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Abstract. The HFE cryptosystem is one of the best known multivariate
schemes. Especially in the area of digital signatures, the HFEv- variant
offers short signatures and high performance. Recently, an instance of
the HFEv- signature scheme called GeMSS was elected as one of the
alternative candidates for signature schemes in the third round of the
NIST Post Quantum Crypto (PQC) Standardization Project. In this
paper, we propose a new key recovery attack on the HFEv- signature
scheme. Our attack shows that both the Minus and the Vinegar modifi-
cation do not enhance the security of the basic HFE scheme significantly.
This shows that it is very difficult to build a secure and efficient signature
scheme on the basis of HFE. In particular, we use our attack to show
that the proposed parameters of the GeMSS scheme are not as secure as
claimed.
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1 Introduction

Cryptographic techniques such as encryption and digital signatures are an indis-
pensable part of modern communication systems. However, the currently used
schemes RSA and ECDSA become insecure as soon as large quantum computers
arrive. Due to recent progress in the development of such computers, there is
an urgent need for alternatives to these classical schemes which are resistant
against attacks with quantum computers. These are known as post quantum
cryptosystems [5].

One of the main candidates for such schemes are multivariate public key
cryptosystems [14]. Especially in the area of digital signatures, there exist many
promising multivariate schemes. In fact, the multivariate signature scheme Rainbow
is among the three signature schemes in the third round of the NIST standardization
process of post quantum cryptosystems [7]. Another multivariate signature scheme,
GeMMS, is one of the alternative candidates. GeMMS is a special instance of
the well known HFEv- signature scheme, which was first proposed by Patarin
et al. in [24]. The principle idea of HFEv- is to combine the Minus and the
Vinegar modifications with the HFE cryptosystem of [23]. Since the resulting
multivariate quadratic system contains more variables than equations, HFEv-
can only be used for digital signatures.



There exist many attack methods on HFEv-, such as the direct attack [8][25],
the distinguishing attack [12], the differential attack [6], and the MinRank attack
[12]. The most studied attack against HFEv- is the MinRank attack, which
was first proposed by Kipnis and Shamir [21]. Later, many variants of this
technique have been proposed to increase its efficiency [3,1]. The complexity
of the MinRank attack on HFEv- with minors modeling [3] is given as

n+d+a+v+1\"
o )
d+a+v+1
where n is the degree of the field extension, d = [log,(D)], where D is the degree
bound on the HFE central polynomial, a is the number of Minus equations, v is
the number of Vinegar variables and 2 < w < 3 is the linear algebra constant.

In this paper, we present an improved MinRank type key recovery attack on
the HFEv- signature scheme. The complexity of our new attack on HFEv- with

minors modeling is
ol (" d+v+1\"
d+1 ’

This implies that the Minus modification does not enhance the security of HFE
type cryptosystems, while the Vinegar modification increases the complexity
of our attack only by a polynomial factor. This shows that the currently used
techniques are insufficient to transform HFE into a secure signature scheme. In
particular, we use our attack to show that the parameters of GeMSS which were
submitted to the NIST Post Quantum Crypto Standardization Project are not
as secure as claimed.

2 The HFEv- Signature Scheme

Let N be the set of positive integers, n,v, D,a € N, ¢ be a prime number, and F,
be a finite field with ¢ elements. Let ;(X) € F4[X] be an irreducible polynomial
of degree n. We define a degree n-extension field of F, by Fp» = Fy[X]/p(X).
Let ¢ : Fgn — F be an isomorphism between the field Fy» and the vector space
[y defined by

(b(ao + CL1X + ...+ an,lX”_l) = (ao,al, e ,an,l).

Private Key Generation. Randomly generate the central map of HFEv- as

]:(X)xla e ,l‘v) = Z a”Xq1+qJ+ Z /Bi(l']_,. . ,Iv)Xqi—i—'y(a?l, . ,xv),
i,jEN 1e€N
¢+¢ <D ¢ <D

where a; ; € Fyn, 8; : Fj — Fyn are linear maps and v : Fj — Fyn is a quadratic
map in the Vinegar variables x1, z2, ..., z,. Therefore, F is a map from Fgn X F}
to Fgn, To hide the structure of F in the public key, one randomly generates two
affine transformations 7 : F} — F;~* and S : FP+* — Fit of maximal rank.
The private key consists of the three maps 7, F and S.



Public Key Generation. Let ¢ : ]Fg“‘” — Fygn x F} be given as ¢ = ot X id,,
where ¢ : Fyn — Fp is the isomorphism defined above and id,, is the identity map
over . From the special structure of F, we know that F = ¢oFor): ]Fg*” — Fy
is a quadratic multivariate map. The public key map is

P=TopoFopoS:Fyt" - Fp =

Signature Generation. Let y = (y1,Y2,- -, Yn—a) € Fy~* be a message to be
signed. The process of signature generation works as follows:

1. Compute a pre-image ¥ € Fy of y under the affine transformation 7 : Fy —
F72~=* and lift it to the extension field, obtaining ¥ € Fgn.

2. Choose random values for the Vinegar variables (21, .. .,x,) € Fy and substitute
them into the central map F to obtain a new map Fy (X) : Fgn — Fyn.

3. Find a solution to the equation Fy(X) = Y using Berlekamps algorithm.
If the equation has no solution, go to step 2, and randomly choose another
vector (z1,...,2,) € Fy until we can find a solution. Let Y € Fyn be one

of the solutions and set (;5()7) = (1,- - 2 Un) € Fy. Append the Vinegar

variables of step 2 to it, obtaining ¥ = (1, , Yn, X1, ,Ty) € ]F;H‘”.
4. Compute z = S~(y). Then z € F)™" is the signature of y .

