
Evaluating Kyber post-quantum KEM in a mobile application 

José Paulo da Silva Lima1, Leonardo A. D. S. Ribeiro1, Ruy J. G. B. de Queiroz1, Jonysberg P. 
Quintino1, Fabio Q. B. da Silva1, Andre L M Santos1 and José Roberto2 

1Centro de Informática, Universidade Federal de Pernambuco, Recife - PE, Brazil 
2Samsung Eletrônica da Amazônia LTDA, Campinas - SP, Brazil 

{jpsl3, ladsr, ruy, jpq, fabio, alms}@cin.ufpe.br, jose.junior@samsung.com 

Keywords: Post quantum cryptography. Evaluating PQC algorithm. Mobile application. Kyber algorithm. 

Abstract: The use of Post Quantum Cryptography algorithms has become a requirement to whomever is concerned 
with the security of digital information given the likelihood of the existence and wide availability of quantum 
computers, particularly in mobile devices. Here we present an evaluation of Kyber KEM algorithm running 
on an Android mobile application. The main objective is analysing if Kyber algorithm is effcient for this 
scenario. 

1 INTRODUCTION 

The advancement of quantum computing, as evi-
denced by the in progress standardization process pro-
posed by NIST (PQC-NIST, 2017), evolves asymmet-
ric key cryptography into the post-quantum cryptog-
raphy phase. In fact, work in the area of PQC is 
already making progress as we already have a stan-
dardization process proposed by NIST well in its 3rd 
round. 

Established PQC proposals include Public-key en-
cryption, Key-establishment, and digital signature al-
gorithms that require less computational resources 
than RSA or ECC (Saarinen, 2020), thus are suitable 
replacements for mobile devices, smart cards, and 
Internet of Things (IoT) applications. On the other 
hand, there are prohibitively “heavy” PQC proposals 
for any of these target environments, so it is necessary 
to understand the individual characteristics of each al-
gorithm for the design of the system (Saarinen, 2020). 

While the practical feasibility of quantum com-
puters still arouses some mistrust among scientists, 
with the growing discoveries of quantum computing, 
many researchers are becoming increasingly positive 
about the future of large-scale quantum computers 
(Xu et al., 2018). 

It is also important to highlight a popularization 
of mobile devices, especially smartphones. It is nat-
ural that we think about evaluating the performance 
of these post-quantum algorithms on smartphones 
(Hecht, 2017). Therefore, in this work, we compare 
the performance of Kyber algorithm, which is one of 

the candidates in NIST round 3 standardization pro-
cess, both on a traditional computer and on a smart-
phone. 

For evaluation on the smartphone, we inserted the 
Kyber algorithm into a mobile application prototype 
in which the Kyber algorithm was responsible for pro-
tecting the session key for this application. 

2 PQC ALGORITHMS 

Since 2017, NIST has been leading the process 
of standardizing post-quantum algorithms in the areas 
of key-establishment and digital signature algorithms. 
The competition is currently at the third round 3 of the 
selection process. From 69 participants at the begin-
ning of the selection today we have only four candi-
dates in dispute to be nominated as standard in KEM. 

It is also essential to highlight that among these 
candidates of round 3, a notable presence is that three 
out of the four fnalists are based on lattices. 

Lattice-based encryption has strong security guar-
antees. The underlying diffcult problems have been 
extensively studied for decades, but no effcient algo-
rithm, whether classic or post-quantum, is known for 
these problems. In addition, lattice-based encryption 
enjoys a reduction from worst-case to medium-case. 

Encryption inherently requires middle case in-
tractability, considering the requirement for random 
keys. Reducing the complexity of the middle case to 
the complexity of the worst case essentially ensures 
that lattice-based encryption is secure on average, un-

mailto:jose.junior@samsung.com
mailto:alms}@cin.ufpe.br


less all instances of the underlying lattice problem are 
easy. From a practical point of view, this reduction 
in the worst case makes it much easier to select pa-
rameters and generate keys in lattice-based encryption 
(Khalid et al., 2019). 

