
On Generic Side-Channel Assisted Chosen
Ciphertext Attacks on Lattice-based PKE/KEMs

Towards key recovery attacks on NTRU-based PKE/KEMs

Prasanna Ravi1,2, Martianus Frederic Ezerman3, Shivam Bhasin1, Anupam
Chattopadhyay1,2, and Sujoy Sinha Roy4

1Temasek Laboratories, NTU Singapore
2School of Computer Science and Engineering, NTU Singapore
3School of Physical and Mathematical Sciences, NTU Singapore

4Institute of Applied Information Processing and Communications, TU
Graz, Austria

{prasanna.ravi,fredezerman,sbhasin,anupam}@ntu.edu.sg
{sujoy.sinharoy}@iaik.tugraz.at

In this work, we demonstrate novel side-channel assisted chosen ciphertext attack
applicable to IND-CCA secure NTRU-based PKE/KEMs. In particular, we propose
two types of chosen ciphertext attacks on Streamlined NTRU Prime which instantiate
respectively, a plaintext-checking oracle and decryption-failure oracle to perform full key
recovery. We propose efficient strategies to construct chosen ciphertexts to instantiate
the aforementioned oracles to perform full key recovery. We perform experimental
validation of our attacks on the optimized implementation of Streamlined NTRU Prime
obtained from the pqm4 public library, a testing and benchmarking framework for post
quantum cryptographic schemes on the ARM Cortex-M4 microcontroller. We positively
confirm that both the PC and DF oracle-based attacks result in full key recovery in
a few thousand traces with 100% success rate. We also perform a brief survey of the
various side-channel assisted chosen-ciphertext attacks on LWE/LWR-based schemes and
subsequently identify critical similarities and differences between our proposed attacks as
well as known attacks on the LWE/LWR-based schemes. Based on preliminary results
from our proposed attacks, we do not observe any considerable increase in the attacker’s
effort to defeat both LWE/LWR-based schemes as well as NTRU-based schemes by a
side-channel attacker in a chosen-ciphertext setting.

1. Introduction
The NIST standardization process for post-quantum cryptography is currently in the third and
final round with seven finalist candidates and eight alternate candidates for Public Key Encryption

1

(PKE), Key Encapsulation Mechanisms (KEM) and Digital Signatures (DS) [AASA+20]. For the
third round, NIST has made it clear that resistance against side-channel attacks (SCAs) and fault
injection attacks (FIAs) will also be considered as an important criteria for standardization. Thus,
resistance towards SCAs and FIAs as well as the cost of implementing protections against SCA and
FIA have emerged as important criteria in the standardization process, especially amongst schemes
with tightly matched security and efficiency [AH21]. In [AASA+20, Sections 3.4 and 2.2.3] NIST
states that it

"encourages additional research regarding side-channel analysis"

of the finalist candidates and

"hopes to collect more information about the costs of implementing these algorithms in a
way that provides resistance to such attacks".

Three out of the four finalist candidates for PKE/KEMs are schemes from lattice-based cryp-
tography. They can be broadly classified into two categories. Schemes based on the Learning
with Errors (LWE) [Reg09] and Learning with Rounding (LWR) [BPR] problems are in the first
category. The second category collects schemes which are based on the Nth order Truncated Poly-
nomial Ring Unit (NTRU) problem [HPS98]. On the LWE/LWR-based PKE/KEMs, there are
several known chosen ciphertext attacks in a static key setting, that is, when the secret key is
reused [DCQ19,QCD19,BDHD+19,BGRR19,Flu16]. These attacks mainly work by assuming the
presence of an oracle that provides some information about the decrypted message.

There are at least three types of oracles that can be instantiated, depending upon the setting, when
using an IND-CPA secure scheme. These are the Plaintext-Checking (PC) oracle, the Decryption-
Failure (DF) oracle, and the Full Decryption (FD) oracle. The PC oracle, for example, typically
provides a binary response, either correct or wrong, about the attacker’s guess of the decrypted
message (resp. shared secret key) of a PKE (resp. KEM) for a chosen ciphertext. In the presence
of a decryption-failure oracle, an attacker can infer whether or not a given ciphertext results in
a decryption failure. While both the PC and DF oracle only provide binary information, a full
decryption oracle provides information about the complete message for chosen ciphertexts. Based
on the available oracle, an attacker carefully chooses his query ciphertexts in such a way that the
corresponding oracle’s responses reveal the secret key.

All of the NIST candidate PKE/KEMs apply well-known CCA conversions in order to achieve (an
IND-CCA2) security against adaptive chosen ciphertext attacks. An example of such a conversion is
the Fujisaki-Okamoto (FO) transform [FO99]. It mainly consists of performing a re-encryption after
a decryption. This is done to detect invalid or maliciously formed ciphertexts, which would return
failure upon detection. Thus, malicious or invalidly chosen ciphertexts will always be rejected by the
decapsulation, preventing the attacker from gaining any meaningful information from the decryption
of chosen ciphertexts. This measure removes the presence of any of the aforementioned oracles.
This removal is only true, however, in an ideal classical black box setting, since any cryptographic
algorithm implemented on a real-device leaks information about some intermediate values, such as
timing, power consumption or electromagnetic (EM) emanation, through side-channels.

Following this line of thought, there have been several proposed side-channel attacks on LWE/LWR-
based PKE/KEMs. They utilize side-channel information to instantiate different types of oracles to
provide information about the decryption output, thereby facilitating secret key recovery in several
LWE/LWR-based NIST candidates for PKE/KEM [RRCB20,DTVV19,GJN20,XPRO20,BDH+21].
They include the finalists, such as Kyber [ABD+b], Saber [DKSRV], and Frodo [ABD+a]. However,
a similar analysis is lacking for the schemes based on the NTRU problem, including the finalist

2

candidates NTRU [CDH+] and NTRU Prime [BBC+]. The framework and underlying arithmetic
of NTRU-based schemes are vastly different from those of LWE/LWR-based schemes. This raises
critical questions on the susceptibility of NTRU-based schemes to such side-channel assisted chosen
ciphertext attacks. Even if they are susceptible, it is unclear if there is a significant difference between
the cost of such an attack on an NTRU-based PKE/KEM compared to one on an LWE/LWR-based
PKE/KEM.
To address these critical questions, we in this work propose a number of different side-channel

assisted chosen ciphertext attacks applicable to IND-CCA secure secure NTRU-based PKE/KEMs.
We focus on the Streamlined NTRU Prime variant of NTRU Prime, which is an alternate finalist
candidate in the NIST standardization process. We propose two types of chosen ciphertext attacks
on Streamlined NTRU Prime. They instantiate, respectively, a PC and a DF oracle and both
attacks can recover the full secret key in a few thousand chosen ciphertext queries. We believe our
proposed attack can also be adapted to NTRU, the main finalist candidate, differing in the low level
technical details.
Moreover, we also perform a brief survey of the various side-channel assisted chosen-ciphertext

attacks on LWE/LWR-based schemes and subsequently identify critical similarities and differences
between our proposed attacks as well as known attacks on the LWE/LWR-based schemes.

Contributions:

The main contributions and takeaways from our work can be summarized as follows:

1. To the best of our knowledge, we demonstrate the first side-channel assisted chosen ciphertext
attack on NTRU-based PKE/KEMs, while previous related works have only focussed on the
LWE/LWR-based PKE/KEMs. We adapt the chosen ciphertext attack of Jaulmes and Joux
on the classical IND-CPA secure NTRU PKE scheme to the side-channel setting to propose
novel chosen ciphertext attacks on the IND-CCA secure Streamlined NTRU Prime KEM.

2. We propose two types of chosen ciphertext attacks on Streamlined NTRU Prime which
instantiate respectively, a PC and FD oracle to perform full key recovery. We demonstrate
very efficient strategies to construct chosen ciphertexts and also efficiently utilize the EM
side-channel to instantiate precise PC and DF oracles to perform full key recovery. Though
our attacks are demonstrated only on the Streamlined NTRU Prime, we believe our proposed
attack can also be adapted to NTRU, the main finalist candidate, albeit differing in the low
level details.

3. We perform experimental validation of our attacks on the optimized implementation of Stream-
lined NTRU Prime obtained from the pqm4 public library, a testing and benchmarking frame-
work for post quantum cryptographic schemes on the ARM Cortex-M4 microcontroller [KRSS].
We positively confirm that both the PC and DF oracle-based attacks result in full key recovery
in a few thousand traces with 100% success rate.

4. We also perform a brief survey of the various side-channel assisted chosen-ciphertext attacks
on LWE/LWR-based schemes and subsequently identify critical similarities and differences
between our proposed attacks as well as known attacks on the LWE/LWR-based schemes.
Based on preliminary results from our proposed attacks, we do not observe any considerable
increase in the attacker’s effort to defeat both LWE/LWR-based schemes as well as NTRU-
based schemes by a side-channel attacker in a chosen-ciphertext setting.

3

Organization of the Paper

This paper is organized as follows. Section 2 surveys prior work on side-channel assisted chosen
ciphertext attacks on LWE/LWR-based schemes. Section 3 presents our proposed PC and DF oracle-
based attacks on Streamlined NTRU Prime. This section also includes discussions on comparison
of our proposed attacks against prior attacks proposed over LWE/LWR-based schemes. Section 4
concludes the paper. This paper also contains an appendix contains concrete details of our proposed
PC oracle and DF oracle attacks on Streamlined NTRU Prime KEM.

2. Side-Channel Assisted Chosen Ciphertext Attacks on
LWE/LWR-based schemes

Most side-channel assisted chosen ciphertext attacks on LWE/LWR-based schemes work in the
following manner: the attacker constructs specially structured ciphertexts which when decrypted,
ensure that a certain intermediate variable is limited to a very few possible values and its value also
depends exlusively on a certain targeted portion of the secret key. He/She then utilizes side-channel
leakage to obtain information about the targeted internal variable and such information obtained
across several such chosen ciphertexts leads to full key recovery. In LWE/LWR-based PKE/KEMs,
the decrypted message denoted as m has served as the target variable for several SCA assisted
chosen-ciphertext attacks [DTVV19,RRCB20,GJN20]. We refer to the target variable as the anchor
variable throughout the paper. We can classify these attacks that work in a chosen-ciphertext
setting into three main categories:

2.1. PC Oracle-based SCA
Most LWE/LWR-based PKE/KEMs such as Kyber, Saber and Frodo (NIST finalist candidates) are
built upon a generic framework which contains an IND-CPA secure PKE based on the well known
LPR Encryption scheme [LPR10]. The design of the PKE scheme allows an attacker to construct
chosen ciphertexts such that the anchor variable (i.e.) the decrypted message m can be limited
to a very few values known to the attacker (i.e.) for schemes such as Kyber and Saber (based on
the MLWE/MLWR problem), the message can be limited to only two values - m = 0 (all zeros)
or m = 1 (all zero with 1 at LSB). Moreover, the value of the message (m = 0/1) for the chosen
ciphertexts is also dependent upon a targeted coefficient of the secret key. An attacker who has
access to an appropriate oracle to classify m = 0/1 for chosen ciphertexts can perform full key
recovery one coefficient at a time.

Several works have utilized side-channels to instantiate a PC oracle which enables distinguishing
between the two classes m = 0/1 for key recovery attacks. In this dirction, D’Anvers et al. [DTVV19]
reported the first such attack on two post-quantum KEMs LAC and RAMSTAKE by extracting
information about the message through timing side-channel information from variable-time error
correcting procedures used in decryption. Subsequently, Ravi et al. [RRCB20] generalized the
attack to constant-time implementations of multiple LWE/LWR-based PKE/KEMs by obtaining
information about the decrypted message through the EM side-channel. These attacks lead to key
recovery in a few thousand queries to the target device. The attack is performed in two phases:

1. Pre-Processing Phase: In this phase, an attacker constructs side-channel templates for all
possible values of the decrypted message (m = 0/1) corresponding to the attacker’s chosen
ciphertexts. Thus, an attacker can query the decapsulation device with valid ciphertexts for

4

Decryption
(Secret Key)

FO
Transform

ECC
Decode

Valid Key
or

Reject
cattack

Kyber, Saber, NewHope,
Frodo

Round5, LAC

c = 0/1
(Class O/X)

IND-CCA Secure Decapsulation

m = 0/1
(Class O/X)

Figure 1: Pictorial representation of PC oracle-based SCA on decapsulation procedure of LWE/LWR-
based schemes

the possible message values and utilize appropriate side-channel information to build templates
for each class (m = 0/1).

2. Key Recovery Phase: In this phase, an attacker constructs chosen ciphertexts cattack
whose decrypted message contains information about a targeted portion (coefficient) of the
secret key. The attacker queries the decapsulation device with the attack ciphertexts cattack
and side-channel information from decryption of these ciphertexts can be used to classify
whether (m = 0/1) (using templates obtained from the pre-processing phase), thereby realizing
a practical PC oracle. Subsequently, the side-channel oracle’s responses obtained over several
ciphertext queries leads to full secret key recovery. Please refer to Figure 1 for the pictorial
description of the PC oracle-based SCA on LWE/LWR-based schemes targeting the IND-CCA
secure decapsulation operation.

