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Abstract: Saber is one of the four fnalists in the ongoing NIST Post-Quantum Cryptography Standardization Process. 
It is one of the three fnalists that are based on lattice problems. This article intends to show the results of an 
analysis of Saber (Vercauteren, 2018) performance in x64 and ARM architectures. Saber was tested following 
a scenario where frst a pair of public and private keys were generated. Then, a data representing a session 
key is encrypted using the generated public key and decrypted using the generated private key. Algorithm 
performance was evaluated running these steps in each architecture proposed. Based on the data collected, it 
is checked if Saber is suitable to mobile devices or not. Bottlenecks were found while executing Saber code. 
Also some improvements were proposed to its code. 

1 INTRODUCTION 

The goal of the research was to evaluate the refer-
ence implementation of one of fnalists of NIST Post-
Quantum Cryptography Standardization Process and 
fnd out if it is suitable to be used by an application 
running in an Android mobile environment based on 
ARMv8 architecture. Saber was the chosen algorithm 
in the list of fnalists to be analyzed, because it has 
shown good performance in mobile devices accord-
ing to some recent evaluations:(Saarinen, 2019) and 
(Xu et al., 2018). Saber evaluations were executed in 
ARM and x64 architectures and it was chosen secu-
rity level Saber to make these analysis. Usually an 
x64 architecture has better performance compared to 
an ARM architecture in usage of cryptography algo-
rithms, so comparing them may point out good ARM 
performance. The Saber code was evaluated using the 
versions submitted to round two and round three of 
the NIST standarditazion process. 

2 EVALUATING REAL-WORLD 
PERFORMANCE DATA 

The idea is to perform an analysis of NIST PQC 
Round 3 candidate Saber performance in x64 and 
ARM architectures. The reference implementation of 
this KEM candidate was tested following a scenario 
where frst a pair of public and private keys was gener-
ated and then data representing a session key was en-
crypted using the public key generated and decrypted 
using the corresponding private key. Algorithm per-
formance were evaluated running these steps in each 
target architecture. Based on the collected data, the 
evaluation sought to check whether Saber was suit-
able to be deployed in mobile devices. Bottlenecks 
were found in code according to performance analy-
sis, and, as a consequence, some improvements were 
proposed to reference implementation code. 

A recent survey of design and implementation 
aspects of post-quantum cryptographic algorithms 
(Howe et al., 2019) draws the attention to the fact 
that every “real-world efforts to deploy post-quantum 
cryptography will have to contend with new, unique 
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problems”. By experimenting with the reference im-
plementation of Saber, we have tried to embark on a 
cryptographic engineering task which may bring in-
sight into the real world deployment of such a candi-
date for standardization. Such an enterprise is likely 
to face peculiar circumstances whose evaluation may 
prove useful in the real world. Again, Howe et al. 
point out that specifc cases “may require a diverse 
combination of computational assumptions woven to-
gether into a single hybrid scheme”, as well as “spe-
cial attention to physical management of sensitive 
state”, not to mention “very unbalanced performance 
profles, requiring distinct solutions for different ap-
plication scenarios”. 

In this spirit, the intention here is to gather con-
crete performance data for real implementations in 
resource-constrained (memory, processing speed, en-
ergy consumption, etc.) devices, in particular, embed-
ded devices and mobile application running in plat-
forms such as iOS and Android (scope of cell phones 
and tablets, with resource restrictions, battery, mem-
ory, etc.), and perform code improvements wherever 
appropriate. 

3 ROUND TWO CODE 
EVALUATION 

SABER was one of the seventeen public-key en-
cryption and key-establishment algorithms chosen by 
NIST on round two of standardization process. The 
Saber’s algorithm code submitted in this round was 
evaluated according to its performance in two archi-
tectures: x64 and ARM. To evaluate SABER, a Java 
code was built to generate a pair of public and private 
keys and to use this pair of keys to encrypt and de-
crypt a specifc data using this keys pair. This Java 
code was tested frst in the x64 architecture to estab-
lish a performance baseline. To test in ARM environ-
ment, it was necessary to build an auxiliary Android 
application to call the developed Java code ported to 
this mobile architecture. The performance evaluation 
was done through execution of thirty rounds of a se-
quence of key generation, encryption and decryption 
of a specifc data. The data used in tests represents a 
possible 228 bytes session key to be used in a secure 
communication. To enable Java code to communicate 
with SABER code built in C language, it was used 
Java Native Interface (JNI). 