For example, the RSA encryption system is based 
on the hardness of factoring integers. But this is a 
worst-case problem. It is known that, if prime num-
bers have certain properties of number theory, the 
problem turns out to be essentially easy. Therefore, 
it is important to avoid these structures when generat-
ing keys for RSA (Dang et al., 2019). 

The main factor that made us discard NTRU is that 
it “has a computationally expensive keypair genera-
tion which limits its usability.” (Saarinen, 2020) 

Among the candidates selected for Round 3, the 
idea was to make a choice based on performance of 
CPU usage, and taking into account the feasibility 
of building a prototype implementation. For this, it 
would be important to know the kind of license the 
reference implementation has, as well as the neces-
sary crypto libraries code were under it. For example, 
unlike the other candidates, the candidate NTRU is 
not under a Public Domain License. 

3 GATHERING CONCRETE DATA 

The idea is to perform an analysis of NIST PQC 
Round 3 candidate Kyber performance in x64 and 
ARM architectures. The reference implementation of 
this KEM candidate was tested following a scenario 
where frst a pair of public and private keys was gener-
ated and then data representing a session key was en-
crypted using the public key generated and decrypted 
using the corresponding private key. Algorithm per-
formance were evaluated running these steps in each 
target architecture. Based on the collected data, the 
evaluation sought to check whether Kyber was suit-
able to be deployed in mobile devices. Bottlenecks 
were found in code according to performance analy-
sis, and, as a consequence, some improvements were 
proposed to reference implementation code. 

As noted by (Howe1 et al., 2019), “all real-
world efforts to deploy post-quantum cryptography 
will have to contend with new, unique problems”. By 
experimenting with the reference implementation of 
Kyber, we have tried to embark on a cryptographic 
engineering task which may bring insight into the real 
world deployment of such a candidate for standard-
ization. Such an enterprise is likely to face pecu-
liar circumstances whose evaluation may prove use-
ful in the real world. Again, Howe et al. point out that 
specifc cases “may require a diverse combination of 

computational assumptions woven together into a sin-
gle hybrid scheme”, as well as “special attention to 
physical management of sensitive state”, not to men-
tion “very unbalanced performance profles, requiring 
distinct solutions for different application scenarios”. 

In this spirit, the intention here is to gather con-
crete performance data for real implementations in 
resource-constrained (memory, processing speed, en-
ergy consumption, etc.) devices, in particular, embed-
ded devices and mobile application running in plat-
forms such as iOS and Android (scope of cell phones 
and tablets, with resource restrictions, battery, mem-
ory, etc.), and perform code improvements wherever 
appropriate. 

4 CODE PROFILING 

Firstly, it is necessary to present the two environ-
ments where we perform this work: an x86 architec-
ture based computer with Linux and an ARM archi-
tecture based smartphone with Android. It was neces-
sary to search for an application that could help with 
the necessary data collection. However, the biggest 
challenge in this data collection was to fnd a tool that 
offers the same pattern or environment for two differ-
ent architectures. These two different environments 
are necessary for understanding if each architecture 
interferes in the algorithm’s performance. 

The desktop computer had as hardware features an 
Intel (R) Core (TM) i7-6700 processor with 3.4GHz 
of clock and 8 GB of RAM, being controlled by the 
Ubuntu 20.04 LTS operating system. The smartphone 
had an Octa-core processor (two 2.73 GHz Mongoose 
M5 and two 2.60 GHz Cortex-A76 + four 2.0 GHz 
Cortex-A55), 8 GB of RAM and Android 10 installed. 

Secondly, to run the Kyber algorithm, for analysis 
on a classic computer and smartphone, a small Java 
code was generated to communicate with the NIST 
reference C code. This Java code was implemented 
using JNI to interact with the selected algorithm. 