Signature Verification. To check if z € IF;H‘” is indeed a valid signature of the
document y € F"~%, the receiver simply computes P(z). If P(z) = y holds, the
signature is accepted, otherwise it is rejected.

Efficiency. The most costly step during the signature generation of HFEv- is
the solution of the polynomial equation Fy (X) =Y by Berlekamps algorithm.
The complexity of this algorithm is given as

O(D* + Dn(log(D)log(log(D))log(q))),

(see [14]) where D is the degree of the HFE polynomial, n is the degree of the
extension field Fy» and ¢ is the cardinality of the base field.

A higher value of D therefore slows down the signature generation process of
HFEv- drastically.

One important strategy for the design of HFE based signature schemes was
therefore to choose D small and to compensate for this fact by increasing a and
V.

2.1 Previous Attacks on HFE

Historically, the most efficient attacks against signature schemes of the HFE
type are the direct and the MinRank attack. With regard to the direct attack,
it was discovered that the public systems of HFE and its variants can be solved
much more efficiently than random systems. This phenomenon was analyzed in a



number of papers [10, 11, 15]. The authors of these papers found that the degree
of regularity of a public HFEv- system is bounded from above by

(g=V(dtvta-l) 4 o if ¢ is even and d + a is odd,
(‘771)(5217““) +2 otherwise.

Regarding attacks of the MinRank type, many researchers considered the so
called min-Q-rank of the HFE system, which can be seen as the rank of the
quadratic form P lifted to the extension field Fy». Similar to the degree of
regularity, the min-Q-rank of the HFE system is bounded by the HFE parameters.
However, in our attack, we don’t consider the min-Q-rank of the HFE system,
but perform a MinRank attack over the base field F,. While it is clear that the
complexity of a direct attack on a system of the HFE type is exponential in d,
a and v [9], our attack shows that this is not the case for MinRank.

3 Preliminaries

For simplification, in the following sections of this paper, we assume that 7 and
S are linear transformations and ¢ is an odd prime. Our attack method can be
easily extended to the case of affine maps 7 and S and even characteristic.

3.1 Equivalent Keys

An important notion in this paper is that of equivalent keys. For a multivariate
public key cryptosystem, the concept of equivalent keys is defined as follows.

Definition 1. Let ((T,F,S),P) be a key pair of a multivariate public key crypto-
system. A tuple (T, F',S’) is called an equivalent private key if and only if
P=ToFoS=T oF oS8
and F' is a valid central map of the cryptosystem, i.e. F' has the same algebraic
structure as F.
We have

Theorem 1 (Theorem 4.13 in [26]). Let P be a public key of the HFEv-
scheme over Fy. Let v be the number of Vinegar variables, a be the number of
Minus equations and n be the degree of the field extension. Then there exist

v—1 n—1
ng* (gt =102 [ -4 ] (")
1=0 i=n—a—1

equivalent private keys for the public key P.

Given an HFEv- public key P, our attack finds one of the equivalent private
keys.



3.2 The MinRank Problem
The search version of the MinRank problem is defined as follows.

Definition 2 (MinRank problem). Given a positive number r and n, matrices

My, My, ..., M, with m rows and n columns over a field Fy, find a nonzero
N

vector (x1,%g,...,Ty,) € Fy®, such that the linear combination M = ) x;M;
i=1

has rank at most r.

The MinRank problem is an NP-complete problem [4]. The main methods
for solving the MinRank problem are linear algebra search [19], Kipnis-Shamir
modeling [21], minors modeling [18] and support minors modeling [1].

In this paper, we mostly consider the minors modeling of the MinRank attack.
The main idea of this modeling is that the r + 1 minors of the low rank matrix
M are all zero. Since there are (r?—l) minors and n, variables x1,...,z,,, this
gives us a highly overdetermined system of equations of degree r + 1, which can
be solved by e.g. Grobner basis techniques.

3.3 Matrix Representation of HFEv- Keys
Similar to [3], we represent the HFEv- central map in matrix form.

Proposition 1. Let

0 Qo1 Q-1 Y00 Yor -t You—1
10 Q11 o 01 p-—1 Y10 Yir o Y1u-1
0 _ Qn—1,0 On—-11 """ ®—1n—-1 Yn-1,0 YTn—1,1 *** In—1,0—1
Boo  Boi - Bom—1 o0 o1 -+ Oow—1
Bio B - Bia—1 S0 11 - O1w—1
ﬁ'ufl,O ﬁvfl,l e vil,nfl 61}71,0 51171,1 e 51}71,1)71

be an (n +v) x (n+v) matriz over the field Fen and

n—1 n—1

F(X, 21, x) = (X, X .., X9 oq, .2 FOX, X9, XD 2,0, 1,)

be a polynomial in the quotient ring Fon (X, x1,...,2y]/{x] — z1, ..., 23 — x,).
Then we have for all0 < k <n

n—1

FO (X a1, a) = (X, X9 ., X 2y, ) FR(X, X, X 2,2

where F*F ¢ M (o) x (ngv) Fgn), the (i,7)-th entry of F*k s agik,j_k for all
k
0 <i,5,k < n, the (i,n + j)-th entry of F** is 'y;.l_k,’i for all 0 < 4,k < n,
0<i<w, the (n+1,j)-th entry of F** is ﬂZ?_k for all 0 <i<v,0<j,k<n,
k
and the (n+i,n + j)-th entry is (5% forall0<i<v,0<j<v,0<k<n.