One of the main advantages of the aforementioned attack on LWE/LWR-based schemes is that
the decrypted message m serves as the anchor variable. Since an attacker can construct ciphertexts
corresponding to any value of m, he/she can easily build templates for different values of m.
Moreover, the attacker’s chosen ciphertexts always limit the value of the anchor variable (m) to just
two known values, irrespective of the secret key. This ensures that the pre-processing phase is only
required to be performed once for the target device.

2.2. DF Oracle-based SCA
There exists another class of attacks which works by obtaining information about decryption failures
for attacker’s chosen ciphertexts for key recovery. The attacker adds errors to a valid ciphertext
in such a way that, the occurrence of decryption failures for these modified ciphertexts (i.e.)
m = mvalid/minvalid contains information about a targeted portion of the secret key. Side-channels
can be utilized to detect decryption failures for chosen-ciphertexts, thereby realizing a practical DF
oracle. Such information obtained for several such modified ciphertexts leads to full key recovery.
In this respect, Guo et al. [GJN20] exploited timing side-channel information from the non-constant
time ciphertext comparison operation in the decapsulation procedure of Frodo KEM. This was used
to realize a practical timing-based DF oracle which resulted in full key recovery in several thousand
queries. Subsequently, Bhasin et al. [BDH+21] identified EM side-channel vulnerabilities in the
ciphertext comparison operation to instantiate a DF oracle for full key recovery in Kyber KEM
using several thousand chosen-ciphertext queries.

5

Side-Channel Assisted Chosen
Ciphertext Attacks

NTRU-based

PC Oracle-based
[This Work]

LWE/LWR-based

DF Oracle-based
[This Work]

PC Oracle-based
D’Anvers et al. [DTVV19]

Ravi et al. [RRBC20]

FD Oracle-based
Xu et al. [XPRO20]

Ravi et al. [RBRC20]
Ngo et al. [NDGJ21]

DF Oracle-based
Guo et al. [GJN20]

Bhasin et al. [BDH+21]

Figure 2: Classification of the various side-channel assisted chosen ciphertext Attacks on lattice-based
schemes

2.3. FD Oracle-based SCA
The aforementioned attacks rely on binary information from the PC oracle or DF oracle for full key
recovery in the range of thousand of queries to the target device. This raises a natural question
about the possibility of more efficient attacks with a more powerful oracle which provides more
than just binary information about the decrypted message. In this direction, Xu et al. [XPRO20]
showed that an attacker who can obtain complete knowledge of the decrypted message for chosen
ciphertexts can effectively parallelize the chosen-ciphertext attack, resulting in full key recovery
in only a handful of traces/queries. They showed that vulnerabilities in the message encoding
(Amiet et al. [ACLZ20], Sim et al. [SKL+20]) and decoding procedure (Ravi et al. [RBRC20], Ngo
et al. [NDGJ21]) which leak the complete message can be exploited to perform full key recovery
only using 8 chosen ciphertext queries for Kyber (Kyber512) and the same attack can be extended
to other LWE/LWR-based schemes as well.

In all the aforementioned attacks on LWE/LWR-based schemes, the decrypted message m serves
as the anchor variable of interest whose information obtained through side-channels results in full
key recovery. While the aforementioned attacks have only been demonstrated on LWE/LWR-based
schemes, similar attacks have not yet been studied for NTRU-based schemes. In this work, we
demonstrate the first SCA assisted chosen-ciphertext attack for NTRU-based schemes and in
particular, Streamlined NTRU Prime KEM. Refer Figure 2 for a classification of the various SCA
assisted chosen ciphertext attack on lattice-based schemes where our proposed PC oracle and DF
oracle-based attacks on the Streamlined NTRU Prime scheme are highlighted in red.

3. SCA Assisted Chosen Ciphertext Attacks on Streamlined NTRU
Prime KEM

In this section, we demonstrate two types of side-channel assisted chosen-ciphertext attacks on
IND-CCA secure Streamlined NTRU Prime KEM. They are: 1) Plaintext-Checking Oracle-based
SCA and 2) Decryption-Failure Oracle-based SCA.

6

3.1. Plaintext-Checking Oracle-based SCA
Refer Figure 3 for a pictorial description of our PC oracle-based SCA on the decryption procedure
of Streamlined NTRU Prime KEM. Our PC oracle-based attack can be seen as a direct analogue
to the generic PC oracle-based side-channel attacks in [DTVV19,RRCB20] for LWE/LWR-based
schemes. Our attack is performed into two phases:

1. Template Generation Phase: We construct chosen ciphertexts of a very specific structure
(inspired from the chosen ciphertext attack proposed by Jaulmes and Joux on the classical
IND-CPA secure NTRU PKE scheme in Crypto 2000 [JJ00]) and attempt to identify a
particular ciphertext denoted as cbase whose intermediate variable e only contains a single
non-zero coefficient (i.e) e = ±1 · xi where i ∈ [0, n − 1] is the non-zero coefficient. This
ciphertext cbase is subsequently utilized to build attack ciphertexts to perform key recovery.
Unlike the LWE/LWR-based schemes, where the decrypted message m is the anchor variable,
the internal variable e within the decryption procedure, serves as the anchor variable, since
its value can be controlled to be dependent on a targeted portion of the secret key. We
obtain side-channel information from operations processing the anchor variable e (enclosed in
rectangular box in Figure 3) and adopt the Welch’s t-test to identify cbase whose e = ±1 · xi.
Subsequently, we use the distinguishing features identified from the Welch’s t-test to build
reduced templates for two classes: e = 0 (Class O) and e = ±1 · xi (Class X).

Reduce
Mod 3

3f

xcattack
3f . cattack x

g-1

r’

e = 0
(Class O)

e = ±1 . xi

(Class X)

Weight
Check

Class O/X

Secret Key (sk): (f,g)
Ciphertext (ct): cattack
Message (r’): r’

Decrypt(sk, ct) = m

Side-Channel
based

PC oracle

Figure 3: Pictorial Illustration of our PC oracle attack on the decryption procedure of Streamlined
NTRU Prime

2. Key Recovery Phase: In this second phase, we use the base ciphertext cbase to construct
new attack ciphertexts cattack. These attack ciphertexts are constructed such that the
corresponding intermediate variable e can only belong to two exclusive classes: e = 0 (Class
O) or e = ±1 · xi (Class X). Moroever, the value of e = 0 or e = ±1 · xi depends upon a
targeted portion of the secret key. We utilize side-channel information from the decryption of
the attack ciphertexts and use the side-channel templates to classify each attack ciphertext as
class O/X, thereby realizing a practical PC oracle. We use the side-channel oracle’s responses
over several attack ciphertext queries to recover the full secret key. Refer Figure 4 for the flow
diagram of our proposed PC oracle-based chosen ciphertext attack.

We refer the reader to appendix B for concrete details of our proposed PC oracle-based SCA on
Streamlined NTRU Prime KEM.

7

3.1.1. Experimental Setup:

For practical experiments, we ran the optimized implementation of sntrup761 taken from the open-
source PQM4 library [KRSS]. We used the STM32F4DISCOVERY board (DUT) housing the
STM32F407, ARM Cortex-M4 microcontroller as our DUT. The implementation, compiled with
-O3 -mthumb -mcpu=cortex-m4 -mfloat-abi=hard -mfpu=fpv4-sp-d16, was clocked at 168 MHz.
The ST-LINK/v2.1 add-on board was deployed for UART communication with our DUT. EM
measurements were observed from the DUT using a near-field probe and processed using a Lecroy
610Zi oscilloscope at a sampling rate of 500MSam/sec. Figure 5 shows our experimental setup to
perform EM trace acquisition.

3.1.2. Experimental Results:

We implemented our attack on the optimized implementation of sntrup761 and utilized EM side-
channel information corresponding to the final weight-checking operation (denoted as Weight Check
in Figure 3) within the decryption procedure to instantiate the PC oracle.

Template Generation Phase: We repeatedly query the decapsulation device with the ciphertext
c = 0 corresponding to e = 0 (Class O) and denote the side-channel information as TO (N = 10
traces). We repeatedly query the decapsulation device with a malicious ciphertext c′ and the
corresponding side-channel information be denoted as TX (N = 10 traces). We then compute
the Welch’s t-test between TO and TX. Refer Figure 6(a) for the t-test plot for c′ whose e = 0.
Thus, there are no peaks about the t-test threshold (±4.5) indicating no difference between the two
measurements. Refer Figure 6(b) for the t-test plot for c whose e = ±1 · xi which clearly shows
several peaks, well above the threshold ±4.5, thereby indicating e 6= 0.

Consturct cbase and perform
Welch’s t-test based Leakage Detection

If (Leakage Present)

If (Weight Check(s) == Pass)

Yes

No

Yes

No

Success

Construct Reduced Templates
RTO (Class O) , RTX (Class X)

Query Attack ciphertexts cattack
and classify as Class O/X

Pre-processing Phase

Key Recovery Phase
Use Binary distinguisher table to

recover secret key s

(RTO, RTX)

Classify(cattack)

Figure 4: Attack Flow Diagram of our proposed PC Oracle-based SCA on Streamlined NTRU Prime
KEM

8

Figure 5: The experimental setup used in EM trace acquisition.

For sntrup761, we required ≈ 61 trials on average to identify the base ciphertext cbase. Each
trial requires N = 10 traces for the Welch’s t-test, resulting in ≈ 610 traces to identify cbase. The
features in the t-test plot well above the threshold are chosen as Points of Interest (PoI) to build
reduced templates for both classes e = 0 (Class O) and e = ±1 · xi (Class X).

0 200 400 600 800 1000 1200 1400 1600

Time Index

15

10

5

0

5

10

15

20

25

t-
te

st

t-test plot

t-test threshold

0 200 400 600 800 1000 1200 1400 1600

Time Index

15

10

5

0

5

10

15

20

25

t-
te

st

t-test plot

t-test threshold

(a) (b)

Figure 6: t-test plots between TO and TX (a) e = 0 (b) e 6= 0 for sntrup761 parameter set of
Streamlined NTRU Prime

Key Recovery Phase: We query the decapsulation device with attack ciphertexts cattack con-
structed from cbase. Side-channel information from the decryption of these attack ciphertexts are
matched with the side-channel templates to classify as either class O/X. Figure 7 visualizes the
matching of a given attack trace with the reduced templates of both the classes. We can see that
there is a clear distinguishability between the reduced templates of the two classes, leading to a
classification with 100% success rate. Recovery of single targeted coefficient takes about 4 chsoen-
ciphertext queries and therefore 4 side-channel traces. For sntrup761, there are 761 coefficients in
the secret key, thereby yielding 3044 traces. There are a few ocassions when the retrieved secret key
is not correctly retrieved which results in re-run of the attack. Altogether, complete recovery of the
secret key f takes approximately 4.35k traces. Our attack works with a success rate of about 100%.

For comparison of the attacker’s effort to mount the PC oracle-based SCA on LWE/LWR-based
schemes, we utilize experimental results from the work of Ravi et al. [RRCB20] who utilized the

9

same attack setup and target to attack LWE/LWR-based schemes. Their attack on the Kyber512
parameter set of Kyber required about 7.7k traces for full key recovery, but this count pertains to
three attack iterations to improve the success rate. Thus, a single iteration takes about 2.56k traces
for full key recovery assuming a single attack iteration. Though the number of traces required to
attack sntrup761 is more than twice compared to Kyber512, the increase in the attacker’s effort is
not very significant.

0 10 20 30 40 50 60

Time Index

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
o
rm

a
liz

e
d
 V

o
lt

a
g
e

class O

class X

tr

0 10 20 30 40 50 60

Time Index

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
o
rm

a
liz

e
d
 V

o
lt

a
g
e

class O

class X

tr

(a) (b)

Figure 7: Matching the reduced template tr of a given attack trace with the reduced template of
the two classes O and X for the PC oracle attack (a) Class(tr) = O (b) Class(tr) = X

3.1.3. Comparison with PC Oracle-based SCA on LWE/LWR-based PKE/KEMs

While the high level approach of our proposed PC oracle-based SCA on Streamlined NTRU Prime
closely resembles the attack on LWE/LWR-based schemes, we identify a few critical differences
between the two attacks. The main difference arises the difference in the anchor variable (i.e.) the
variable manipulated to be secret-dependent that aids key recovery.

While the attacks on LWE/LWR-based schemes use the decrypted message m as the anchor
variable, an internal variable e within the decryption procedure serves as the anchor variable for
our attack. Since e is an internal variable, an attacker has much lesser control over its exact value.
Thus, the first phase of the attack involves a search for a special ciphertext cbase whose e has a
single non-zero coefficient (i.e.) e = ±1 · xi. This search for cbase has a minor effect on the attack’s
trace complexity compared to that on LWE/LWR-based schemes. However, such a search is not
required for LWE/LWR-based schemes as an attacker can readily build ciphertexts for any value of
the decrypted message m.

Moreover, it is not possible control the non-zero value of e (i.e.) e = ±1 · xi, since the location of
the non-zero coefficient i depends on the secret key and cannot be arbitrarily fixed by the attacker.
Thus, the template generation is needed to be performed for every new secret key to be recovered.
However, for LWE/LWR-based schemes, the two classes m = 0/1 are fixed for LWE/LWR-based
schemes, irrespective of the secret key. Thus, template generation (referred to as pre-processing
phase) is only required to be done once for a given target device.

