obtain a solution w′0, w

′
1, · · · , w′n−a−1 with w′0 = 1.

2. Let l1, · · · , la and the nonzero entries of F ∗0 be unknowns in matrix equation
(7). We get (d + a) · (n + v) bilinear equations from the first d + a rows of
matrix equation (7) and

(
v+1
2

)
univariate polynomial equations from the last

v rows of matrix equation (7). By solving these linear systems and univariate
polynomial equations we recover F ∗0 (see Proposition 6). Then we can obtain
an equivalent central map as

F ′ = (X,Xq, · · · , Xqn−1

, x1, · · · , xv)F ∗0(X,Xq, · · · , Xqn−1

, x1, · · · , xv)t.

3. Compute F ∗k 1 ≤ k < n according to Proposition 1.
4. Let (t1k, t2k, · · · , tnk) be the (unknown) entries of the k-th (k = 1, 2, · · · , n−r)

column of T . Get n − r linear systems from matrix equation (8) as shown in
Proposition 7. By solving these linear systems we can recover an equivalent
map T .

5. Return F ′, T .
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4.3 Complexity of the Attack

The most complex step of our attack is step 3 of Algorithm 1. That is the step
of solving the MinRank problem on the matrix Z, which has rank at most d. We
can solve it using minors modeling or support minors modeling.

If we use minors modeling, the degree of regularity of solving the public
system using the F4 algorithm is given as d+1 (c.f. [3]). Therefore, the complexity
of our attack using minors modeling is

O
((

n+ v + d+ 1

d+ 1

)ω)
,

where 2 < ω ≤ 3 is the linear algebra constant.

5 Discussion

The complexity of our attack is independent of the number a of Minus Equations
and polynomial both in the parameter n and the number v of Vinegar variables.
So, for a fixed parameter D, we obtain a polynomial time attack on all HFE
signature variants. Therefore, the only way of enhancing the security of the
HFEv- scheme is by increasing the parameter d (i.e. the degree D of the HFE
polynomial). However, during the signature generation process, we have to invert
the HFE polynomial using for example Berlekamps algorithm. Since the complexity
of this algorithm grows with Dω or 2dω, this slows down the scheme drastically.
Our attack therefore raises the question if it is possible at all to construct a
secure and efficient signature scheme on the basis of the HFE cryptosystem. An
alternative might be to use polynomials of degree ¿2 (see for example [?]).

6 Possible Speed Up using Support Minus Modeling

In [1] Bardet et al. proposed a new modeling for the MinRank attack called
support minors modeling. The main idea of this modeling is to write the low
rank matrix M as a product M = AC, where A is an m × r matrix and C is

an r × n matrix. Define m matrices of the form C̃i =

(
ri
C

)
(i = 1, 2, . . . ,m),

where ri is the i-th row of M . Since ri is in the space spanned by the rows of
C, the rank of the matrix C̃i (i = 1, 2, . . . ,m) is at most r. This implies that

all (r + 1) × (r + 1) minors of C̃i (i = 1, 2, . . . ,m) are 0. We view the r × r
minors of the matrix C as new variables which are called kernel variables and
are denoted as y1, y2, . . . , yny , where ny =

(
n
r

)
. The (r + 1) × (r + 1) minors

of C̃i are therefore given as bilinear equations in the variables x1, . . . , xnx
and

y1, . . . , yny . Altogether, we obtain m
(
n
r+1

)
of these bilinear equations. The total

number of monomials of degree 2 in these bilinear equations is at most nx
(
n
r

)
. If

m

(
n

r + 1

)
≥ nx

(
n

r

)
− 1,
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holds, we can solve this system of bilinear equations by linearization.
In practical applications, we can assume that C has the form (Ir, C0), where

Ir is an r× r identity matrix and C0 is an r× (n− r) matrix. Moreover, instead
of using all r×r minors of the matrix C as variables, we choose a positive integer
n′ ≤ n, such that

m

(
n′

r + 1

)
≥ nx

(
n′

r

)
− 1 (9)

holds.
If the MinRank problem has only one solution, the resulting linear system is

sparse, and we can solve it using the Wiedemann algorithm. The complexity of
solving this linear system is

O

((
nx

(
n′

r

))2

· nx(r + 1)

)

field operations. If the MinRank problem has no unique solution and Fq is a small
finite field, we can guess the values of some variables such that the resulting linear
system has a unique solution, and then solve it using the Wiedemann algorithm.
Otherwise, we solve the bilinear system using a Gröbner basis algorithm such as
F4/F5 [16].