3.1 x64 Architecture 

The tests were performed in a virtualized Kali Linux 
version 2019.1 with 2.3 GB of RAM memory, 20 

GBytes of hard disk memory and Intel processor 
Core I3-6006U 2GHz. The code was profled us-
ing print messages in the execution sequence of key 
generation, encryption and decryption. The pro-
fling messages were stored in a fle, thus allow-
ing evaluation of SABER upon profle information 
with the statistical analysis of this stored data.The 
consumption times of functions related to key 
generation(indcpa-kem-keypair), encryption(indcpa-
kem-enc) and decryption(indcpa-kem-dec) were plot-
ted in graphs showing the minimum and maximum 
values (Figures 1, 2 and 3). The Key generation, 
encryption and decryption had average times respec-
tively: 1458.00, 1584.04 and 382.43 microseconds. 
In addition, the time consumption was calculated for 
each function called in key generation, encryption and 
decryption (Figures 4, 5 and 6). In the key genera-
tion, the function ”MatrixVectorMul” consumed 81% 
of the process time. In encryption, the function ”Ma-
trixVectorMul” consumed 59% of the process time, 
and in decryption, ”InnerProd” consumed 95% of the 
process time. 

Figure 1: Key Generation Performance for x64 

Figure 2: Encryption Performance for x64 



Figure 3: Decryption Performance for x64 

Figure 4: Functions Usage in Key Generation for x64 

Figure 5: Functions Usage in Encryption for x64 

Figure 6: Functions Usage in Encryption for x64 

3.2 ARM Architecture 

The tests were performed in a ARM device, specif-
cally in a Samsung Galaxy S20 device. It was neces-
sary to build a specifc Android application to enable 
calling the Java code used to evaluate Saber code in 
x64 architecture. To enable running of Saber code in 
a ARM environment, a compiled version of OpenSSL
1 for ARM architecture was downloaded and added to 
the Android application. Application code was pro-
fled and executed thirty times. In each time, the 
Java profling code was called and data was collected 
providing key generation, encryption and decryption 
consumption times. They were plotted in graphs for 
analysis(Figures 7, 8 and 9) and had average times re-
spectively of: 894.20, 753.70 and 211.09 microsec-
onds. Time consumption was calculated for each 
function called in key generation, encryption and de-
cryption(Figures 10, 11 and 12). In the key genera-
tion, the function ”MatrixVectorMul” consumed 67% 
of the process time. In encryption, the function ”Ma-
trixVectorMul” consumed 40% of the process time. 
And in the decryption, the function ”InnerProd” con-
sumed 88% of the process time. 

Figure 7: Key Generation Performance for ARM 

1https://github.com/PurpleI2P/OpenSSL-for-Android-
Prebuilt 

https://1https://github.com/PurpleI2P/OpenSSL-for-Android


Figure 8: Encryption Performance for ARM 

Figure 9: Decryption Performance for ARM 

Figure 10: Functions Usage in Key Generation for ARM 

Figure 11: Functions Usage in Encryption for ARM 

Figure 12: Functions Usage in Encryption for ARM 

3.3 X64 versus ARM Architectures 

The consumption times of x64 and ARM architec-
tures were plotted in a graph to compare them (Figure 
13). From the analysis of the graphs, it can be con-
cluded that round two Saber standard code is more 
suitable to ARM than x64 architectures. In addition, 
it was shown that the key generation and encryption 
have higher average performance time. It was also 
found that the function ”MatrixVectorMul” has the 
highest cost in key generation and encryption steps 
and the function ”InnerProd” has higher cost in de-
cryption step. 