3.1.4. A few observations on the PC Oracle-based SCA

We observe that the decryption procedure of Streamlined NTRU Prime KEM only outputs a valid
message only when the weight of the decrypted message is w (w is a parameter depending upon the

10

variant of Streamlined NTRU Prime). Upon failure, the decryption procedure returns a constant
message with value (1, 1, . . . , 1, 0, 0, . . . , 0). The decrypted message for the attack ciphertexts do
have not have weight w (i.e.) If e = 0 (Class O), weight(m) = 0 and if e = ± · xi (Class X), then
m contains uniformly random coefficients in the range [−1, 1] and thus weight(m) ≈ 2n/3 6= w
with a very high probability. Thus, the attack ciphertexts always decrypt to the fixed message
(1, 1, . . . , 1, 0, 0, . . . , 0).

Thus, the effect of variable e (O/X) for the attack ciphertexts does not propagate beyond
the decryption procedure. Thus, the PC oracle attack can only be carried out using side-channel
information from operations within the decryption procedure. In particular, operations manipulating
e within decryption (operations enclosed in rectangular box in Figure 3). This restricts an attacker
from utilizing side-channel information from operations after decryption (i.e.) operations within the
re-encryption procedure during decapsulation.

In the following, we improve upon the PC oracle-based attack to propose a novel DF oracle-based
attack on Streamlined NTRU Prime KEM. The improved attack enables an attacker to also utilize
side-channel information from many more operations within the decapsulation procedure to perform
side-channel assisted key recovery.

3.2. Decryption-Failure (DF) Oracle-based SCA
We start by providing some intuition for the Decryption-Failure (DF) oracle attack. The main
idea is to perturb valid ciphertexts using ciphertexts similar to those used for the PC oracle attack,
and subsequently observe the effect of perturbation on the decrypted message. Let cvalid be a valid
ciphertext whose e is denoted as evalid. Let c′ be a set of specially crafted ciphertexts, which are
similar to those used for the PC oracle attack. Upon decrypting c′, e′ can only have two possible
values - (1) e = 0 or (2) e = ±1 · xi. Let the sum of perturbation ciphertext c′ and valid ciphertext
cvalid be denoted as the perturbed ciphertext cpert. Perturbing cvalid in this manner in turn perturbs
evalid in such a way that the resulting e for cpert can take two possible values: (1) evalid (Class O)
or (2) evalid with a single coefficient error at i denoted as einvalid (Class X).
For the first class of ciphertexts (evalid), there is no error in decryption and thus the decryption

procedure returns r′valid. However for the second class of ciphertexts, there is a single coefficient
error in e (i.e) einvalid = evalid ± 1 · xi which causes a decryption failure and thus the constant
(1, 1, . . . , 1, 0, 0, . . . , 0) (denoted as r′invalid) is returned as the decrypted message. Thus, the perturbed

Reduce
Mod 3

3f

x
3f . cattack x

g-1

Weight
Check

Secret Key (sk): (f,g)
Ciphertext (ct): cpert
Message (r’): r’

Decrypt(sk, ct) = r’

cpert

= cvalid + c’

ev
(Class O)

eiv = ev ± 1. xi

(Class X)

r’v
or
r’iv

b’v
b’iv

Figure 8: DF Oracle Attack on the decryption procedure of Streamlined NTRU Prime KEM.
Subscript v denotes valid while subscript iv denotes invalid.

11

ciphertexts cpert restrict the decrypted message r′ to two possibilities (i.e.) r′valid/r′invalid. This is
unlike the ciphertexts used for the PC oracle attack where the decrypted message always take a
value of r′invalid.

The success/failure of decryption for the perturbed ciphertexts depends upon a targeted portion
of the secret key. Thus, an attacker who can obtain information about decryption success/failure
for several chosen-ciphertext queries can fully recover the secret key. This is referred to as the
DF oracle attack where the adversary exploits a binary oracle providing information about the
success/failure of decryption aiding key recovery. Figure 8 illustrates the DF oracle attack using the
decryption procedure of Streamlined NTRU Prime KEM.

We observe that a decryption failure can be identified by observing either of the variables e or r′.
Thus, side-channel leakage from operations manipulating either of these variables can be used to
instantiate a DF oracle. We can use the operations manipulating e within the decryption procedure
(similar to the PC oracle attack). Moreover, we can also utilize operations in the re-encryption
procedure since it takes r′ as its explicit input. This widens the scope of an attacker (compared to
the PC oracle attack) to obtain side-channel information from several operations in the decapsulation
procedure for key recovery. Figure 9 illustrates the DF oracle attack on the decapsulation procedure
of Streamlined NTRU Prime KEM. The DF oracle attack is performed in two phases.

cpert

= cvalid + c’

Decryption Re-Encryption

r’valid
(Class O)

ct’

Compare

IND-CCA Secure Decapsulation

PRNG Key
r’invalid

(Class X)

KDF

Side-Channel based
DF oracle

Figure 9: Illustration of the DF oracle attack on the decapsulation procedure of Streamlined NTRU
Prime KEM

1. Template Generation Phase: The first phase involves search for a base ciphertext cbase
which corresponds to a single collision event. This ciphertext when added to a valid ciphertext
cvalid should exactly perturb a single coefficient of evalid resulting in a decryption failure.
Similar to the PC oracle-based SCA, we use the Welch’s t-test to identify cbase which results
in a decryption failure. Subsequently, we use cbase to construct side-channel templates for the
two classes: r′valid (Class O) and r′invalid (Class X).

2. Key Recovery Phase: In the second phase, cbase is used to construct new perturbed attack
ciphertexts catt whose decrypted message can only have two possible values (i.e.) r′valid/r′invalid.
Side-channel leakage from decapsulation of these attack ciphertexts is used to detect decryption
failures, thereby realizing a practical DF oracle. This information obtained over several such
attack ciphertexts results in full key recovery.
We refer the reader to appendix C for concrete details of our proposed DF oracle-based SCA
on Streamlined NTRU Prime KEM.

12

3.2.1. Experimental Results:

We implemented our attack on the optimized implementation of sntrup761 parameter set of IND-
CCA secure Streamlined NTRU Prime KEM. We obtained EM side-channel measurements from
the encoding operation that manipulates the decrypted message within the re-encryption procedure
after decryption.

Template Generation Phase: We repeatedly query the decapsulation device with cvalid and
denote the corresponding side-channel information as TO (N = 10 traces). We also repeatedly
query the decapsulation device with a perturbed ciphertexts cpert (perturbed using c′) and the
corresponding side-channel information be denoted as TX (N = 10 traces). Refer Figure 10(a) which
depicts the t-test plot corresponding to cpert which does not result in any decryption failure, which
is indicated by no peaks in the t-test plot. Refer Figure 10(b) for the t-test plot corresponding to
cpert whose decrypted message is rinvalid which clearly shows several peaks, well above the threshold
±4.5, thereby indicating a decryption failure. Similar to the PC oracle-based SCA, the features
in the t-test plot well above the threshold are chosen as Points of Interest (PoI) to build reduced
templates for both classes r′valid (Class O) and r′invalid (Class X). The above t-test based leakage
detection is repeated for different perturbation ciphertexts c′ until we identify one which results in
a decryption failure. Such a ciphertext is denoted as the base ciphertext cbase. The first step to
identify cbase takes ≈ 425 attempts. Each attempt requires the capture of N = 10 traces. Thus, it
takes ≈ 4250 traces to identify cbase.

0 1000 2000 3000 4000 5000

Time Index

20

10

0

10

20

30

40

50

60

t-
te

st

t-test plot

t-test threshold

0 1000 2000 3000 4000 5000

Time Index

20

10

0

10

20

30

40

50

60

t-
te

st

t-test plot

t-test threshold

(a) (b)

Figure 10: t-test plots between TO and TX (a) m = mvalid (b) m = minvalid for sntrup761 parameter
set of Streamlined NTRU Prime

Key Recovery Phase: In this phase, we query the decapsulation device with attack ciphertexts
constructed using cbase which decrypt to either r′valid/r′invalid. We obtain side-channel information
from operations within the re-encryption procedure and subsequently utilize the side-channel
templates for classification. Figure 11 visualizes the matching of a given attack trace with the
reduced templates of both the casses. We can see that there is a clear distinguishability between the
reduced templates of the two classes, leading to a classification with 100% success rate. Recovery of
single targeted coefficient takes about 4 chosen ciphertext queries and therefore 4 side-channel traces.
For sntrup761, there are 761 coefficients in the secret key, thereby yielding 3044 traces. There are

13

a few ocassions when the retrieved secret key is not correctly retrieved which results in re-run of
the attack. Altogether, complete recovery of the secret key f takes approximately 8.1k traces. Our
attack works with a success rate of about 100%.

For comparison with the attacker’s effort to mount similar DF oracle-based SCA on LWE/LWR-
based schemes, we utilize experimental results from the work of Bhasin et al. [BDH+21] who
demonstrated DF oracle-attacks on Kyber implemented on the ARM Cortex-M4 microcontroller
exploiting the EM side-channel. Their attack requires about 217 decapsulation queries to reduce
the security of Kyber512 to 265, but our attack only requires much fewer traces 9.6k to perform full
key recovery. Thus, our proposed DF oracle-based attack on Streamlined NTRU Prime is much
more efficient compared to the attack of Bhasin et al. [BDH+21] on Kyber. Moreover, the timing
attack of Guo et al. [GJN20] also required about 230 decapsulation queries for full key recovery on
Frodo. Though this number includes replicated measurements for better SNR, we believe that our
DF-oracle based attack methodology also performs much better than the proposed attack of Guo et
al. [GJN20] on Frodo.

0 20 40 60 80 100 120

Time Index

3

2

1

0

1

2

3

4

N
o
rm

a
liz

e
d
 V

o
lt

a
g
e

class O

class X

tr

0 20 40 60 80 100 120

Time Index

3

2

1

0

1

2

3

4

N
o
rm

a
liz

e
d
 V

o
lt

a
g
e

class O

class X

tr

(a) (b)

Figure 11: Matching the reduced template tr of a given attack trace with the reduced template of
the two classes O and X for the DF oracle attack (a) Class(tr) = O (b) Class(tr) = X

4. Countermeasures
In this section, we briefly address potential countermeasures for both the PC oracle and DF oracle
attacks over Streamlined NTRU Prime KEM. Our attack relies on fixing targeted intermediate
variables to known values and subsequently utilizing side-channel leakage to identify its value to
perform key recovery. Thus, complete randomization of the internal computation through masking
countermeasure thus serves as a concrete countermeasure against both our proposed attacks. For
the PC oracle attack, it is sufficient to only mask the decryption procedure as side-channel leakage
from other operations within the decapsulation procedure cannot be exploited. However, for the
DF oracle attack, the entire IND-CCA secure decapsulation procedure needs to be masked so as to
provide concrete protection.
Masking countermeasures in general are known to be costly in terms of performance. There

are several works on protecting NTRU-based prmitives [LSCH10,WZW13,HCY20,SMS19] against
side-channel attacks, however existing attacks as well as countermeasures only target the polynomial
multiplier involving the secret key in the decryption procedure. However, our attacks have shown

14

that other operations within the decryption and decapsulation procedure can also be targeted for
key recovery. Moreover, schemes such as Streamlined NTRU Prime include non-linear operations
such as the weight check operation (Figure 3) within the decryption procedure which are not trivial
to mask. To the best of our knowledge, we are not aware of a concrete and complete masking scheme
for NTRU-based PKE/KEMs. Thus, development of efficient and concrete masking strategies for
NTRU-based PKE/KEMs is an interesting research direction that warrants immediate attention by
the cryptographic research community.

5. Conclusion
In this work, we have demonstrated novel side-channel assisted PC and DF oracle-based chosen
ciphertext attacks on the IND-CCA secure Streamlined NTRU Prime KEM.We perform experimental
validation of our attacks on the optimized implementation of Streamlined NTRU Prime obtained
from the pqm4 public library, a testing and benchmarking framework for post quantum cryptographic
schemes on the ARM Cortex-M4 microcontroller. We positively confirm that both the PC and DF
oracle-based attacks result in full key recovery in a few thousand traces with 100% success rate.
Based on preliminary results from our proposed attacks, we do not observe any considerable increase
in the attacker’s effort to defeat both LWE/LWR-based schemes as well as NTRU-based schemes in
a side-channel setting. Masking serves as a concrete countermeasure against our proposed attacks
and thus our work stresses on the need for concrete masking countermeasures for the NTRU-based
PKE/KEMs to protect against similar chosen-ciphertext based side-channel attacks.

References
[AAB+] Erdem Alkim, Roberto Avanzi, Joppe W. Bos, Leo Ducas, Antonio de la Piedra,

Thomas Poppelmann, Peter Schwabe, and Douglas Stebila. NewHope (Version 1.1):
Algorithm Specifications And Supporting Documentation (April 10, 2020). Submission
to the NIST post-quantum project.