Proof. If k =0, we have obviously Fa (X, 1, coyxy) = F(X, 21, ,x,). Now

we consider the case of 1 < k < n. Since x =x; for all 1 <7 < v, we have
_ _ v—1n— v—1lv—1
Fqk Z:O Z:O q . X4 +k+q7+k Z ZO( + 7]1 ).’EquH— + z:o 205 xlm]
=0 j= 1=0 j= i J
n—1+kn—1+k qk il g v—1n—1+k q v—1v—1
= > X S KX Z > (B 45— kJF’YJ ,“)xlX DI 33%
i=k Jj=k =0 j=k =0 j=0
Then it can be divided as follows
% n—1 [n—1+k qk + n—1+k [n—1+k qk i+ J
F= 3 Z Qg X! 7 )+ ) DORCHITIS
i=k j i=n =k
v— 1n 1 q v—1n—1+4+k v—1v—1
+ > Z(ﬁj k+7] kz)xlX +Z > (6 i,j— kJF% k,‘z)x'LXq +ZZ§ Ll
=0 j=k =0 j=n =0 j=0
That is
% n—1 [n—1 n—1+k k i
F4 :E Za e Xq+q + E a 7qu+q
i=k j ’ j=n
n—1+k n—1 iy n—1+k iy
+ X Z%-k; WXOT 4 Z az—k_] R X0
i=n =k j=n
v—1n—1 v—1n—1+k v—1lv—1
+ 2 Z( ;ﬁvj m)w@X Y Y (6 k+vj ;“)%X +ZZ5 T
i=0 j=k =0 j=n =0 j=0

Thus we have

n—1 [n—1 k—1

k k i, g k i, _j4n
q° _ q q'+q q q +q
I DS ¢ + 2 g pnX
i=k \ j=Fk j=0
n—1 K ) . k=1 & ) )
q qz+n+qj q q’t+n+q3+”
+ E > kX + Z Xtk X
i=0 \ j=k j=0
v—1n—1 v—1k—1 k . v—1lov—1 qk
* Z0 Z( (O k+’Y] ’”)%Xq + ZO Z( b,j— k+n+73 k+n, DX+ <ZO Zo(sij
i=0 j=k =0 j=0 =0 j=

Since X" = X we obtain by reducing the index of coefficients modulo n

X n—1 [n—1
a* a'+q’ q" a'+q’
FT = Z Z az—k] k:X + Z az—k] kX
i=k 7=0

k=1 [n—1 k ) . — P ) )
q q'+q’ q '+’
+ 2| X al X + Z g j- kX
=0 \ j=k j=0
v—1n—1 v—1k—1 v—1lv—1

.
+ZOZ( gk+7j kz)xlX +Z%)Z( ]k+% kz)szq—FZOZO5 T
1=0 j=k =0 j=0 =0 j

Grouping the sums back together, we get

% n—1n—-1 —1n— v—1v—1
F = X:O _X:Oagfk,j X4 +a Z Z( 15— k:+’yj kz)‘rZX + 2:0 2:06 Lilj
i=0 j= =0 j=0 i=0j
:(X7an"'7an71a )F*k(X Xq an717x17"'a'rv)t7



where F** € M (o) x (ntv) (Fgn), the (i, j)-th entry of F*k g O/i]ik,j—k for all
k
0 <14,7j,k < n,the (i, n+7)-th entry of F** is 'y;’_kﬂ. forall0 < j, k <n,0 <i<w,
the (n + i, j)-th entry of F** is 7., for all 0 < i < v,0 < j,k < n, and the
k
(n +1i,n + j)-th entry is 5% foral0<i<v,0<j<0v,0<k<n. O

Proposition 2 (Proposition 2.1 in [3]). Let (01,02, -+ ,0,) € F}. be a vector
basis of Fqn over F, and

0, 07 - - gg"fl
wo| e
O, 09 - 69"

be the matrix whose columns are the Frobenius powers of the basis elements. We
can express the morphism ¢ : Fgn — F as

Vs (V,V VM
Its inverse ¢~ ' : Fy — Fgn is given as
(’U17’U2a"' ,’Un) = Vv7

where V is the first component of the vector (vy,va,- -+ ,v,) M. More generally,

we have
-1

(Ula’UQa"'7vn)'M:(‘/;an"'7an )
In this paper, we choose

1 1 1
n—1

9 g1 ... g4
M:

en.—l (en—l)q (9"-1)(1

where 0 is a generator of Fy». Define

~ MO
M = ( 0 I,L)) S M(n+v)><(n+v)<Fq”); (2)

where I, is the v X v identity matrix. According to Proposition 1, we have

— n—1
(?]1,’1)27"' yUny L1, ax’u)'M: (qu7 7Vq sy L1y 7$U)7

where v;,z; €Fg, 1 <i<n,1<j<vand V € Fpn.



Proposition 3. Let p; € Fylz1, 22, -+, Tntyo] be the public key polynomials of
HFFEv- and P; be the matrix representing the quadratic form of p;, 0 < i <n—a.
Let the central map of HFFEv- be

n—1

F=(X,X. . X1

sy L1y 7$U)F*O(X7Xq7 e annilaxh e 7xv)t7
where F*0 ¢ M(n+v)x(n+v)(Fqn)- Let S € M(n+v)><(n+v)(IFq) andT € Mnx(n,a) (Fy)

be the matrices representing the linear parts of S and T. Then

(Mflsflpo(sfl)t(j\zfl)t’ . ,Mﬁlsilpn_a_l(Sil)t(Mil)t)
— (F*O,' . ,F*n_l) M—lT (3)
Proof. Similar to Lemma 2 in [3].