KYBER code uses OpenSSL, so it was necessary 
to install it together with its libraries on Linux, and C 
code was compiled using GCC compiler once the JNI 
and the OpenSSL installation paths must be passed as 
parameters to compile the code. Java code was com-
piled using Maven. This environment was chosen to 
apply the algorithm in a “pure” state without modif-
cations or other support applications. 

Figure 1 depics a graphic representation of how 
the code was organized in the Linux computer. 

It is important to highlight that keys are provided 
like arrays of bytes with no standard key storage com-
ponent like key store, and this code already works 



Figure 1: Scheme showing how the code was built. 

with Serialized Objects in Java. 
The OpenSSL library was required to build de 

code. Thus was necessary to compile it for the An-
droid architecture. A compiled version of OpenSSL 
in Android architecture was downloaded to be used in 
Android code. OpenSSL headers code is used in An-
droid to compile Kyber’s code. C code was compiled 
with NDK compiler (version 21.3.6528147) and the 
Java code was generated using JNI to communicate 
with Kyber’s code. 

After analysing the code functions it was neces-
sary to execute the algorithm and collect some data. 
This analysis may help one to understand where the 
algorithm presents more complexity to execute its 
functions. For that it was necessary profling all code. 

5 DATA COLLECTED 

The goal is evaluating Kyber algorithm running in 
a mobile prototype application. In this app a session 
key is created as a plaintext, and will be protected with 
a pair of public and private keys generated according 
to Kyber algorithm. The session key from this app is 
encrypted using the public key and the encrypted text 
is decrypted using the private key. Key obtained is 
checked to be correct. 

Kyber algorithm was tested in a total of 30 times 
with 1000 executions in loop each time. Each execu-
tion had the following requirements: 

1. Different public and private keys are generated. 

2. Plaintext is broken in blocks of size equals to al-
gorithms block size. 

3. Padding is used when necessary. 

As one did not fnd an appropriate tool to gener-
ate a satisfactory analysis for these different scenar-
ios, was decided to apply manually some time stamp 
into the code to collect each time spent on each func-
tion called into execution. This allowed one to verify 
both scenarios in a single way. 

After defning how to collect the data, it was nec-
essary to defne a sample size for the study, and then 

choose 30 executions for each algorithm in each sce-
nario. Generally, if the number of code runs collect-
ing data is greater than 25, these approximations will 
be good (Hogg et al., 2015). Both algorithms are al-
ways running in equal conditions: generating a pair 
of keys, encrypting a key session and decrypting it. 
A key session was chosen given that it was an indis-
pensable parameter, thus it was the object to which the 
cryptographic algorithms were applied. As we know 
these algorithms work in a cipher block scheme (size 
block = 32), and for this chosen object it will always 
be necessary seven blocks (seven), it was easy to see 
that in the execution round that encrypt and decrypt 
was called seven times each. 

Finally, we present a data analysis for KYBER al-
gorithms running in an x86 and Android environment. 
The time spending presented in graphs and tables are 
measured in microseconds. 

6 DATA ANALYSIS 

The frst point that can be made in this analysis 
is the distribution of processing time in each cycle of 
execution of this study. It is well known that there 
is a greater expense in the action of encryption. The 
generation of keys is not as expensive, as it should 
be, and the decryption process ends up not being long 
compared to the encryption process. 

Figure 2: Avarege time spend in one loop 

This greater work in encryption was already some-
what expected since it is a process, after the genera-
tion of keys, that builds the computational complexity 
necessary to protect confdentiality. 

By analyzing both environments, it is observed 
that ARM architecture present in evaluated mobile 
can be faster than classical x86 computer architecture 
with code improvements. In general the decrypt ac-
tion and the work with matrices in key pair genera-
tion and encrypt action in ARM are slower than x86. 



In contrast, other functions in ARM are faster than 
x86. In the end, ARM is slower, but it shows room 
for improvement. 