[AASA+20] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh Dang, John
Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta, et al. Status report on
the second round of the NIST post-quantum cryptography standardization process.
US Department of Commerce, NIST, 2020.

[ABD+a] Erdem Alkim, Joppe W. Bos, Leo Ducas, Patrick Longa, Ilya Mironov, Michael
Naehrig, Valeria Nikolaenko, Chris Peikert, Ananth Raghunathan, and Douglas Stebila.
FrodoKEM Learning with Errors Key Encapsulation: Algorithm Specifications and
Supporting Documentation (September 30, 2020). Submission to the NIST post-
quantum project.

[ABD+b] Roberto Avanzi, Joppe Bos, Leo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyuba-
shevsky, John Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS-
Kyber (version 3.0) - Algorithm Specifications And Supporting Documentation (Octo-
ber 1, 2020). Submission to the NIST post-quantum project.

[ACLZ20] Dorian Amiet, Andreas Curiger, Lukas Leuenberger, and Paul Zbinden. Defeat-
ing newhope with a single trace. In International Conference on Post-Quantum
Cryptography, pages 189–205. Springer, 2020.

15

[AH21] Daniel Apon and James Howe. Attacks on NIST PQC 3rd Round Candidates, 2021.
Invited talk at Real World Crypto 2021, https://iacr.org/submit/files/slides/
2021/rwc/rwc2021/22/slides.pdf.

[BBC+] Daniel J Bernstein, Billy Bob Brumley, Ming-Shing Chen, Chitchanok Chuengsatian-
sup, Tanja Lange, , Adrian Marotzke, Bo-Yuan Peng, Nicola Tuveri, Christine van
Vredendaal, and Bo-Yin Yang. NTRU Prime: round 3 (October 7, 2020). Submission
to the NIST post-quantum project.

[BBF+] Hayo Baan, Sauvik Bhattacharya, Scott Fluhrer, Oscar Garcia-Morchon Garcia-
Morchon, Thijs Laarhoven, Rachel Player, Ronald Rietman, Markku-Juhani O. Saari-
nen, , Ludo Tolhuizen, Jos’e Luis Torre-Arce, and Zhenfei Zhang. Round5 : Algorithm
Specifications And Supporting Documentation (10th April, 2020). Submission to the
NIST post-quantum project.

[BCLvV17] Daniel J Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Christine van
Vredendaal. Ntru prime: reducing attack surface at low cost. In International
Conference on Selected Areas in Cryptography, pages 235–260. Springer, 2017.

[BDH+21] Shivam Bhasin, Jan-Pieter D’Anvers, Daniel Heinz, Thomas Pöppelmann, and Michiel
Van Beirendonck. Attacking and defending masked polynomial comparison for lattice-
based cryptography. 2021.

[BDHD+19] Ciprian Băetu, F Betül Durak, Loïs Huguenin-Dumittan, Abdullah Talayhan, and
Serge Vaudenay. Misuse attacks on post-quantum cryptosystems. In Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, pages
747–776. Springer, 2019.

[BGRR19] Aurélie Bauer, Henri Gilbert, Guénaël Renault, and Mélissa Rossi. Assessment of the
key-reuse resilience of newhope. In Cryptographers’ Track at the RSA Conference,
pages 272–292. Springer, 2019.

[BPR] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and
lattices. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 719–737. Springer.

[CDH+] Cong Chen, Oussama Danba, Jeffrey Hoffstein, Andreas Hülsing, Joost Rijneveld,
John M Schanck, Peter Schwabe, William Whyte, and Zhenfei Zhang. NTRU: Algo-
rithm Specifications And Supporting Documentation (March 20, 2019). Submission
to the NIST post-quantum project.

[CS97] Don Coppersmith and Adi Shamir. Lattice attacks on NTRU. In International
Conference on the Theory and Applications of Cryptographic Techniques, pages 52–61.
Springer, 1997.

[DCQ19] Jintai Ding, Chi Cheng, and Yue Qin. A simple key reuse attack on LWE and Ring
LWE encryption schemes as key encapsulation mechanisms (KEMs). IACR ePrint
Archive, page 271, 2019.

[DKSRV] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik Ver-
cauteren. SABER: Mod-LWR based KEM (Round 3 Submission). Submission to the
NIST post-quantum project.

16

https://iacr.org/submit/files/slides/2021/rwc/rwc2021/22/slides.pdf
https://iacr.org/submit/files/slides/2021/rwc/rwc2021/22/slides.pdf

[DTVV19] Jan-Pieter D’Anvers, Marcel Tiepelt, Frederik Vercauteren, and Ingrid Verbauwhede.
Timing attacks on error correcting codes in post-quantum schemes. In Proceedings of
ACM Workshop on Theory of Implementation Security Workshop, pages 2–9. ACM,
2019.

[Flu16] Scott R Fluhrer. Cryptanalysis of ring-LWE based key exchange with key share reuse.
IACR ePrint Archive, 2016.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and
symmetric encryption schemes. In Annual International Cryptology Conference, pages
537–554. Springer, 1999.

[GGJR+11] Benjamin Jun Gilbert Goodwill, Josh Jaffe, Pankaj Rohatgi, et al. A testing method-
ology for side-channel resistance validation. In NIST non-invasive attack testing
workshop, volume 7, pages 115–136, 2011.

[GJN20] Qian Guo, Thomas Johansson, and Alexander Nilsson. A key-recovery timing attack on
post-quantum primitives using the fujisaki-okamoto transformation and its application
on frodokem. In Annual International Cryptology Conference, pages 359–386. Springer,
2020.

[GLRP06] Benedikt Gierlichs, Kerstin Lemke-Rust, and Christof Paar. Templates vs. stochastic
methods. In International Workshop on Cryptographic Hardware and Embedded
Systems, pages 15–29. Springer, 2006.

[HCY20] Wei-Lun Huang, Jiun-Peng Chen, and Bo-Yin Yang. Power analysis on ntru prime.
IACR Transactions on Cryptographic Hardware and Embedded Systems, pages 123–151,
2020.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph Silverman. NTRU: A ring-based public key
cryptosystem. Algorithmic number theory, pages 267–288, 1998.

[JJ00] Éliane Jaulmes and Antoine Joux. A chosen-ciphertext attack against ntru. In Annual
International Cryptology Conference, pages 20–35. Springer, 2000.

[KEF20] Paul Kirchner, Thomas Espitau, and Pierre-Alain Fouque. Fast reduction of algebraic
lattices over cyclotomic fields. In Daniele Micciancio and Thomas Ristenpart, editors,
Advances in Cryptology – CRYPTO 2020, pages 155–185. Springer, 2020.

[KRSS] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen. PQM4:
Post-quantum crypto library for the ARM Cortex-M4. https://github.com/mupq/
pqm4.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning
with errors over rings. In EUROCRYPT, pages 1–23, 2010.

[LSCH10] Mun-Kyu Lee, Jeong Eun Song, Dooho Choi, and Dong-Guk Han. Countermeasures
against power analysis attacks for the ntru public key cryptosystem. IEICE transactions
on fundamentals of electronics, communications and computer sciences, 93(1):153–163,
2010.

[NDGJ21] Kalle Ngo, Elena Dubrova, Qian Guo, and Thomas Johansson. A side-channel attack
on a masked ind-cca secure saber kem. IACR ePrint Archive, 2021.

17

https://github.com/mupq/pqm4
https://github.com/mupq/pqm4

[QCD19] Yue Qin, Chi Cheng, and Jintai Ding. A complete and optimized key mismatch attack
on NIST candidate NewHope. IACR ePrint Archive, page 435, 2019.

[RBRC20] Prasanna Ravi, Shivam Bhasin, Sujoy Sinha Roy, and Anupam Chattopadhyay. On
exploiting message leakage in (few) nist pqc candidates for practical message recovery
and key recovery attacks. IACR Cryptol. ePrint Arch., 2020:1559, 2020.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
Journal of the ACM (JACM), 56(6):34, 2009.

[RJJ+] Prasanna Ravi, Bernhard Jungk, Dirmanto Jap, Zakaria Najm, and Shivam Bhasin.
Feature Selection Methods for Non-Profiled Side-Channel Attacks on ECC. In 2018
IEEE 23rd International Conference on Digital Signal Processing (DSP), pages 1–5.
IEEE.

[RRCB20] Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam Bhasin. Generic
side-channel attacks on cca-secure lattice-based pke and kems. IACR Transactions on
Cryptographic Hardware and Embedded Systems, pages 307–335, 2020.

[SKL+20] Bo-Yeon Sim, Jihoon Kwon, Joohee Lee, Il-Ju Kim, Tae-Ho Lee, Jaeseung Han, Hyojin
Yoon, Jihoon Cho, and Dong-Guk Han. Single-trace attacks on message encoding in
lattice-based kems. IEEE Access, 8:183175–183191, 2020.

[SMS19] Thomas Schamberger, Oliver Mischke, and Johanna Sepulveda. Practical evaluation of
masking for ntruencrypt on arm cortex-m4. In International Workshop on Constructive
Side-Channel Analysis and Secure Design. Springer, 2019.

[WHGH+08] William Whyte, Nick Howgrave-Graham, Jeffrey Hoffstein, Jill Pipher, Joseph H
Silverman, and Philip S Hirschhorn. IEEE P1363. 1 Draft 10: Draft standard for
public key cryptographic techniques based on hard problems over lattices. IACR
EPrint Archive, page 361, 2008.

[WZW13] An Wang, Xuexin Zheng, and Zongyue Wang. Power analysis attacks and counter-
measures on ntru-based wireless body area networks. KSII Transactions on Internet
and Information Systems (TIIS), 7(5):1094–1107, 2013.

[XPRO20] Zhuang Xu, Owen Pemberton, Sujoy Sinha Roy, and David Oswald. Magnifying
side-channel leakage of lattice-based cryptosystems with chosen ciphertexts: The case
study of kyber. Technical report, Cryptology ePrint Archive, Report 2020/912, 2020,
2020.

A. Lattice Preliminaries
A.1. Notation
We denote by Z/qZ the ring of integers modulo a prime q, zero-centered in the range (−q/2, q/2]∩Z.
Given a prime number p, let R and Rq denote Z[x]/(xp − x − 1) and (Z/qZ)[x]/(xp − x − 1).
Polynomials in R or Rq are written in bold lower case letters. The ith coefficient of a polynomial
a ∈ Rq is denoted by a[i]. Multiplication of two polynomials a and b in Rq is denoted by c = a · b.
A polynomial is small if it has coefficients in (Z/3Z), that is, in the set {−1, 0, 1}. A polynomial is

18

said to be of weight-w if exactly w of its coefficients are non-zero. Any polynomial which is both
small as well as weight-w polynomial is said to be a short polynomial. We also denote the space of
all short polynomials by Rsh.

An element x ∈ Rq which is sampled from the distribution D with standard deviation σ is denoted
by x ← D(Rq). Byte arrays of length n are written as Bn. The ith bit in an element x ∈ Zq is
denoted by xi. The acquisition of a side-channel trace t corresponding to a particular operation X
on an input p is denoted by t⇐= X (p).

A.2. NTRU One-Way Function
Hoffstein, Pipher, and Silverman in 1998 [HPS98] proposed the NTRU cryptosystem based on the
N th order Truncated Polynomial Ring Unit. NTRU was the first practical lattice-based public key
encryption scheme. It has a compact public key encryption scheme whose security is derived from a
mixing system, based on polynomial algebra, but does not have any provable security guarantee. It
relies only on a conjectured circular security assumption, better known as the NTRU assumption or
the NTRU OWF, involving factorization of polynomials in polynomial rings [HPS98]. The original
NTRU problem can be formally defined as follows.
Given RNTRU := Zq[x]/(xN − 1), a small invertible polynomial p ← Dσ(RNTRU) and another

small polynomial g← Dσ(RNTRU), distinguish between structured samples g · p−1 ∈ RNTRU from
uniformly random samples in U(RNTRU).

This problem was shown to be reducible to a shortest vector problem (SVP) over a special class of
lattices known as the NTRU lattices [CS97]. It is still not known if the SVP over the NTRU lattices
is as hard as the SVP over general lattices. Notwithstanding, the NTRU problem gained a lot of
traction since its publication in 1998. Over the years, several variants of the NTRU PKE have been
proposed. One of these variants become a part of the IEEE standards under the specifications for
lattice-based public-key cryptography (IEEE 1363.1-2008) [WHGH+08]. It is worth noting that
the NTRU cryptosystem has survived cryptanalysis for almost 24 years now. This instills a lot of
confidence in its security claims despite the lack of provable security guarantee that schemes based on
the LWE/LWR problem have. Two candidate PKE/KEMs in the NIST PQC standardization process
- NTRU [CDH+] and NTRU Prime [BBC+] are based on the paradigm of the NTRU cryptosystem.
NTRU is a main finalist candidate while NTRU Prime is an alternate finalist candidate.