Denote U = M~15~! ¢ M(n+v)><(n+v)(Fq") andW =M~1T ¢ Mnx(n_a)(Fqn)’
then Equation (3) can be rewritten as

(URU',- - ,UP,_1U") = (F*,--- ,F*™ ) W. (4)

4 Our Key Recovery Attack on HFEv-

In this section we describe our key recovery attack on the HFEv- signature
scheme. Let ¢,n,v, D,a be the parameters of HFEv- and denote d = [log,(D)].
In this paper, we assume that 0 < a < n — 2d — 1. Note that this condition is
fulfilled for all practical parameter sets for HFEv-.!

Our attack consists of two steps. In the first step, we recover an equivalent linear
transformation S by solving a MinRank problem over the base field F,. In the
second step, we use this equivalent linear map to recover equivalent maps F and
T. By doing so, we obtain an equivalent HFEv- private key which allows us to
generate signatures for arbitrary messages.

4.1 Recovering an Equivalent Linear Transformation &

In this subsection, we will present our technique of finding an equivalent map S.
We first show that the right hand side of (4) is a matrix of rank < d and then
show how to recover § by solving a MinRank problem.

Proposition 4. Let F*0 ... [ F*"~1 and W = [w;;] be the matrices of Equation
(4) and a; be the first row of matriz F** (i =0,1,...,n—1). Let Q be the matriz
ag
given as Q = Wt . Then the rank of Q) is at most d = [log,(D)].
an—1

! Indeed, a > n—2d+1 implies that the number n—a of equations in the public system
is bounded from above by 2d + 1. Defending the scheme against brute force attacks
would therefore require a high value of d which would make the scheme completely
impractical.



Proof. We have

wi1ag + w2121 + -+ + Wprap—1 ap
0= wi2a0 + W22a1 + - + Wp2dp—_1 —wt. | ™
W1,n—ad0 + W2,n—adl + -+ Wn,n—aQn—1 an—1
Due to the construction of the matrices F*(i = 0,1,...,n — 1), we have
a
a0 4
1
= O 5
Aa
anp—1

where A is an 1 x (n + v) matrix and A, is a (d — 1) X (n 4+ v) matrix. That is,
this matrix has only d non-zero rows, therefore its rank is at most d. Therefore
the rank of () is at most d. [

Theorem 2. Let Py, Py,...,Pn,_q_1 and U be the matrices of Equation (4), the
vectoru = (Ug, U, -+ , Unty—1) be the first row of U and b; = (ug, u1, ..., Untv—1)PF;,
(i=0,1,...,n —a). Define Z € Mn_q)x(ntv)(Fgn) as the matriz whose row
vectors are the b;. Then the rank of Z is at most d.

Proof. From Equation (4) and Proposition 4, we know that the rank of ZU? is
not more than d. Thus the rank of Z is at most d. 0O

Proposition 5. Let A = [a;;] be an nxm matriz over Fy, B=M~'A = [b;;] €
Miyxm (Fgn). Then

bij =b{_,;, foralli,j, with0<i<n,0<j<m.

That is, each row is obtained from the previous one using a Frobenius application.
Therefore, the whole matriz B is completely defined by any of its rows.

Proof. Let (€1,e9,--- ,€p) be a dual basis of (61,02, - ,6,) of Fgn over Fy, then
we have

51 5‘2 ... ETL
E‘I{ 5‘% .« . E’(’ZL
M1t=]|. .
n—1 n—1 o1
q q q
€1 ) €n

n—1

Thus b;; = > akjsziﬂ for all 4,7,0 <4 <n,0 < j < m. Since af; = a;; and the

linearity of F;obenius, we have

n—1 1 q n—1 . n—1 )
q _ P _ q (-4 Vg _ R
bi_1,; = § :akggk-s-l = § :akj(gk-s-l) = E :akjgk—o—l = byj
k=0 k=0 k=0

forall 7,5,0 < <n,0<j <m. O



__ Proposition 5 implies that we only need to find one row of matrix U =
M~1571 to recover the first n rows of U. Let ug,uy,- -+ ,Un1y_1 be the first
row of U. We assume that ug,u1, -+ ,Upty—1 are unknowns. Since we need to
find only one of the equivalent HFEv- private keys, we can fix ug = 1 [20]. Since
the rank of Z is at most d, we can find the u; (i = 1,...,n 4+ v — 1) by soving
a MinRank Problem over the base field. This can be done by using any of the
methods presented in Section 3. Our method to recover S can be summarized
as shown in Algorithm 1.

Algorithm 1 Recovering an Equivalent Linear Transformation S

Input: HFEv- parameters (q,n,v, D, a), matrices (Po, - - , Pn—q—1) Tepresenting the
quadratic forms of the public key polynomials, matrix M (see Equation (2)).
Output: Equivalent linear transformation S.