When applying support minors modeling to our attack, we obtain an overdetermined

bilinear system of nx + ny variables and
(nx+ny)(nx+ny+1)

2 equations, where

nx = n+ v and ny =
(
n′

d

)
, n′ = d (n−a)(d+1)

n+v e+ d+ 1, n′ < 2d+ 2. This bilinear
system has at least n solutions. In fact, if (u0, u1, . . . , un+v−1) is a solution of this

bilinear system, (uq
i−1

0 , uq
i−1

1 , . . . , uq
i−1

n+v−1) for all 1 ≤ i ≤ n are also solutions of
the bilinear system (see [20] for more details). Therefore, we don’t longer have
a unique solution as in the case of e.g. Rainbow, which makes the use of the
Wiedemann algorithm inefficient. Thus we use the F4/F5 algorithm to solve the
system instead of using the relinearization method and Wiedemann.

By carrying out a series of experiments with MAGMA, we found that the first
degree fall occurs at degree 3. Since the total number of monomials in the bilinear
system is nxny +nx+ny +1, the total number of monomials of degree at most 3
is O(n2xny + nxn

2
y). Thus the complexity of our attack on HFEv- using support

minors modeling is O
(
n2xny + nxn

2
y

)ω
or O

(
(n+ v)2

(
2d+2
d

)
+ (n+ v)

(
2d+2
d

)2)ω
.

Here, 2 < ω ≤ 3 is again the linear algebra constant.

7 Application to GeMSS

GeMSS is an HFEv- type signature scheme which is one of the alternative
candidates in the third round of the NIST Post Quantum Crypto Standardization
Project [7]. The attack complexity on GeMSS using our key recovery attack
method can be estimated as shown in Table 1.
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Table 1. Complexity of our Attack on GeMMS (# of gates)

NIST required our attack using
security parameters security minors support minors
category (q, n, v,D, a) level modeling modeling

I
GeMSS128 (2,174,12,513,12)

143
139 118

BlueGeMSS128 (2,175,14,129,13) 119 99
RedGeMSS128 (2,177,15,17,15) 86 72

II
GeMSS192 (2,265,20,513,22)

207
154 120

BlueGeMSS192 (2,265,23,129,22) 132 101
RedGeMSS192 (2,266,25,17,23) 95 75

III
GeMSS256 (2,354,33,513,30)

272
166 121

BlueGeMSS256 (2,358,32,129,34) 141 103
RedGeMSS256 (2,358,35,17,34) 101 76

The table shows:

1. Especially for the higher security categories (NIST category II and III), the
proposed parameters for GeMMS don’t reach the required security levels.

2. Speeding up the signature generation process of GeMSS by decreasing D
while increasing a and v is, with regard to the security of the scheme, not
possible. This forbids the GeMSS variants BlueGeMMS and RedGeMMS.

3. In order to meet NIST security level III (272 gates), we would need an HFE
parameter d of at least 20, which corresponds to a degree D of the HFE
polynomial of at least 219 + 1 = 524.289. This would lead to a slow down
of the signature generation process by a factor of 1.4 · 107. Therefore, the
techniques used in GeMMS don’t suffice to reach high levels of security while
keeping the scheme efficient.

8 Conclusion

In this paper we proposed a new key recovery attack on the HFEv- signature
scheme. While most of the cryptanalysts tried to attack the HFEv- scheme
by solving a MinRank attack over the extension field Fqn , our attack works
completely over the base field. The complexity of the attack is exponential in the
parameter d = dlogq(D)e, but polynomial in n. Therefore, the complexity of our
attack behaves assymptotically exactly as the complexity of the signing process
of HFEv-. Our attack shows that the Minus modifications does not enhance
the security of the HFEv- scheme, while the Vinegar modification only adds a
polynomial factor. Therefore, in order to meet the NIST security requirements,
a very large value of D is needed. However, this makes the signature generation
process of HFEv- very inefficient. We therefore conclude that the currently
existing techniques are not suited to transform the HFE scheme into a secure
and efficient signature scheme.
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A Example of the Attack

To illustrate our new attack method, we present a complete key recovery for a toy
example of the HFEv- scheme over a small field. Let the parameters of our HFEv-
instance be (q, n, v,D, a) = (7, 7, 2, 14, 2). Then we have d = dlogq(D)e = 2. We
construct the degree n extension field Fqn = Fq[x]/〈x7 + 6x + 4〉. Let θ be a
primitive root of the irreducible polynomial p(x) = x7 + 6x+ 4.