A.3. Streamlined NTRU Prime
NTRU Prime is a suite of two IND-CCA secure KEMs, Streamlined NTRU Prime and NTRU
LPRime. The former is based on the NTRU paradigm, while the latter is built upon the LPR PKE
scheme and is based on the Ring-LWE problem. We focus on the Streamlined NTRU Prime, which
we refer to as NTRU Prime throughout this paper for brevity. In its core is an IND-CPA secure
NTRU-like PKE, which is perfectly correct, that is, without any decryption failure. It achieves
IND-CCA security by using the FO transform. One of the main features of NTRU Prime is its use of
a non-cyclotomic field. Most other lattice-based schemes such as Kyber [ABD+b], Saber [DKSRV],
NewHope [AAB+], and Round5 [BBF+] operate in polynomial rings with a cyclotomic structure.
The choice of a non-cyclotomic field was mainly motivated by a few recent attacks that appear
to gain significant speedup precisely by exploiting the cyclotomic structure [BCLvV17] as well
as serious risks of potential advances in attacks exploiting cyclotomic structure in lattice-based
schemes [KEF20]. In the following, we provide a brief description of the IND-CPA secure NTRU
Prime PKE core, followed by a description of the IND-CCA secure NTRU Prime KEM.

19

A.4. Streamlined NTRU Prime PKE Core
The Streamlined NTRU Prime core is defined by three parameters (p, q, w), where p and q are prime
numbers and w is a positive integer with the following restrictions: 2p ≥ 3w, q ≥ 16w + 1 and
xp − x− 1 is irreducible in (Z/qZ)[x]. NTRU Prime operates in the field (Z/qZ)[x]/(xp − x− 1).
The procedure GenSmall() takes in a small seed ρ ∈ B∗ and uniformly samples for small polynomials
in R3, while GenShort also takes in a small seed ρ ∈ B∗ and uniformly samples for short polynomials
in Rsh. The procedure Round rounds every coefficient of a given polynomial to its nearest multiple
of 3. Algorithm 1 describes the key-generation, encryption and decryption procedures.

The key generation procedure PKE.KeyGen produces a quotient-form NTRU instance h = g/(3f) ∈
Rq, where g ∈ R3 and f ∈ Rsh. Thus, f and g (or, equivalently, ĝ = g−1 ∈ R3) form the secret
key, while h ∈ Rq forms the public key. The hardness of retrieving the secret key from the public
key comes directly from the hardness of inverting the NTRU-OWF. The encryption procedure
PKE.Encrypt takes as input a random short polynomial r ∈ Rsh and generates a product-form
NTRU instance c = Round(r · h), which can also be written as r · h + m with m ∈ R3 being the
error introduced due to the rounding function.
The decryption procedure PKE.Decrypt retrieves r in the following manner. First, a component

a = 3f · c ∈ Rq is computed and each coefficient of a is zero-centered in the range (−q/2, q/2]. The

Algorithm 1: Streamlined NTRU Prime PKE Core
1 Procedure PKE.KeyGen()
2 while g is invertible in R3 do
3 ρ← U(B∗) g← GenSmall(ρ) ∈ R
4 end
5 ĝ = 1/g ∈ R3
6 ρ← U(B∗) f ← GenShort(ρ) ∈ Rsh
7 h = g/(3f) ∈ Rq
8 return (pk = (h), sk = (ĝ, f))
9
1 Procedure PKE.Encrypt(pk, r ∈ Rsh)
2 d = h · r ∈ Rq
3 c = Round(d) ∈ Rq
4 ct = Encode(c) return (ct)
5
1 Procedure PKE.Decrypt(ct, sk)
2 c = Decode(ct) ∈ Rq
3 a = 3f · c ∈ Rq
4 e = a modR3
5 b′ = e · ĝ ∈ R3
6 if Weight(b′) = w then
7 return r′ = b′
8 end
9 else

10 return r′ = (1, 1, . . . , 1, 0, 0, . . . , 0) ∈ Rsh
11 end

20

computation of a ∈ Rq proceeds as follows:

a = 3f · c mod q = 3f · (r · h + m) mod q = 3f · r · h + 3f ·m mod q
= 3f · r · g/3f + 3f ·m mod q = 3f ·m + g · r mod q. (1)

The parameters (p, q, w) are chosen to ensure that the true (non-reduced) value of every coefficient
a[i] for i ∈ [0, p−1] always lies in (−q/2, q/2]. Thus, the reduced zero-centered value of a = 3f ·m+g·r
modulo q is nothing but its true value. This requirement of arriving at the true value of a in line
4 is key to the correctness of the decryption procedure. When a ∈ Rq is reduced modulo 3, the
3f ·m component of a gets cancelled out, yielding e = g · r ∈ R3. Then, the product e · ĝ ∈ R3 is
computed. The result is r′, which is always equal to r for a valid ciphertext. If r′ ∈ Rsh, then r′ is
the valid decryption output, otherwise a fixed random value of (1, 1, . . . , 1, 0, 0, . . . , 0) ∈ R3 is the
decryption output. The complete computation of r′ in the decryption goes as follows:

r′ = ((3f · c ∈ Rq) mod 3) · ĝ ∈ R3

= ((3f ·m + g · r ∈ Rq) mod 3) · ĝ ∈ R3 = g · r · ĝ ∈ R3 = r. (2)

A.5. Streamlined NTRU Prime KEM
The Streamlined NTRU Prime PKE core is IND-CPA secure. The FO transform converts it into
an IND-CCA secure KEM. The transform instantiates the PKE.Encrypt, PKE.Decrypt, and hash
functions in the IND-CCA secure encapsulation and decapsulation procedures. Algorithm 2 provides
the detail. In theory, the FO transform helps protect KEMs against chosen-ciphertext attacks since
the validity of ciphertexts are checked through the re-encryption procedure during decapsulation
in the if loop in KEM.Decaps. Thus, the attacker only sees decapsulation failures for invalid
ciphertexts, with very high probability. Moreover, the decryption procedure is encapsulated within
the decapsulation procedure, preventing the attacker from observing the output of the decryption
module directly. This provides strong theoretical security guarantees against chosen-ciphertext
attacks which exploit information about the decryption output in IND-CPA secure PKE/KEMs.

In this work, we show that side-channel information can be used to instantiate different types of
oracles which provide varying degree of information about the decryption output, resulting in secret
key recovery.

A.6. Test Vector Leakage Assessment (TVLA)
The Test Vector Leakage Assessment (TVLA) [GGJR+11] is a popular conformance-based method-
ology in side-channel analysis. It has been widely used in both academia and the industry to
perform side-channel evaluation of cryptographic implementations. TVLA involves the computation
of the univariate Welch’s t-test over two given sets of side-channel measurements to identify their
differentiating features. By testing for a null hypothesis that the mean of the two sets is identical, a
PASS/FAIL decision is made. The TVLA formulation over two sets of measurements Tr and Tf is
given by:

TV LA := µr − µf√
σ2

r
mr

+ σ2
f

mf

, (3)

where µr, σr and mr (resp. µr, σr and mr) are the mean, standard deviation and cardinality of the
trace set Tr (resp. Tf).

21

Algorithm 2: FO transform of a IND-CPA secure PKE into IND-CCA secure KEM
1 Procedure KEM.Encaps(pk)
2 ρ← U(B∗)
3 r = GenShort(ρ) ∈ Rsh
4 c = PKE.Encrypt(pk, r)
5 d = H(r, pk)
6 ct = (c, d) K = G(1, r, ct)
7 return ct,K

8
1 Procedure KEM.Decaps(sk, pk, ct)
2 ct = (c, d) r′ = PKE.Decrypt(sk, c)
3 d′ = H(r′, pk)
4 c′ = PKE.Encrypt(pk, r′)
5 ct′ = (c′, d′)
6 if ct′ = ct then
7 return K = G(1, r′, ct′)
8 end
9 else

10 return K = G(1, ρ′, ct′) /* ρ′ ∈ B32 is a random secret */
11 end

The null hypothesis is rejected with a confidence of 99.9999% only if the absolute value of the t-test
score is greater than 4.5 [GGJR+11]. A rejected null hypothesis implies that the two trace/data
sets are different and might leak some side-channel information and, hence, is considered a FAIL
test. While TVLA is mainly used as a metric for side-channel evaluation, it has also been used as a
tool for feature selection in multiple cryptanalytic efforts [RJJ+]. Here we use TVLA as a tool for
feature selection from side-channel measurements [GLRP06].

B. Plaintext-Checking Oracle-based SCA
This section provides a detailed description of the PC oracle attack on Streamlined NTRU Prime
KEM. The reader is referred to Subsection 3.1 for high level details about the attack. Our PC oracle
attack works by constructing malicious ciphertexts and, subsequently, by utilizing side-channel
information from the decryption of these malicious ciphertexts to perform key recovery. It falls
broadly into two main phases.

1. In the first phase, we search for a ciphertext which when decrypted, leads to what we refer to
as a single collision event. We query the decapsulation device with several specially crafted
ciphertexts and analyze their side-channel leakage in order to detect the single collision event.
A chosen ciphertext that produces a single collision event is denoted as the base ciphertext
cbase. This ciphertext provides crucial information about the secret polynomials f and g and
is also used as an importance component for key recovery in the subsequent attack phase.

2. In the attack phase, we use the base ciphertext cbase to construct new attack ciphertexts.
Upon decryption, their corresponding internal variable e (4 in PKE.Decrypt of Alg.1) can only
belong to two exclusive classes: e = 0 or e 6= 0 with a single non-zero coefficient. Moreover,
the value of e depends on a targeted portion of the secret key. We exploit side-channel leakage
from operations manipulating e to obtain information about the value of e, thereby realizing

22

a practical PC oracle. The oracle’s responses (e = 0 or e 6= 0) obtained for several attack
ciphertexts is used to recover the full secret key.

In the following, we describe the first phase of our PC oracle-based attack which involves retrieving
the base ciphertext cbase.

B.1. Retrieving the Base Ciphertext cbase

Our construction of chosen ciphertexts for Streamlined NTRU Prime KEM is inspired by the
chosen-ciphertext attack proposed by Jaulmes and Joux on the classical IND-CPA secure NTRU
PKE scheme in Crypto 2000 [JJ00]. We begin with an intuition for the approach before proposing a
concrete methodology. The notations are from Algorithm 1.

B.1.1. Intuition

We first analyze the effect of decrypting the ciphertext c = k + k · h, where k ∈ Z+, by looking at
the computation of a = 3f · c in line 3 of PKE.Decrypt:

a = 3f · c = k · 3f + k · h · 3f = 3k · f + k · g/3f · 3f = 3k · f + k · g. (4)

The coefficients of both f and g are in [−1, 0, 1]. Thus, the absolute maximum value of a coefficient,
say a[i], is obtained when the corresponding coefficients f [i] and g[i] simultaneously take their
maximum absolute value, that is f [i] = g[i] = ±1. We call the event when the corresponding
coefficients of two or more polynomials attain their maximum absolute value a collision. Thus,
a[i] = 4k (resp. −4k) when f [i] = g[i] = +1 (resp. −1). We now choose a suitable positive integer
k, with 3 | k, based on the conditions

4k > q/2 and s · k < q/2 for s ∈ [0, 3]. (5)

For the sake of explanation, let us assume that f and g only collide at the ith coefficient with the
value of +1. In that case, a has the coefficients

a[j] > q/2 if j = i and a[j] < q/2 if j 6= i. (6)

Since 3 | k, it is clear that 3 | a[i], for i ∈ [0, p− 1]. But when a is reduced modulo q (zero-centered
in (−q/2, q/2])), all coefficients, except for a[i], retain their true value and remain a multiple of 3.
This is because a[i] > q/2 and, when reduced modulo q, is subtracted by q, which is a prime. More
concretely,

a mod q = a − q · xi. (7)

Subsequently, e(= a mod 3) ∈ R3 is nothing but

e = (−q mod 3) · xi. (8)

In other words, we ensure that a[i] > q/2 only during a collision, while a[i] < q/2 otherwise. Thus,
for a choice of k in Equation (5), e[i] 6= 0 denotes collision at i, while all other coefficients are zero.

While the above holds for a collision with a value of +1, the same also applies when the collision
value is −1. Subsequently, a[i] < −(q/2) and, thus, when q is added to a[i] to zero-center it in the
range [−q/2, q/2], the corresponding e[i] 6= 0, This implies a collision at i. Henceforth, to avoid
repetitions, we focus only on collision with the highest positive value (+1 in this case). The same
analysis holds for the lowest negative value (−1 in this case).

23

In our attack, it would be ideal to have a single collision between f and g, resulting in e having a
single nonzero coefficient. For illustration, we use one particular parameter set of Streamlined NTRU
Prime, namely sntrup761. It is defined by (p, q, w) = (761, 4591, 286). We analyze the probability of
a single collision, denoted by pcoll1, between f and g for sntrup761. We denote by p′ the probability
of a collision at any given coefficient and by

pr′ := pr1 + pr−1, where prx(x = ±1),

the probability of a collision between f and g with a matching coefficient of ±1. For f ∈ Rsh and
g ∈ R3, we calculate pr′ := (w/3p) and, hence, for the parameter set sntrup761, we approximate pr′
to 0.125. The probability of a single collision between f and g is

pcoll1 = p ∗ (pr′ · (1− pr′)p−1).

In sntrup761 this value is impractically low at 8 · 10−43. We require better choices for the ciphertexts
to limit the number of collisions and, thus, the nonzero coefficients in e.