1. Set b; = (L,u1, -+ ,Untv—1)Pi, 0 < ¢ < n — a, where (u1, -+ ,Untv—1) are
unknowns.

2. Construct a matrix Z whose row vectors are b;, 0 < ¢ < n — a. According to
Theorem 2, the rank of Z is at most d.

3. Solve the MinRank Problem with matrix Z using one of the methods described

in Section 3. Denote the solution by wo, w1, , Untv—1-
Uuo (751 ot Un+4ov—1
q q q
Ug Uy o Uppyg
_ qnfl q'n.fl qnfl B . .
4. Set U = | ud uf ceud , where 1,0 <i < v,0<j <n+wv are
oo  Tol tct TOom4v—1
Tv—1,0 Toir - TOon+v—1

randomly chosen from the finite field I, such that U is invertible.
5. Compute S' = (MU)™".
6. Return S’

4.2 Recovering Equivalent Maps F and T

In this subsection we show how, having found an equivalent linear transformation
S, we can recover equivalent maps F and 7 by solving several systems of
(non)linear equations.

Proposition 6. Let (q,n,v,D,a) be the parameters of HFEv-, P; (0 < i <
n—a),M, UW,F*(0 < j < n) be the matrices of Equation ({). We set d =
[logy D). Assume that U is known, then F*° can be recovered by solving a linear
system with n —a — 1 variables, (d+a) - (n+v) additional linear equations in at

most d + v variables, and (”;rl) univariate polynomial equations of degree q®.

10



Proof. From Equation (4) we know that W = M~'T ¢ Mk (n—a)(Fgn). Let

W .
W = W; , where Wi € My (n—q)(Fgn) and Wo € M (5,_q)x (n—a)(Fgn). Since
M is invertible and the entries of T" are randomly chosen from F, , the probability
of Wy being singular is 1 — ]:[ (1- q%) According to Theorem 1, there are at
i=1
least g™ equivalent maps 7', thus the probability that all matrices W5 associated

n—a
to the equivalent maps T are singular is approximately (1 — [ (1 — %))qn.
i=1
Therefore we find an invertible matrix Ws with overwhelming probability. We
multiply both sides of Equation (4) by W, !, obtaining

-1
(URU, -+ \UPy_q U)Wyt = (F*0,... [ F*1) (W}K/“‘ ) ;o (9)

where I, is the (n —a) X (n — a) identity matrix. Let (@o, w1, ..., Wn—q—1) be
the first column of W{l and (lo,l1,...,la—1,1,0,...,0) be the first column of

-1
<W}W2 >, then Equation (5) yields
n—a—1 a—1~
> @UPRU' =Y LF* 4 Fr.
k=0 i=0

We multiply both sides by l~al, obtaining
nfafl/v a71~ " ] N
S R UPRU = O+ I LF 4 1 F
k=0 i=1
Denoting wy, = Flvofliﬂk, (k=0,1,--- ,n—a—1),and |; = %12;7 (i=1,2,--- ,a—-1),
lo = 1" yields

n—a—1 a
> wUPU' =Y L,F* + F*. (6)
k=0 i=1
" F, 0 F}
Note that 3 LE*4+F*0 = Q 00 | € M@ugv)x(niv)(Fgn), where Fg = [f]]
i=1 t /
Ft0F}

is a (d+ a) x (d + a) diagonal band symmetric matrix of width 2d — 1, that is
1 = 0,if [i—j| > d, F] € M(aya)yxv(Fgn), Fi* € Myx(dta)(Fqn) is the transpose
of F{ , F5 € Myxy(Fgn) is a symmetric matrix .
Assume that wg, wy, ..., w,_q—1 are unknowns. Since we need to find only
one of the equivalent HFEv- private keys, we can fix wg = 1 [26]. Due to the

a .
fact that U is known and the special structure of the matrix Y [, F*! + F*0,

i=1
we obtain from Equation (6) d(n — a — d) linear equations in the n —a — 1
variables wi,wsg, -+ ,Wp_q—1. Since 0 < a < n — 2d — 1, we have d(n — a —

11



d) > n — a — 1. Therefore, by solving these linear equations, we get a solution

(wly, wy, wh, -+ ,wl_,_4) with w{ = 1. Thus Equation (6) can be rewritten as
n—a—1 a
> wpUPU' =Y LF* + F*. (7)
k=0 i=1

Now we will find Iy,---,l, and F*° from Equation (7). We know that F*9
has the form
Fy 0 Fy
Fo=|(o000 ],
FIOFy

where Fy = [o;;] € Maxa(Fgn) is a symmetric matrix, Fi = [v;;] € Maxy(Fgn),
F} € Myxi(Fqn) is the transpose of Fy and Fy = [§;;] € Myxo(Fgn) is a
symmetric matrix . According to Proposition 1 we can represent F** (1 < k <
n — 1) by the entries of F*°.

Assume that l1,...,0l, o (0 <@ < j < d), 7;(0 <i<d0< 5 <w),
dij (0 <i < j <w) are unknowns. Then we can recover F*0 as follows.

— From the first row of matrix equation (7), we can find a linear system in the
variables ag; (0 < j < d) and vp; (0 < j < v) of the form

agot+boo =0, ,00,4-1+00,4-1 = 0,70+00,a =0, -+ ,70,0—1+00,d4v—1 = 0.

Thus we can obtain the first row of F*? by solving this linear system.

— Once the first row of F*? is known, we can obtain from the second row of
matrix equation (7) a linear system in the variables {1 and a;;(1 < j < d)
and 71;(0 < j < wv). By solving this linear system we can obtain the second
row of F*0 and [;.

— Similarly, if a < d, we can obtain Iy, --- ,l,, Fy and F; using the first d rows
of matrix equation (7). If a > d, we can obtain Iy, - - , 14, Fo and F} by using
the first d rows of matrix equation (7) and lg1£(1 < k < a — d) by using the
(d+ k)-th row of matrix equation (7). Thus we obtain Iy, - ,l,, Fo and Fj.