Figure 3: Data collected in Kyber NIST Round 2 version 

Analysing the KYBER’s code submitted in Round 
2 (Figure 3) and Round 3 (Figure 4) was observed: 

• Average execution time for Linux was increased; 

• Average execution time for Android was reduced; 

• Top spend actions were kept. 

For Round 3 it is notorious how the time increased 
in Linux, so because of this it was necessary to com-
pare if it was increased for smartphone too. How-
ever, we can identify that in ARM processors the time 
spent was reduced, which made us realize this algo-
rithm was optimized for this processor family. 

Figure 4: Data collected in Kyber NIST Round 3 version 

As a conclusion stands out, KYBER was opti-
mized for mobile evaluated processor architecture in 
the newest NIST submission. Average time spent was 
reduced by 10.67%. 

Analyzing the algorithms that were submitted to 
NIST in round 2 and round 3, it is clear that there 
were average execution time for Linux was increased 
and in return average execution time for Android was 
reduced. But the top spend actions were kept, that 
is, the same actions that are more ”expensive” in time 

Figure 5: Comparing performance for Kyber Round 2 and 
Round 3 versions running in a computer 

spent continue to lead, only reaching much smaller 
numbers. 

Figure 6: Comparing performance for Kyber Round 2 and 
Round 3 versions running in a mobile 

7 CONCLUSION 

Kyber was optimized for ARM processor archi-
tecture in the newest NIST submission, and its great-
est improvement was be more effcient uniform sam-
pling of the public matrix A. “Instead of sampling 
uniformly-random integers modulo 3329 by using re-
jection sampling on a 2-byte integer, we now use re-
jection sampling on a 12-bit integer. While the new 
rejection rate per coeffcient is higher (i.e. ≈ 20%), 
the total number of required bits and the running time 
of key generation are noticeably smaller.” (Avanzi 
et al., 2020, p. 2). 

Kyber’s Round 3 submission average time spent 
was reduced by 10,67%. It can be concluded then that 
the use of the Kyber algorithm has been optimized for 
use in the studied mobile device. In fact, we can high-
light the positive use of this algorithm in smartphones. 



REFERENCES 

Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyuba-
shevsky, V., Schanck, J. M., Schwabe, P., Seiler, G., 
and Stehlé, D. (2020). Crystals-kyber: Algorithm 
specifcations and supporting documentation. Tech-
nical report. 

Dang, V. B., Farahmand, F., Andrzejczak, M., and Gaj, 
K. (2019). Implementing and benchmarking three 
lattice-based post-quantum cryptography algorithms 
using software/hardware codesign. In 2019 Interna-
tional Conference on Field-Programmable Technol-
ogy (ICFPT), pages 206–214. 

Hecht, P. (2017). Post-quantum cryptography(pqc): Gen-
eralized elgamal cipher over gf(251ˆ8). CoRR, 
abs/1702.03587. 

Hogg, R. V., Tanis, E., and Zimmerman, D. (2015). Proba-
bility and Statistical Inference. Pearson, 9 edition. 

Howe1, J., Prest1, T., , and Apon, D. (2019). Sok: How 
(not) to design and implement post-quantum cryptog-
raphy. Cryptology ePrint Archive, Report 2021/462. 

Khalid, A., McCarthy, S., Liu, W., and O’Neill, M. (2019). 
Lattice-based cryptography for iot in a quantum 
world: Are we ready? Cryptology ePrint Archive, 
Report 2019/681. 

PQC-NIST (2017). Post-Quantum Cryptography. National 
Institute of Standards and Technology, Gaithersburg. 

Saarinen, M.-J. O. (2020). Mobile energy requirements of 
the upcoming nist post-quantum cryptography stan-
dards. 

Xu, R., Cheng, C., Qin, Y., and Jiang, T. (2018). Lighting 
the way to a smart world: Lattice-based cryptography 
for internet of things. CoRR, abs/1805.04880. 