B.1.2. Constructing Ciphertexts for Single Collision

We split the value of a in Equation (4) into

a = 3k · f + k · g = 3k · t1 + k · t2, (9)

where t1 = f and t2 = g. To limit the number of collisions between t1 and t2 we make a generic
choice for c. This choice is

c = k1 · (xi1 + xi2 + . . .+ xim) + k2 · (xj1 + xj2 + . . .+ xjn) · h = k1 · d1 + k2 · d2 · h, (10)

where both d1 and d2 are polynomials with, respectively, m and n number of nonzero coefficients
(+1). The corresponding a = (3f · c) is given by

a = k1 · d1 · 3f + k2 · d2 · h · 3f = 3k1 · d1 · f + k2 · d2 · g = 3k1 · (t1) + k2 · (t2), (11)

where t1 = (d1 · f) and t2 = (d2 · g). We note that the product of a polynomial d with x modulo
(xp − x− 1) is

(d · x) mod (xp − x− 1) = d[p− 1] + (d[0] + d[p− 1])x+ d[1]x2 + . . .+ d[p− 2]xp−1, (12)

with coefficients in {−2,−1, 0, 1, 2}. Multiplying by x rotates d by one position to the left and adds
d[p− 1] to the coefficients d[0] of x0 and d[1] of x1. We denote the resulting product by Rotp(d, 1)
and refer to it informally as the rotated variant of d by 1 degree. More generally, the product (d ·xi)
modulo (xp − x− 1), denoted by Rotp(d, i), is given by

(d · xi) mod (xp − x− 1) = dp−i + (dp−i + dp−i−1) x+ . . .

+ (dp−1 + d0)xi + d1x
i+1 + . . .+ dp−i−1x

p−1, (13)

with all coefficients in {−2,−1, 0, 1, 2}. Thus, t1 = d1 · f is

t1 = d1 · f = (xi1 + xi2 + . . .+ xim) · f
= f · xi1 + f · xi2 + . . .+ f · xim

= Rotp(f , i1) + Rotp(f , i2) + . . .+ Rotp(f , im), (14)

24

which is precisely the sum of rotations of f by varying degrees, governed by {i1, i2, . . . , im}. Similarly,
t2 is the sum of rotations of g by the degrees in {j1, j2, . . . , jn}. A collision occurs at position i
only if all the corresponding coefficients of Rotp(f , u), for u ∈ {i1, i2, . . . , im}, and Rotp(g, v), for
v ∈ {j1, j2, . . . , jn}, are either +2 or −2. We observe that the probability of collisions quickly
degrades as (m,n) increase.

For the choice of c in Equation (10), the maximum possible value for the corresponding coefficient
of a in Equation (11) is (3k1 · 2m+ k2 · 2n), which is obtained upon a collision. We therefore choose
values for (k1, k2) that satisfy three conditions:

3 | k1, 3 | k2, 3k1 · r + k2 · s
{
> q/2, if r = 2m, s = 2n,
< q/2, otherwise,

(15)

with 0 ≤ r ≤ 2m and 0 ≤ s ≤ 2n. In other words, we choose (k1, k2) such that a[i] > q/2 only when
there is a collision at i, while a[i] < q/2 otherwise. This ensures e[i] 6= 0 when there is a collision at
i and e[i] = 0 otherwise.
Summarizing the above discussion, we carefully select values for (m,n) and (k1, k2) to form our

chosen ciphertexts in Equation (10). The choice for (m,n) must be such that there is at most a
single collision with very high probability. Given (m,n), we then take (k1, k2) which satisfies the
conditions in Equation (15) such that e[i] 6= 0 indicates a collision at the ith coefficient. We also
note that concrete values for both (m,n) and (k1, k2) can be chosen and fixed for a given parameter
set of Streamlined NTRU Prime.

B.1.3. Additional Challenge: Use of Rounded Ciphertexts

Streamlined NTRU Prime uses specially structured rounded ciphertexts where all coefficients are
multiples of 3. Rounding is used to deterministically generate the message component m ∈ R3.
While the encryption procedures in NTRU-like PKE schemes typically take m as an explicit input
and add it to the product h · r ∈ Rq, Streamlined NTRU Prime simply rounds all the coefficients of
h · r to their nearest multiple of 3. The rounding noise introduced in the product (h · r) acts as the
implicit message m ∈ R3.

Since 3 exactly divides all the coefficients of a valid ciphertext, the scheme proposes to send
only the quotient of each coefficient upon division by 3, rather than the actual value. Doing so
reduces the ciphertext size. Thus, every coefficient of the received ciphertext is multiplied by 3
before being used as the input to the decryption procedure. We note that the coefficients of our
chosen ciphertexts according to Equation (10) are not exact multiples of 3. Our chosen ciphertexts,
therefore, also need to be rounded. The rounding noise in the ciphertext is denoted by m′ ∈ R3.
Thus, the actual value of our chosen ciphertext used in decryption is given by

c = Round(k1 · (xi1 + xi2 + . . .+ xim) + k2 · (xj1 + xj2 + . . .+ xjn) · h)
= k1 · (xi1 + xi2 + . . .+ xim) + k2 · (xj1 + xj2 + . . .+ xjn) · h + m′

= (k1 · d1 + k2 · d2 · h) + (m′) (16)

The corresponding a = 3f · c is

a = k1 · d1 · 3f + k2 · d2 · h · 3f + m′ · 3f
= (3k1 · d1 · f) + (k2 · d2 · g) + (3f ·m′)
= s + n, (17)

25

300 200 100 0 100 200 300

k

0.000

0.005

0.010

0.015

0.020

0.025

P
r(

n
[j

]
=

 k
)

Figure 12: Distribution of coefficients of the noise n = 3f ·m′ with mean 0 and σ ≈ 57 for sntrup761
parameter set of Streamlined NTRU Prime

where s := (3k1 ·d1 · f +k2 ·d2 ·g) is the signal component while n := 3f ·m′ is the noise component.
Thus, we have an additional key-dependent noise of (3f ·m′) in a. But, m ∈ R3 and f ∈ Rsh are
small polynomials, making the size of the noise 3f ·m′ much smaller in comparison to the range q.
For sntrup761, Figure 13 shows the distribution of the coefficients n[j] for j ∈ [0, p− 1] of n. It

is Gaussian with mean 0 and σ ≈ 57, which is much less than q = 4591. The noise polynomial
n = 3f ·m′ is a multiple of 3 and will get rounded to 0 when a is reduced modulo 3. Though n is
small, when added to coefficients of a near the limit of q/2, the noise is capable of giving rise to a
false positive or a false negative collision event. For a given choice of (m,n) and (k1, k2), the largest
possible value of a coefficient of a is denoted by m1 := (3k1 · 2m+ k2 · 2n). The next largest value is
denoted by m2. As stated in Equation (15), we choose values for (k1, k2) such that m1 > q/2 and
m2 < q/2. Let 0 ≤ r ≤ 2m and 0 ≤ s ≤ 2n. Let dm1 (resp. dm2) denote the distance between m1
(resp. m2) and q/2, where

dm1 = ‖(3k1 · 2m+ k2 · 2n)− q/2‖

dm2 =
∥∥∥∥∥
(

max
{(r=2m,s=2n)

(3k1 · r + k2 · s)
)
− q/2

∥∥∥∥∥ . (18)

A false positive collision occurs when s[i] = m2 and the corresponding n[i] > dm2, ensuring that
s[i] + n[i] > q/2 and e[i] 6= 0. Similarly, a false negative can occur when s[i] = m1 due to a valid
collision. If, however, n[i] < −dm1, then s[i] + n[i] < q/2 and e[i] = 0, which suppresses the
collision.

Due to rounding, the noise component n cannot be removed. The possibility of a false positive or
false negative for a collision however can be minimized by placing additional constraints in choosing
the tuple (k1, k2). There might be multiple possible values for (k1, k2) which satisfy the necessary
condition stated in Equation (15). We choose the tuple that maximizes the distance dm1 (for m1)
and dm2 (for m2) to keep the noise coefficient n[j] from growing large enough to push a[j] to the
other side of q/2, which is when an error occurs in the value of e. As long as the error n[j] does not
push a[j] to the other side of q/2, there will be no error in the value of e. In other words, m1 and
m2 should lie as far as possible on either side of the limit q/2. This additional constraint in the
choice of (k1, k2) is simply to maximize the distance tuple (dm1, dm2).

Choosing Concrete Values for the Chosen-Ciphertext: We have two primary constraints.
We need to select the values for (m,n) to limit the number of collisions to at most 1. For sntrup761,
we empirically arrived at (m,n) = (1, 3). The noise n[j] is normally distributed with mean 0

26

and σ ≈ 50. Choosing (k1, k2) = (102, 303) results in (dm1, dm2) = (135, 168), minimizing the
probability that the noise induces errors in the value of e. We once again note that the values for
(m,n) and (k1, k2) can be fixed and chosen beforehand for a given parameter set of Streamlined
NTRU Prime.

B.1.4. Detecting Collision through Side-Channels

Given (m,n) and (k1, k2), we randomly select polynomials d1 and d2 in Equation (10) until we
arrive at a ciphertext c having a single nonzero coefficient for e. Since e is an internal variable, it
is not possible to classically obtain information about its value. Hence, we utilize side-channel to
obtain it. In particular, we want to identify e 6= 0 through side-channel information. This leads to a
classification problem with two classes, namely e = 0 and e 6= 0. We denote the class e = 0 by eO
and the class e 6= 0 by eX.
For eO, b′ = e · ĝ = 0 (see line 5 of PKE.Decrypt) and, hence, Weight(b′) = wb′ = 0. However,

for eX with a single nonzero coefficient, b′ 6= 0 with uniformly random coefficients in {−1, 0, 1} and,
hence, wb′ 6= 0. Although the exact value depends on the secret polynomial g, the average value
of wb′ ≈ 500 for the sntrup761 parameter set. This large difference in the weight between the two
classes should be easily distinguishable through the EM side-channel. Refer Subsection 3.1.1 for
complete details about the experimental setup and attack target.

Welch’s t-test for Collision Detection: Obtaining N replicated measurements for each class
eO and eX is the first step. Due to the large difference in weight, we focus on capturing EM signals
from the weight calculation operation in the decryption procedure (Line 6 in PKE.Decrypt). For
eO = 0, we simply choose an all zero ciphertext c = 0. We repeatedly decrypt c = 0 and obtain N
replicated EM measurements. The obtained trace set, corresponding to eO, is denoted by TO. To
test if a given ciphertext c′ results in a collision, we obtain N replicated measurements from the
decryption of c′ and denote the obtained trace set by TX. Let T = TO ∪ TX. We now perform the
Welch’s t-test between TO and TX.

• We center (normalize) each trace ti ∈ T by removing the mean of each trace and dividing by
its standard deviation to obtain t′i. This step is optional but can correct some environmental
effects on measurements, such as DC shifts.

• We compute the Welch’s t-test between the normalized traces in TO and TX (see Equation
(3)). If there is at least a single peak in the t-test plot above the t-test threshold of ±4.5,
then eO 6= eX and, hence, eX 6= 0 with potentially a single non-zero coefficient. Otherwise,
eO = eX = 0. Figure 6(a) depicts the t-test plot when e = 0 for c′. The plot has no peaks
above the threshold. Figure 6(b) corresponds to e 6= 0. In it one can clearly identify several
peaks, well above the threshold ±4.5.

We repeat this test for different choices of (d1,d2) until we obtain one for which e 6= 0, indicating
a possible collision. There is a chance that this collision, instead of being a valid one, is a false
positive. For a chosen tuple (d1,d2) that corresponds to a false positive collision, however, key
recovery cannot be performed correctly. Hence, we have to repeat the process until we obtain a tuple
(d1,d2) that corresponds to a true collision. We denote the corresponding ciphertext as cbase. It is
considered to have passed the test if its t-test plot indicates e 6= 0. We also denote the tuple (d1,d2)
corresponding to cbase by (d1att,d2att). Let d1att and d2att contain m and n terms respectively.

27

The ciphertext cbase can then be represented as

cbase = k1 · (xi1 + xi2 + . . .+ xim) + k2 · (xj1 + xj2 + . . .+ xjn) · h
= k1 · d1att + k2 · d2att · h. (19)

Next, we show how to use (d1att,d2att) of cbase in the attack phase to build new chosen ciphertexts
for full key recovery.

B.2. PC Oracle-based Key Recovery
Attack Overview: The attack works by constructing new ciphertexts using (d1att,d2att) which
collide only at i to recover single coefficients of the secret polynomial f . These ciphertexts are
constructed so that the corresponding e ∈ R3 takes only two values (1) e = 0 and (2) e 6= 0 with
e[i] 6= 0. The value of e depends on the value of a targeted coefficient of f . This binary information
obtained using side-channels over several chosen ciphertexts leads to a complete recovery of f one
coefficient at a time.