— Once l1,- -+, 14, Fy and F; are known, we get from the last v rows of matrix

equation (7), (v;l) univariate polynomial equations of the form
d k
Z Aijkdf; +mij =0,
k=0

where Ajji,mi5 € Fgn, 0 <4 < § < v. Solving these equations we obtain d;;
and then recover F*0,
— Once F* is known, we can obtain an equivalent central map as

F (X,l’l,...,l'y)
= (X, X9, ,anfixl,--- ,20)FO(X, X9, - 7Xq”’1,$17... ).
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Proposition 7. Let (q,n,v,D,a) be the parameters of HFEv-, P; (0 < i <
n—a),S,T,M, F*J (0 < j <n) be the matrices of Equation (3). Assume that
S,P;(0<i<mn—a),M,F*(0<j<mn) are known, then T can be recovered by
solving n — a linear systems in n variables.

Proof. Equation (3) can be rewritten as
(P, Poq) = (SMF*M'S", .. [ SMF*™ ' M'S") M~'T. (8)

Let (t1g,tok, - ,tnk) be the entries of the k-th (k = 1,2,--+ ,n — a) column
of T. Since S,P; (0 < i < n—a),M,F*(0 < j < n) are known, we obtain
from Equation (8) a linear system with w equations in the n variables
(t1k, tok, - ,tnk) for all (k = 1,2,--- ;n — a). We can recover T by solving

(n — a) of these linear systems. O

The process of recovering the maps F and 7T of our equivalent HFEv- key is
summarized in Algorithm 2 .

Algorithm 2 Recovering Equivalent Maps F and T

Input: HFEv- parameters (g,n,v,D,a), Frobenius matrix M (see (1)), matrices
(Po, -+, Pn—a—1) representing the quadratic forms of the public key polynomials,
recovered linear map S.

Output: Equivalent private maps F' and 7.

1. Let wo, w1, + ,Wn—q—1 be unknowns and wo = 1. Get a linear system with
d(n — d — a) equations in the n — a — 1 variables w;, (1 <i<n—a—1) from
matrix equation (6). as shown in the proof of Proposition 6. By solving this
linear system we obtain a solution w{,w?}, -+, wh_,_1 with wj = 1.

2. Let ly,--- ,l, and the nonzero entries of F*° be unknowns in matrix equation
(7). We get (d + a) - (n 4+ v) bilinear equations from the first d + a rows of
matrix equation (7) and (”;Ll) univariate polynomial equations from the last
v rows of matrix equation (7). By solving these linear systems and univariate
polynomial equations we recover F*° (see Proposition 6). Then we can obtain
an equivalent central map as

n—1 n—1 t

F/:(X7Xq7"'7Xq 71:17"'71‘11)F*O(X7Xq7"'7Xq 7$17'..7x11)-

3. Compute F** 1 < k < n according to Proposition 1.

4. Let (tik, tak, - ,tnk) be the (unknown) entries of the k-th (k =1,2,--- ;n—r)
column of T. Get n — r linear systems from matrix equation (8) as shown in
Proposition 7. By solving these linear systems we can recover an equivalent
map T'.

5. Return F’,T.
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4.3 Complexity of the Attack

The most complex step of our attack is step 3 of Algorithm 1. That is the step
of solving the MinRank problem on the matrix Z, which has rank at most d. We
can solve it using minors modeling or support minors modeling,.

If we use minors modeling, the degree of regularity of solving the public
system using the F4 algorithm is given as d+1 (c.f. [3]). Therefore, the complexity
of our attack using minors modeling is

n+v+d+1\*
@)
()
where 2 < w < 3 is the linear algebra constant.

5 Discussion

The complexity of our attack is independent of the number a of Minus Equations
and polynomial both in the parameter n and the number v of Vinegar variables.
So, for a fixed parameter D, we obtain a polynomial time attack on all HFE
signature variants. Therefore, the only way of enhancing the security of the
HFEv- scheme is by increasing the parameter d (i.e. the degree D of the HFE
polynomial). However, during the signature generation process, we have to invert
the HFE polynomial using for example Berlekamps algorithm. Since the complexity
of this algorithm grows with D% or 2%, this slows down the scheme drastically.
Our attack therefore raises the question if it is possible at all to construct a
secure and efficient signature scheme on the basis of the HFE cryptosystem. An
alternative might be to use polynomials of degree ;2 (see for example [?]).

6 Possible Speed Up using Support Minus Modeling

In [1] Bardet et al. proposed a new modeling for the MinRank attack called
support minors modeling. The main idea of this modeling is to write the low
rank matrix M as a product M = AC, where A is an m X r matrix and C' is
‘8’ (i=1,2,...,m),
where r; is the i-th row of M. Since r; is in the space spanned by the rows of
C, the rank of the matrix C; (¢ = 1,2,...,m) is at most r. This implies that
all (r+1) x (r+ 1) minors of C; (i = 1,2,...,m) are 0. We view the r x r
minors of the matrix C' as new variables which are called kernel variables and
are denoted as y1,¥y2,...,Yn,, where ny, = (7). The (r 4+ 1) x (r + 1) minors

an r X n matrix. Define m matrices of the form C; =

of C; are therefore given as bilinear equations in the variables z1,...,z,, and
Y1, - - Yn,- Altogether, we obtain m(ril) of these bilinear equations. The total

number of monomials of degree 2 in these bilinear equations is at most n, (7:) If

n n
r+1 r

14



holds, we can solve this system of bilinear equations by linearization.