We randomly generate central map F = θ176932X14+θ461287X8+θ199902X2+
(θ270502x1 + θ358630x2)X + (θ65557x1 + θ2597x2)X7 + θ811326x21 + θ14415x1x2 +
θ151050x22. The linear transformations S and T are given by the matrices

S =


3 1 1 6 4 2 0 1 6
6 2 4 5 3 3 2 6 0
6 1 3 4 4 2 4 5 3
0 1 4 6 4 2 2 3 1
2 0 0 5 2 4 2 1 3
0 5 1 2 4 2 1 4 3
3 3 5 0 2 6 4 6 6
5 2 0 2 5 6 3 1 2
6 2 5 5 5 4 3 6 1

 and T =


1 4 4 6 5
0 6 5 3 2
0 2 0 2 2
1 3 1 0 1
2 4 2 5 3
3 4 1 0 6
6 5 6 5 0

 .

We compute the public key as P = T ◦ F ◦ S. The quadratic forms representing
the public key polynomials are given as

P0 =


1 2 0 3 3 6 1 3 3
2 6 0 4 4 3 4 4 3
0 0 3 5 4 4 4 5 3
3 4 5 2 1 1 3 2 1
3 4 4 1 0 2 1 6 2
6 3 4 1 2 5 0 5 1
1 4 4 3 1 0 6 0 0
3 4 5 2 6 5 0 3 2
3 3 3 1 2 1 0 2 1

 , P1 =


4 0 3 3 5 6 6 3 2
0 3 0 6 1 1 0 4 4
3 0 3 3 5 4 5 5 4
3 6 3 1 6 6 2 3 5
5 1 5 6 1 6 3 6 4
6 1 4 6 6 5 3 3 1
6 0 5 2 3 3 0 0 5
3 4 5 3 6 3 0 2 1
2 4 4 5 4 1 5 1 6

 , P2 =


3 2 6 4 5 2 6 6 2
2 5 1 0 6 4 1 5 4
6 1 6 0 0 5 0 3 3
4 0 0 5 5 5 5 2 2
5 6 0 5 1 2 1 6 0
2 4 5 5 2 4 1 5 0
6 1 0 5 1 1 4 4 5
6 5 3 2 6 5 4 4 4
2 4 3 2 0 0 5 4 0

 ,

P3 =


2 6 4 5 4 1 6 0 1
6 6 6 1 2 1 0 6 3
4 6 2 6 1 5 0 4 6
5 1 6 0 0 0 0 3 5
4 2 1 0 6 1 6 0 4
1 1 5 0 1 2 6 3 5
6 0 0 0 6 6 5 6 1
0 6 4 3 0 3 6 2 0
1 3 6 5 4 5 1 0 1

P4 =


3 0 5 4 5 6 0 5 2
0 3 0 3 3 5 4 2 2
5 0 4 2 4 6 1 1 3
4 3 2 3 4 3 2 6 1
5 3 4 4 1 2 3 3 6
6 5 6 3 2 4 0 0 2
0 4 1 2 3 0 6 5 1
5 2 1 6 3 0 5 5 0
2 2 3 1 6 2 1 0 3

 ,
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Let M =


1 1 1 1 1 1 1
θ θ7 θ49 θ343 θ2401 θ16807 θ117649

θ2 θ14 θ98 θ686 θ4802 θ33614 θ235298

θ3 θ21 θ147 θ1029 θ7203 θ50421 θ352947

θ4 θ28 θ196 θ1372 θ9604 θ67228 θ470596

θ5 θ35 θ245 θ1715 θ12005 θ84035 θ588245

θ6 θ42 θ294 θ2058 θ14406 θ100842 θ705894

 and M̃ =
(
M 0
0 Iv

)
In the

following we demonstrate our method to recover the private key from P.

A.1 Recovering S

Let the first row of matrix U = M̃−1S−1 be (u0, u1, · · · , un+v−1). Fix u0 =
1 and let u1, · · · , un+v−1 be unknowns. Set bi = (1, u1, · · · , un+v−1)Pi, i =
0, 1, · · · , n−a− 1. Let bi be the i-th row of the matrix Z. Then the rank of Z is
2. This implies that all minors of order 3 are 0. Solving the MinRank Problem for
matrix Z gives us a solution u = (1, θ2689, θ240750, θ393451, θ682468, θ184068, θ218176, θ85224, θ760002).
Then we have