B.2.1. Attack Methdology

We build, using (d1att,d2att), the ciphertext

catt = `1 · d1att + `2 · d2att · h + `3 = cbase + `3 · xu, (20)

where `1, `2, `3 ∈ Z+, u ∈ [0, p− 1] and cbase = `1 · d1att + `2 · d2att · h. Let the error introduced
due to rounding be m′ ∈ R3. Thus, a = 3f · catt is given by

a = 3f · catt

= 3`1 · d1att · f + `2 · d2att · h · 3f + `3 · 3f · xu + 3f ·m′

= 3`1 · d1att · f + `2 · d2att · g + 3`3 · f · xu + 3f ·m′

= 3`1 · d1att · f + `2 · d2att · g + 3`3 · Rotp(f , u) + n, (21)

where n is the noise term 3f ·m′. For a given set of (d1att,d2att) and (`1, `2, `3), the noise polynomial
n remains constant. For the sake of explanation, we assume that d1att and d2att collide at i with a
value of +2. Thus, the coefficients of a can be expressed as

a[j] =
{

3`1 · 2m+ `2 · 2n+ 3`3 · Rotp(f , u)[j] + n[j], if j = i

3`1 · r + `2 · s+ 3`3 · Rotp(f , u)[j] + n[j], if (j 6= i), {(r = 2m, s = 2n).
(22)

In particular, we can represent the coefficient of a at the colliding index i as

a[i] = δ + 3`3 · Rotp(f , u)[i], (23)

where δ := 3`1 · 2m+ `2 · 2n+ n[i] is a constant. Thus, a[i] is linearly dependent on Rotp(f , u)[i].
Let β denote Rotp(f , u)[i]. Based on the rotational property of polynomial multiplication mod

(xp − x− 1) (see Equation 12), we know that

β := Rotp(f , u)[i] =

f [i− r], for 0 ≤ u < i,

f [0] + f [p− 1], if u = i,

f [p− 1 + i− r] + f [p+ i− r], for i < u < p.

(24)

28

By simply changing the rotation index u we can ensure dependency of a[i] (the colliding index i)
with different coefficients of the secret polynomial f . For a given u, the five values in {−2,−1, 0, 1, 2}
are possible candidates for β. Our task is, therefore, to select values for (`1, `2, `3) such that the
occurrence of a[i] > q/2 acts as a binary distinguisher capable of identifying every candidate for β.
To distinguish β = +2, for example, we choose `1, `2, `3, each of which is an integer multiple of 3,
that satisfy the condition

3`1 · r + `2 · s+ 3`3 · β
{
> q/2, if r = 2m, s = 2n and β = 2
< q/2, otherwise,

(25)

with 0 ≤ r ≤ 2m and 0 ≤ s ≤ 2n. This ensures that a[i] > q/2 at the colliding index i when β = +2,
while a[i] < q/2 otherwise. For j 6= i, the coefficients are a[j] < q/2, since there is no other collision
than at index i. It is then certain that e 6= 0 if and only if β = +2. Similar to identifying β = 2
using the tuple (`1, `2, `3), we can identify β = −2 by simply changing the sign of `3, that is by
using (`1, `2,−`3). If, however, e = 0 for both ciphertexts, then β ∈ {−1, 0, 1}. Let O denote the
e = 0 event and X denote the e 6= 0 event. This binary information constitutes a distinguisher for
every candidate for β.

Effect of Rounding Error: Some rounding error n is present on a. Adopting a similar strategy to
the one in Subsection B.1.3, we select (`1, `2, `3) that minimize the possibility of a false positive or a
false negative in the collision. For distinguishing β = 2, the tuple must satisfies Equation (25). At the
colliding index when β = 2, the largest possible coefficient of a ism1 := 3`1 ·2m+`2 ·2n+3`3 ·2 > q/2.
Let the second largest value be m2 < q/2 and the distance between m1 (resp. m2) and q/2 be dm1
(resp. dm2). The values for (`1, `2, `3) should be chosen so as to maximize the distance dm1 and
dm2, where

dm1 = ‖(3`1 · 2m+ `2 · 2n+ 3`3 · 2)− q/2‖ and

dm2 =
∥∥∥∥∥ max
{((r=2m,s=2n)∩(t=2))

(3`1 · r + `2 · s+ 3`3 · t)− q/2
∥∥∥∥∥ , (26)

with 0 ≤ r ≤ 2m, 0 ≤ s ≤ 2n, and 0 ≤ t ≤ 2. In other words, we should give enough leeway to
ensure that the possible error n[i] does not push a[i] to tho other side of q/2. The same must be
done for all choices of (`1, `2, `3) that are used to distinguish every candidate for β. Similar to the
tuple (m,n) and (k1, k2) in Subsection B.2, the tuple (`1, `2, `3) can be chosen ahead and fixed for a
given parameter set of Streamlined NTRU Prime.
Table 1 is the decision table for the sntrup761 parameter set. It shows unique distinguishability

for every candidate for β ∈ {−2,−1, 0, 1, 2}, based on O or X for chosen ciphertexts constructed
using concrete values for (`1, `2, `3). Every candidate for β = Rotp(f , u)[i] can be uniquely identified
based on the information about O or X from only four chosen ciphertexts.

Since e is an internal variable, we use side-channels information to distinguish between the classes
O and X. As in Subsection B.1.4, we used the Welch’s t-test to identify if e 6= 0 for a given chosen
ciphertext. The peaks in the t-test plot above the pass/fail threshold of ±4.5 in Figure 6(b) are
precisely the differentiating features. In the following discussion, we demonstrate techniques to
leverage the identified features in the t-test plot to build templates for the two classes O and X.
The templates will then be used to classify a given single trace into either of the two classes with a
very high success rate.

29

Table 1: Unique distinguishability of every candidate for β ∈ [−2, 2] depending on e = 0 (the event
O) or e 6= 0 (the event X) for sntrup761 of Streamlined NTRU Prime KEM

Secret Coeff.

Either e = 0 (event O) or e 6= 0 (event X)

(`1, `2, `3)

(93, 276, 48) (93, 276,−48) (78, 237, 78) (78, 237,−78)

-2 O X O X

-1 O X O O

0 O O O O

1 X O O O

2 X O X O

B.2.2. Welch’s t-test based template approach for classification

We select features of the t-test plot between TO (e = 0) and TX (e 6= 0) whose absolute t-test
value is greater than a certain chosen threshold Thsel as our set P of Points of Interest (PoI). A
reduced trace set T ′O and T ′X is constructed by using points in P. The chosen threshold Thsel shall
preferably be slightly greater than ±4.5 for better distinguishability. For the t-test results in Fig.6,
we choose ±7 as a convenient threshold. We subsequently calculate the respective means of T ′O and
T ′X, denoted by mO,P and mX,P respectively, which are the reduced templates for each class.
Given a single trace t for classification, it is normalized such that t′ = t− t to obtain a reduced

trace t′P . We then compute the sum-of-squared difference Γ∗ of the trace with each reduced template:

ΓO = (t′P −mO,P)T · (t′P −mO,P)
ΓX = (t′P −mX,P)T · (t′P −mX,P) (27)

The trace t falls into the class that corresponds to the least sum-of-squared difference. Thus, a
single power/EM trace of the targeted operation is sufficient to distinguish between X or O. Thus,
single side-channel traces from the decryption of four chosen ciphertexts constructed according
to Equation (35) can recover β = Rotp(f , u)[i]. Figure 7 visualizes the matching of the reduced
template of a given attack trace tr with the reduced templates of the respective classes O and X.
There is a clear distinguishability between the reduced templates of the two classes, leading to a
classification with 100% success rate.

B.2.3. Recovering the Full Secret Key

We have demonstrated the recovery of a single coefficient β = Rotp(f , u)[i]. By simply changing the
rotation index u, we can recover Rotp(f , u)[i] for all u ∈ [0, p− 1]. However, recovery of the exact
secret polynomial f also requires knowledge about (1) the colliding index i and (2) collision value
(+2/− 2), both of which cannot be inferred through side-channels using our technique. Thus, we
need to try out all p possible values for the collision index i as well as two choices for the collision
value. This amounts to a total of 2p choices for the secret key and for sntrup761, this amounts to
only 1522 choices. Let us denote the recovered secret key by f ′. For each choice of f ′, we check
if f ′ ∈ Rsh and compute the other secret polynomial g′ ∈ R3 to check if known ciphertexts are
decrypted correctly.

30

It is possible that none of the guessed f ′ is correct, which means that the noise polynomial n
is probably large enough for the chosen ciphertexts corresponding to cbase, that is, corresponding
to (d1att,d2att), to induce errors in e. Another possibility is that, for a given (d1att,d2att), the
side-channel oracle’s responses do not correspond to any of the candidates for the target coefficient.
This situation may arise due to errors in e caused by the noise. In these cases, we can simply reject
the current (d1att,d2att) and initiate a search for a new one before repeating the attack until the
correct f is recovered.

B.2.4. Limitations of the PC oracle-based SCA

The ciphertexts used for the PC oracle attack limit the intermediate variable e to only two possible
values (i.e.) e = 0 (Class O) and e = ±1 · xi (i.e.) e 6= 0 (Class X). When e = 0, b′ = 0 (Line 5 of
PKE.Decrypt in Alg.1). When e = ±1 · xi, b′ has uniformly random coefficients in {−1, 0, 1} whose
exact value depends on the secret polynomial g. In both cases, the weight of b′ is not equal to w.
Thus, the decryption procedure only returns the constant (1, 1, . . . , 1, 0, 0, . . . , 0) ∈ Rsh (Line 10) for
all the attack ciphertexts used for the PC oracle-based attack.
Thus, the effect of variable e (O/X) for the attack ciphertexts does not propagate beyond

the decryption procedure. Thus, the PC oracle attack can only be carried out using side-channel
information from operations within the decryption procedure. In particular, operations manipulating
e within decryption (operations enclosed in rectangular box in Fig.3). This restricts an attacker
from utilizing side-channel information from operations after decryption (i.e.) operations within the
re-encryption procedure (line 4 of KEM.Decaps in Alg.2).

In the following, we improve upon the PC oracle-based attack to propose a novel DF oracle-based
attack on Streamlined NTRU Prime. The improved attack enables an attacker to also utilize
side-channel information from many more operations within the decapsulation procedure to perform
side-channel assisted key recovery.

C. Decryption Failure Oracle-based SCA
This section provides a detailed description of the DF oracle attack on Streamlined NTRU Prime
KEM. The reader is referred to Subsection 3.2 for high level details about the attack. Similar to the
PC oracle attack, The DF oracle attack is performed in two phases.

1. The first phase involves search for a base ciphertext cbase which corresponds to a single
collision event. This ciphertext when added to cvalid should exactly perturb a single coefficient
of evalid resulting in a decryption failure. A decryption failure detected through side-channel
leakage indicates single collision event with a very high probability.

2. In the second phase, cbase is used to construct new perturbed attack ciphertexts catt whose
decrypted message can only have two possible values (i.e.) rvalid/rinvalid. Side-channel leakage
is used to detect decryption success/failure thereby realizing a practical DF oracle. This
information obtained over several such attack ciphertexts results in full key recovery.

In the following, we describe the first phase of our DF oracle attack which involves retrieving the
base ciphertext cbase.

31

C.1. Retrieving the Base Ciphertext cbase

We construct a valid ciphertext cvalid = Round(h · r) (Line 3 in PKE.Encrypt in Alg.1), whose
corresponding a = (3f · cvalid) is given as

avalid = g · r + 3f ·m (28)

where m is the rounding error. We construct a perturbation ciphertext c′ (similar to cbase in
Equation 10 used for the PC oracle attack) as follows:

c′ = k1 · (xi1 + xi2 + . . .+ xim) + k2 · (xj1 + xj2 + . . .+ xjn) · h = k1 · d1 + k2 · d2 · h, (29)

where 3 | k1, 3 | k2 and polynomials (d1,d2) are respectively with, m and n number of nonzero
coefficients (+1). Upon decrypting c′, the corresponding a′ = (3f · c′) is given as

a′ = k1 · d1 · 3f + k2 · d2 · g + 3f ·m′′ (30)

We use c′ to perturb cvalid in the following manner:

cpert = Round(h · r + c′) = Round(h · r + k1 ·d1 + k2 ·d2 ·h),= h · r + k1 ·d1 + k2 ·d2 ·h + m′, (31)

where m′ is the rounding error. Upon decrypting cpert, the corresponding a = (3f · cpert) is given by

a = g · r + k1 · d1 · 3f + k2 · d2 · g + 3f ·m′ (32)

where the term 3f ·m′ is denoted as the rounding error component n. Thus, a is essentially the
sum of avalid (Equation 28) and a′ (Equation 30) along with some rounding error n′′. In order to
induce a single coefficient error in a, only a single coefficient of a should be pushed beyond the q/2
threshold with the help of the perturbation component a′ (i.e.) (avalid + a′ + n′′)[i] > q/2.
The absolute maximum value for a coefficient of the perturbation component a′ (Eqn.30) is

m1 = (3k1 · 2m+ k2 · 2n) which is obtained upon a collision. Let the next largest possible value be
denoted as m2. The tuple (m,n) for c′ (Eqn.29) is chosen so as to have atmost a single collision
with a very high probability. Upon choosing (m,n), we also need to choose concrete values for
the tuple (k1, k2). Let us say we use the same constraints that were used for the PC oracle attack
(Subsection C.1). Firstly, we choose (k1, k2) such that the largest possible coefficient m1 > q/2 and
m2 < q/2 (Eqn.15). Moreover, we impose additional constraints so as to maximize the distance
tuple (dm1, dm2) (i.e.) distance between (m1,m2) respectively, from the q/2 threshold. This is done
so as to avoid accidental crossovers near q/2 due to the rounding error n (Equation 18).