In practical applications, we can assume that C has the form (I, Cp), where
I, is an r x r identity matrix and Cy is an r X (n —r) matrix. Moreover, instead
of using all » x r minors of the matrix C' as variables, we choose a positive integer

n’ < n, such that
n n'
>n (") =1 9
m(r+1)_n<r) ®)
holds.

If the MinRank problem has only one solution, the resulting linear system is
sparse, and we can solve it using the Wiedemann algorithm. The complexity of
solving this linear system is

0 ((n.z(?j))?.nx(erl))

field operations. If the MinRank problem has no unique solution and F, is a small
finite field, we can guess the values of some variables such that the resulting linear
system has a unique solution, and then solve it using the Wiedemann algorithm.
Otherwise, we solve the bilinear system using a Grobner basis algorithm such as
F4/F5 [16].

When applying support minors modeling to our attack, we obtain an overdetermined

. . - - 1 .
bilinear system of n, + n, variables and (n +ny)(g +ny+l) equations, where

ngy =n+v and n, = (Z’), n' = f%] +d+1,n < 2d+ 2. This bilinear

system has at least n solutions. In fact, if (ug, u1, . .., Upty—1) is a solution of this
1 i—1 i

bilinear system, (ugk sud o ,ug:;;fl) for all 1 < i < n are also solutions of
the bilinear system (see [20] for more details). Therefore, we don’t longer have
a unique solution as in the case of e.g. Rainbow, which makes the use of the
Wiedemann algorithm inefficient. Thus we use the F4/F5 algorithm to solve the
system instead of using the relinearization method and Wiedemann.

By carrying out a series of experiments with MAGMA, we found that the first
degree fall occurs at degree 3. Since the total number of monomials in the bilinear
system is ngny 4+ ng +ny + 1, the total number of monomials of degree at most 3
is O(niny + nﬂli) Thus the complexity of our attack on HFEv- using support

minors modeling is O (niny + nwni)w or O ((n +v)? (Qd(f) + (n+v) (QdJQ)Q)w"

Here, 2 < w < 3 is again the linear algebra constant.

7 Application to GeMSS

GeMSS is an HFEv- type signature scheme which is one of the alternative
candidates in the third round of the NIST Post Quantum Crypto Standardization
Project [7]. The attack complexity on GeMSS using our key recovery attack
method can be estimated as shown in Table 1.
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Table 1. Complexity of our Attack on GeMMS (# of gates)

NIST required our attack using
security parameters security | minors |[support minors
category (¢,m,v,D,a) level |modeling| modeling

GeMSS128 ((2,174,12,513,12) 139 118

I BlueGeMSS128((2,175,14,129,13)| 143 119 99
RedGeMSS128| (2,177,15,17,15) 86 72
GeMSS192  |(2,265,20,513,22) 154 120

11 BlueGeMSS192((2,265,23,129,22)| 207 132 101
RedGeMSS192| (2,266,25,17,23) 95 75
GeMSS256  |(2,354,33,513,30) 166 121

11 BlueGeMSS256((2,358,32,129,34)| 272 141 103
RedGeMSS256 | (2,358,35,17,34) 101 76

The table shows:

1. Especially for the higher security categories (NIST category II and IIT), the
proposed parameters for GeMMS don’t reach the required security levels.

2. Speeding up the signature generation process of GeMSS by decreasing D
while increasing a and v is, with regard to the security of the scheme, not
possible. This forbids the GeMSS variants BlueGeMMS and RedGeMMS.

3. In order to meet NIST security level IIT (272 gates), we would need an HFE
parameter d of at least 20, which corresponds to a degree D of the HFE
polynomial of at least 2' + 1 = 524.289. This would lead to a slow down
of the signature generation process by a factor of 1.4 - 107. Therefore, the
techniques used in GeMMS don’t suffice to reach high levels of security while
keeping the scheme efficient.

8 Conclusion

In this paper we proposed a new key recovery attack on the HFEv- signature
scheme. While most of the cryptanalysts tried to attack the HFEv- scheme
by solving a MinRank attack over the extension field Fy», our attack works
completely over the base field. The complexity of the attack is exponential in the
parameter d = ﬂogq (D)], but polynomial in n. Therefore, the complexity of our
attack behaves assymptotically exactly as the complexity of the signing process
of HFEv-. Our attack shows that the Minus modifications does not enhance
the security of the HFEv- scheme, while the Vinegar modification only adds a
polynomial factor. Therefore, in order to meet the NIST security requirements,
a very large value of D is needed. However, this makes the signature generation
process of HFEv- very inefficient. We therefore conclude that the currently
existing techniques are not suited to transform the HFE scheme into a secure
and efficient signature scheme.
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A Example of the Attack

To illustrate our new attack method, we present a complete key recovery for a toy
example of the HFEv- scheme over a small field. Let the parameters of our HFEv-
instance be (¢,n,v, D,a) = (7,7,2,14,2). Then we have d = [log,(D)] = 2. We
construct the degree n extension field Fyn = F,[z]/(z7 + 6z + 4). Let 0 be a
primitive root of the irreducible polynomial p(z) = 27 + 6x + 4.