U =


1 θ2689 θ240750 θ393451 θ682468 θ184068 θ218176 θ85224 θ760002

1 θ18823 θ38166 θ283531 θ659566 θ464934 θ703690 θ596568 θ378762

1 θ131761 θ267162 θ337633 θ499252 θ783912 θ808120 θ58266 θ180708

1 θ98785 θ223050 θ716347 θ200596 θ546132 θ715588 θ407862 θ441414

1 θ691495 θ737808 θ73177 θ580630 θ528756 θ67864 θ384408 θ619272

1 θ722755 θ223404 θ512239 θ770242 θ407124 θ475048 θ220230 θ217194

1 θ118033 θ740286 θ291505 θ450442 θ379242 θ31168 θ718068 θ696816

1 5 1 0 1 3 0 3 2
4 6 1 5 4 5 5 6 6

 ,

where the last v rows of U are randomly chosen from Fq, such that U is invertible.
Thus we can recover an equivalent linear transformation S as

S′ = U−1M̃−1 =


0 1 1 2 3 6 6 0 6
1 4 5 3 1 6 0 4 6
4 5 3 1 5 6 0 6 4
5 0 1 2 5 6 0 2 0
2 3 1 3 5 6 0 3 1
1 6 5 0 4 1 0 4 1
0 4 6 4 2 2 0 6 2
2 1 5 2 5 1 2 1 2
6 0 2 6 4 6 1 5 6

 .

Recovering F and T Step 1. Once S is known, let w0, w1, · · · , wn−a−1 be
unknowns and w0 = 1. We generate a linear system with d(n− d− a) equations
in the n−a−1 variables wi, (1 ≤ i < n−a−1) using the matrix equation (6). By
solving this linear system we obtain a solution (1, θ558954, θ326166, θ142979, θ806014).

Step 2. Let l1, · · · , la and the nonzero entries of F ∗0 be variables in matrix
equation (7). By using the first d + a rows of matrix equation (7) we get (d +
a) · (n+ v) bilinear equations as follows: α00+θ

599798 α01+θ
499519 0 0 0 0 0 γ00+θ

424284 γ01+θ
665059

α10+θ
499519 α7

00l1+α11+θ
381840 α7

01l1+θ
349085 0 0 0 0 γ7

00l1+γ10+θ
228693 γ7

01l1+γ11+θ
396254

0 α7
10l1+θ

349085 α49
00l2+α

7
11l1+θ

622586 α49
01l2+θ

524551 0 0 0 γ49
00 l2+γ

7
10l1+θ

475138 γ49
01 l2+γ

7
11l1+θ

2659

0 0 α49
10l2+θ

524551 α49
11l2+θ

32832 0 0 0 γ49
10 l2+θ

9738 γ49
11 l2+θ

392135


= 0(d+a)×(n+v).
From the first row, we obtain α00 = θ188027, α01 = θ87748, γ00 = θ12513, γ01 =
θ253288. Once α00, α01 are known, we get from the second row α10 = θ87748, α11 =
θ10485, γ10 = θ581451, γ11 = θ606062, l1 = θ146620. From the third row we can
obtain l2 = θ754380.
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Once l1, l2 are known, we get from the last v rows of matrix equation (7),(
v+1
2

)
univariate polynomial equations as follows:

θ754380δ4900 + θ146620δ700 + δ00 + θ81317 = 0,
θ754380δ4901 + θ146620δ701 + δ01 + θ689914 = 0,
θ754380δ4911 + θ146620δ711 + δ11 + θ162754 = 0.

Each of these equations has 49 solutions. We choose one of them as the value of
δij . Thus we have δ00 = θ27191, δ01 = δ10 = θ19044, δ11 = θ9718 and

F ∗0 =


θ188027 θ87748 0 0 0 0 0 θ12513 θ253288

θ87748 θ10485 0 0 0 0 0 θ581451 θ606062

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

θ12513 θ581451 0 0 0 0 0 θ27191 θ19044

θ253288 θ606062 0 0 0 0 0 θ19044 θ9718


Therefore we get an equivalent central map as F ′ = θ10485X14 + θ362262X8 +
θ188027X2 + (θ287027x1 + θ527802x2)X + (θ32423x1 + θ57034x2)X7 + θ27191x21 +
θ293558x1x2 + θ9718x22 for F .

Let (t1k, t2k, · · · , tnk) be entries of the k-th (k = 1, 2, · · · , n − a) column of
T . Get n−a linear systems from matrix equation (8) as shown by Proposition 7.
By solving these linear systems we can recover a equivalent key of T as follows

T ′ =


1 1 6 0 5
3 3 2 0 2
1 3 2 5 6
6 6 6 0 2
2 2 3 3 6
2 2 1 0 5
0 5 1 3 0

 .

It is easy to check that P = T ◦F ◦S = T ′ ◦F ′ ◦S ′. Therefore the adversary can
use the three maps T ′, F ′ and S ′ to forge signatures for arbitrary messages.
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