However, apart from the rounding error n, the term g ·r (denoted as gr) in Eqn.32 also contributes
to crossovers near q/2. So, we denote n′ as the new error component (i.e.) n′ = g · r + 3f ·m′.
More concretely, a collision at i (i.e.) a′[i] > q/2 does not guarantee a[i] > q/2. For instance, it is
possible that a′[i] = q/2 + γ (due to a collision) where γ > 0, but a[i] < q/2 since n′[i] < −γ. This
suppresses collision at i therefore also suppresses the decryption failure. This is considered to be
a false negative event. Similarly, a false positive at i can also occur (i.e.) a[i] > q/2 even if there
is no collision at i. For sntrup761, Figure 13 shows the distribution of the coefficients of n′. It is
Gaussian with mean 0 and σ ≈ 53. We note that the span of the noise distribution is slightly larger
than that for the PC oracle attack (σ ≈ 50).

A false negative only results in a retry to identify another perturbation ciphetext c′. However, a
false positive results in using a bad perturbation ciphertext c′ for the attack phase, which does not

32

300 200 100 0 100 200 300

k

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

P
r(

n
'[

j]
 =

 k
)

Figure 13: Distribution of coefficients of noise component n′ = 3f ·m′ + gr with mean 0 and σ ≈ 53
for sntrup761 parameter set of Streamlined NTRU Prime

result in key recovery, thereby yielding unnecessary attack iterations. In order to minimize chances
of a false positive, we choose (k1, k2) using slightly modified constraints as shown below:

3 | k1, 3 | k2, a′[i]
{
> (q/2− ε1) ∪ < (q/2− ε2) if a′[i] = m1,
< q/2, if a′[i] < m2,

(33)

with 0 ≤ r ≤ 2m and 0 ≤ s ≤ 2n and ε1, ε2 > 0. In other words, even if there is a collision at i (i.e.)
a′[i] = m1, m1 < q/2 and is in the range [(q/2− ε1),(q/2− ε2)] (i.e.) slighly less than q/2. Such a
constraint for (k1, k2) results in several advantages. Firstly, this ensures that a[i] > q/2 only when
the following two events occur simultaneously (1) collision at a′[i] and (2) noise coefficient n′[i] > ε2.
This significantly increases false negatives (suppressing a collision), but also equivalently reduces
chances of a false positive. Secondly, choosing m1 to be less than q/2 and farther from it by atleast
ε2 pushes other possible values for coefficients of a′ further away from q/2. This additional leeway
for the other values decreases the chances of a false positive at other indices j 6= i where there is no
collision.
Thirdly, a collision at i is detected only when n′[i] > ε2. In other words, we allow the noise

coefficient to have a large value, which in turn also increases the chances of gr[i] having a large
value. Thus, we not only identify a collision, but also increase the chances of achieving collision at
the index where gr[i] has a large value. This has a positive influence in the key recovery phase of
the attack in the following manner. Referring to the construction of attack ciphertexts for the PC
oracle attack (Subsection B.2.1), we observe that the constraints are placed for choosing (k1, k2) for
the attack ciphertexts such that, both (dm1, dm2) are maximized to avoid false positives/negatives.

As we will see in the following discussion (Subsection C.3), the a variable of the attack ciphertexts
used for key recovery also contain the term gr. Since gr[i] (colliding index) has high chances of
having a large value, this allows us to relax contraints such that dm1 need not be maximized, but
can be chosen such that m1 is closer to q/2. As a result, even if a′[i] = m1 and close to q/2, gr[i]
pushes it further away from q/2 thereby decreasing chances of a false negative in the attack phase.
Since m1 is chosen to be closer to q/2, it gives additional leeway to increase dm2 which again reduces
chances of false positives at other indices j 6= i where collision does not occur. Thus, choosing
(k1, k2) according to Equation 33 for the base ciphertext has positive influence in reducing chances
for a false positive/negative in both the phases of the attack.

Choosing Concrete Values for the Chosen-Ciphertext: Keeping the aforementioned con-
straints in mind, for sntrup761, we choose (m,n) = (1, 3) similar to the PC oracle attack to limit

33

the number of collisions to at most 1 with a high probability. We choose (k1, k2) = (93, 279) whose
(dm1, dm2) = (63, 342). We note that the values for (m,n) and (k1, k2) can be fixed and chosen
beforehand for a given parameter set of Streamlined NTRU Prime.

C.2. Detecting Decryption Failure through Side-Channels
Given (m,n) and (k1, k2), we randomly select polynomials d1 and d2 (Equation 29) until we arrive
at a ciphertext c′ which induces a decryption failure. To detect a decryption failure, we can
utilize side-channel information from any operation within the re-encryption procedure (line 4 in
KEM.Decaps of Alg.2) as well as the operations manipulating e′ within the decryption procedure
(Line 5-6 in PKE.Decruypt of Alg.1). For our experiments, we target the re-encryption procedure. In
particular, we want to distinguish between r′ = r′valid/r′invalid, for which we adopt the same Welch’s
t-test based approach to identify features differentiating the two classes.

We obtained N replicated measurements from decapsulation of the valid ciphertext cvalid (Class
O). The obtained trace set is denoted by TO. We then build a perturbation ciphertext c′ (Equation
29) and subsequently generate cpert. We obtain N similar replicated side-channel measurements for
cpert which is denoted as TX. Figure 10(a) depicts the t-test plot between TO and TX when there is
no decryption failure for cpert (i.e.) r′ = r′valid. The plot has no peaks above the t-test threshold.
Figure 10(b) shows the t-test plot when the decryption of cpert fails (i.e.) r′ = r′invalid. The plot
clearly has several peaks well above the t-test threshold clearly indicating decryption failure.

We repeat the same steps until we find a perturbation ciphertext c′ which results in a decryption
failure. This ciphertext is nothing but the base ciphertext cbase whose corresponding polynomial
tuple (d1,d2) is denoted as (d1att,d2att) with m and n terms respectively. The ciphertext cbase is
given as follows:

cbase = k1 · (xi1 + xi2 + . . .+ xim) + k2 · (xj1 + xj2 + . . .+ xjn) · h
= k1 · d1att + k2 · d2att · h (34)

C.3. DF Oracle-based Key Recovery
We use the polynomials (d1att,d2att) of the base ciphertext cbase to build new perturbed attack
ciphertexts. Side-channel leakage from decapsulation of these attack ciphertexts is used to identify
decryption success/failure which subsequently leads to full recovery of the secret polynomial f one
coefficient at a time.

C.3.1. Attack Methdology

We build, using (d1att,d2att), the ciphertext

c′ = `1 · d1att + `2 · d2att · h + `3 · xu (35)

where `1, `2, `3 ∈ Z+ and u ∈ [0, p− 1]. This ciphertext is used to perturb cvalid in the same manner
as in Eqn.31. Let the resulting ciphertext be denoted as catt and the corresponding a = 3f · catt is
given by

a = 3f · catt

= 3`1 · d1att · f + `2 · d2att · h · 3f + `3 · 3f · xu + gr + 3f ·m′

= 3`1 · d1att · f + `2 · d2att · g + 3`3 · Rotp(f , u) + gr + 3f ·m′, (36)

34

Table 2: Unique distinguishability of every candidate for β ∈ [−2, 2] based on r′ = r′valid (Class O)
or r′invalid (Class X) for sntrup761 of Streamlined NTRU Prime KEM

Secret Coeff.

Either r′valid (Class O) or r′invalid (Class X)

(`1, `2, `3)

(90, 273, 45) (90, 273,−45) (78, 231, 78) (78, 231,−78)

-2 O X O X

-1 O X O O

0 O O O O

1 X O O O

2 X O X O

We use n to denote the rounding error 3f ·m′. For the sake of explanation, we assume that d1att
and d2att collide at i with a value of +2. Thus, the coefficients of a can be expressed as

a[j] =
{

3`1 · 2m+ `2 · 2n+ 3`3 · Rotp(f , u)[j] + n[j], if j = i

3`1 · r + `2 · s+ 3`3 · Rotp(f , u)[j] + n[j], if (j 6= i), {(r = 2m, s = 2n).
(37)

Similar to the PC oracle attack, we choose (`1, `2, `3) such that a[j] < (q/2) for j 6= i. Thus, when
reduced modulo 3, the perturbations are reduced to 0 at indices j 6= i where there is no collision.
However, the occurence of whether or not a[i] > q/2, is made to depend on a single coefficient of
the rotated secret polynomial (i.e.) Rotp(f , u)[i]. Therefore, the occurence of decryption failure also
depends upon this single coefficient of the rotated secret polynomial. For convenience, we use β to
denote Rotp(f , u)[i] and β ∈ [−2, 2].
Thus, we choose (`1, `2, `3) so as to build a binary distinguisher that can uniquely distinguish

every possible candidate for β based on the occurrence of decryption failure (Class O/Class X). We
use very similar constraints, that were used for the PC oracle attack to choose concrete values for
(`1, `2, `3) and build the binary distinguisher for the DF oracle attack. We thus refer the reader to
Subsection B.2 for concrete details of choosing values for the tuple (`1, `2, `3).
Table 2 is the decision table for the sntrup761 parameter set. It shows unique distinguishability

for every candidate for β based on success/failure of decryption (O/X) for the attack ciphertexts
constructed based on Equation 36. Every candidate can be uniquely identified based on the
information about O or X for only four ciphertexts. By simply changing the rotation index u, we
can recover Rotp(f , u)[i] for all u ∈ [0, p− 1] from which the secret polynomial f can be recovered.

C.3.2. Welch’s t-test based template approach for classification

We adopt the t-test based reduced template approach (Subsection B.2.2) to identify decryption
failures through side-channel leakage. We refer to the t-test plot in Fig.10(b) which clearly identifies
the features distinguishing the two classes (i.e.) r′valid (Class O) or r′invalid (Class X). Those features
whose t-test value is greater than a certain a chosen threshold Thsel are selected as the Points of
Interest (PoI) set P. The set P is used to construct reduced templates for the two classes. Given
a trace tr for classification, we construct a reduced trace of tr corresponding to P and perform a
simple LSQ test to determine the class to which tr belongs. Figure 7 visualizes the matching of the
reduced template of a given attack trace tr with the reduced templates of the respective classes O

35

and X. There is a clear distinguishability between the reduced templates of the two classes, and we
were able to correctly classify a given single trace with a 100% success rate.

C.3.3. Recovering the Full Secret Key

While we can use the DF oracle attack to recover coefficients of the rotated secret polynomial
Rotp(f , u) for different rotation constants u ∈ [0, p− 1], recovering the exact secret polynomial f
also requires the following details (1) colliding index i and (2) value of collision (+2/− 2). Since the
DF oracle does not provide these two details, we simply try out all p possibilities for i as well 2
possibilities for the colliding value which amounts to 2p possibilities. For the sntrup761 parameter
set, it amounts to 1522 choices. For each choice, we can check whether the recovered secret f ′ ∈ Rsh
and also compute the corresponding secret polynomial g′ ∈ R3 to check the correctness of decryption.
This will lead to unique identification of the secret polynomials (f ,g). It is also possible that the
secret is not recovered correctly, due to a bad choice of the base ciphertext. In this case, we simply
retry the attack until the correct key is recovered.

36

	Introduction
	Side-Channel Assisted Chosen Ciphertext Attacks on LWE/LWR-based schemes
	PC Oracle-based SCA
	DF Oracle-based SCA
	FD Oracle-based SCA

	SCA Assisted Chosen Ciphertext Attacks on Streamlined NTRU Prime KEM
	Plaintext-Checking Oracle-based SCA
	Experimental Setup:
	Experimental Results:
	Comparison with PC Oracle-based SCA on LWE/LWR-based PKE/KEMs
	A few observations on the PC Oracle-based SCA

	Decryption-Failure (DF) Oracle-based SCA
	Experimental Results:

	Countermeasures
	Conclusion
	Lattice Preliminaries
	Notation
	NTRU One-Way Function
	Streamlined NTRU Prime
	Streamlined NTRU Prime PKE Core
	Streamlined NTRU Prime KEM
	Test Vector Leakage Assessment (TVLA)

	Plaintext-Checking Oracle-based SCA
	Retrieving the Base Ciphertext cbase
	Intuition
	Constructing Ciphertexts for Single Collision
	Additional Challenge: Use of Rounded Ciphertexts
	Detecting Collision through Side-Channels

	PC Oracle-based Key Recovery
	Attack Methdology
	Welch's t-test based template approach for classification
	Recovering the Full Secret Key
	Limitations of the PC oracle-based SCA

	Decryption Failure Oracle-based SCA
	Retrieving the Base Ciphertext cbase
	Detecting Decryption Failure through Side-Channels
	DF Oracle-based Key Recovery
	Attack Methdology
	Welch's t-test based template approach for classification
	Recovering the Full Secret Key