We randomly generate central map F = 9176932 X141 9461287 '8 199902 572 4
(6270502, 4 9358630, ) X 4 (965557, 4 92597 3,) X7 4 9511320,2 4 914415, o)

615105042 The linear transformations S and T are given by the matrices

311642016
624533260 14465
613442453 06532
014642231 02022

S=1200524213 | andT = | 13101
051242143 21253
3350264606 34106
520256312 65650
625554361

We compute the public key as P = T o F o S. The quadratic forms representing
the public key polynomials are given as

Py = 7}% =
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WU R R IWO O
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NOFNO W
HOIOUINFRWD
CONOH W~
NWROUION W
HNOFNFWWW
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WD WOW
BEOWFOUI=UT
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HNOWOHWULRW
O = U= TR I N
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WWoOUIooOOH—=®
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Ps = Py =

HOO R ULRON
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QUIUIO WS =N Ut
WORND—FWNN
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92 gl4 98 (686 (4802 (33614 (235208 N

Let M = 93 921 9147 91020 7208 50421 352047 | annd N = (1\6110
4 928 196 1372 9604 67228 470596 v
0% 02° 6°°° 6 0 0 0
95 935 9245 glT15 12005 (84035 (588245
96 942 294 2058 14406 100842 705894

following we demonstrate our method to recover the private key from P.

) In the

A.1 Recovering S

Let the first row of matrix U = M~1S~! be (ug, U1, yUntp—1). Fix ug =

1 and let wuy, - ,Upyy—1 be unknowns. Set b; = (L,uy, -, Upyy—1)Pi =

0,1,--- ,n—a—1. Let b; be the i-th row of the matrix Z. Then the rank of Z is

2. This implies that all minors of order 3 are 0. Solving the MinRank Problem for

matrix Z gives us a solution u = (1, 92089, 240750 393451 (682468 (184068 218176 (85224 (T60002)
Then we have

1 92689 9240750 9393451 9682468 9184068 9218176 985224 9760002
1 918823 38166 283531 659566 (464934 703690 9596568 9378762
1 9131761 9267162 0337633 0499252 9783912 9808120 958266 9180708
1 998785 9223050 9716347 6200596 0546132 9715588 9407862 0441414
U = 1 9691495 9737808 973177 9580630 9528756 967864 9384408 0619272
1 9722755 9223404 9512239 9770242 9407124 9475048 9220230 9217194
1 0118033 9740286 9291505 9450442 9379242 931168 9718068 9696816

1 5 1 0 1 3 0 3 2
4 6 1 5 4 5 5 6 6

where the last v rows of U are randomly chosen from IF, such that U is invertible.
Thus we can recover an equivalent linear transformation S as

011236606
145316046
I
S =U'M1=]231356031
165041041
046422062
215251212
602646156

Recovering F and T Step 1. Once S is known, let wg,wy, -+ ,wp_q—1 be
unknowns and wy = 1. We generate a linear system with d(n — d — a) equations
in the n—a—1 variables w;, (1 < i < n—a—1) using the matrix equation (6). By
solving this linear system we obtain a solution (1, 558954 (326166 142979 (806014)

Step 2. Let Iy, - ,l, and the nonzero entries of F*9 be variables in matrix
equation (7). By using the first d + a rows of matrix equation (7) we get (d +
a) - (n + v) bilinear equations as follows:

a00+9599798 Oé(]1+9499519 0 0 000 ,Y00+9424284 701_"_9555059
a10+0499519 Oégol1+0411+6381840 a'gll1+0349085 0 000 ’Y’07011+710+9228693 751l1+711+0396254
0 a;oll+9349085 aggl2+a{1ll+9622586 aé?12+0524551 000 73312"'_7;011"79475138 73?l2+’y;1l1+92659
0 0 a%gl2+0524551 a??l2+032832 000 ’Yfgl?+09738 ,Yéll‘i)l2+9392135
= 0(d4-a)x (n+v)-

From the first row, we obtain agy = 0188027 ag; = 087748 40 = 912213 44, =
6253288 Once aygg, g1 are known, we get from the second row a9 = 087748, oy =
OrO485 v g = @O8LASL ) = 606062 1 — 9146620 From the third row we can
obtain o = 0754380,
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Once l1,ls are known, we get from the last v rows of matrix equation (7),

(”;rl) univariate polynomial equations as follows:

0754380538 + 9146620650 + 600 + 981317 — O,

075438053(1) + 9146620551 + 501 + 9689914 — 07
97543805111% + 91466205;1 + 511 + 0162754 =0.

Each of these equations has 49 solutions. We choose one of them as the value of
51’]’- Thus we have 500 = 927191, 501 = 510 = 019044, 511 = 09718 and

188027 87748 12513 253288

00000 6
987748 910485 00000 9581451 9606062
5 % 00000 0 0
o= 0 0 00000 0 0
0 0 00000 0 0
0 0 00000 0 0
12513 581451 00000 927191 19044
0253288 9606062 00000 919044 99718

Therefore we get an equivalent central map as F/ = 910485 x14 1 362262 x'8
QISS02T X2 4 (92STO2T | 9527802, )X | (932423, 4 5TO3A,,) YT 4 2710142 4
6293558 11 w9 + 0971822 for F.

Let (t1x,tok, - ,tnk) be entries of the k-th (k =1,2,--- ,n — a) column of
T. Get n— a linear systems from matrix equation (8) as shown by Proposition 7.
By solving these linear systems we can recover a equivalent key of T" as follows

T =

ONNDI— W
TINNDIWW
HEWOANNO
WOWoOUIoO o
QU OINCT

It is easy to check that P =T oF oS = T'oF' 0S’. Therefore the adversary can
use the three maps 77, 7' and &’ to forge signatures for arbitrary messages.
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