Figure 13: Linux versus S20 Performance in Round Two 

4 ROUND THREE CODE 
EVALUATION 

As a result of the round two, SABER was one of the 
three public-key encryption and key-establishment al-
gorithms based on lattices chosen by NIST to be part 
on the round three of standardization contest. The al-
gorithm owner submitted code improvements in this 
round and it was available for download to anyone 
who wanted to evaluate algorithm. Upon this new 
code, SABER was still evaluated according to its per-
formance in x64 and ARM architectures. The same 
Java and Android applications used to evaluate round 
two’s code were used to evaluate the Saber round 
three code. The performance evaluation was done in 
a more robust way by execution of thirty rounds with 
each one executing one thousand times the sequence 
of key generation, encryption and decryption of the 
same data used for testing the round’s two tests. 

4.1 x64 Architecture 

The tests were performed in a computer with Ubuntu 
20.04 LTS version with 8 GB of memory and pro-
cessor Intel(R) Core(TM) i7-6700-3.4GHz. The se-
quence of key generation, encryption and decryption 
of a session key were profled in a specifc fle. Upon 
analysis of this fle, performance times calculated for 
key generation, encryption and decryption were plot-
ted in a set of graphs (Figures 14, 15 and 16) and their 
averages times were respectively: 1970.18, 2435.74 
and 574.68 microseconds. In addition, the percentage 
of functions usage was calculated for the key gener-
ation, encryption and decryption (Figures 17, 18 and 
19). In key generation, the function ”MatrixVector-
Mul” consumed 86 % of the process time, in encryp-
tion, the function ”MatrixVectorMul” consumed 68% 
of the process time and in decryption, the function 
”InnerProd” consumed 96% of the process time. 

Figure 14: Key Generation Performance for x64 

Figure 15: Encryption Performance for x64 

Figure 16: Decryption Performance for x64 



Figure 17: Functions Usage in Key Generation for x64 

Figure 18: Functions Usage in Encryption for x64 

Figure 19: Functions Usage in Encryption for x64 

4.2 ARM Architecture 

The tests were performed in a smartphone Samsung 
Galaxy S20. The sequence of key generation, encryp-
tion and decryption of a session key were profled in 
a specifc fle. Upon analysis of this fle, performance 
times calculated for key generation, encryption and 
decryption were plotted in a set of graphs (fgures 20, 
21 and 22). Key generation, encryption and decryp-
tion had averages respectively: 333.96, 355.25 and 
128.25 microseconds. It was also calculated percent-
age of functions usage for key generation, encryption 

and decryption (Figures 23, 24 and 25). In key gen-
eration, the function ”MatrixVectorMul” consumed 
64 % of the process time, in encryption, the func-
tion ”MatrixVectorMul” consumed 55% of the pro-
cess time and in decryption, the function ”InnerProd” 
consumed 89% of the process time. 

Figure 20: Key Generation Performance for ARM 

Figure 21: Encryption Performance for ARM 

Figure 22: Decryption Performance for ARM 



Figure 23: Functions Usage in Key Generation for ARM 

Figure 24: Functions Usage in Encryption for ARM 

Figure 25: Functions Usage in Encryption for ARM 

4.3 x64 versus ARM Architectures 

The consumption times of x64 and ARM architec-
tures were plotted in a graph to compare them (Fig-
ure 26). It was also created a table comparing per-
formance of functions called by Saber code (table 1). 
Analysing performance of round three code it can be 
checked that x64 architecture had worst results com-
pared to round two code. It can also be checked that 
ARM architecture had better results in round three 
code compared to round two code. Analysing the Fig-
ure 26 and Table 1, it was also concluded that Saber 

is more suitable to ARM architectures for almost all 
steps of key generation, encryption and decryption, 
with exception to random number generation that in 
x64 architectures had better performance (x64 was 
better four times and ARM twenty six times in the 
total of thirty interactions). 

Table 1: x64 versus ARM Averages Comparison 

Function ARM x64 ARM - x64 Faster 
randombytes init 16.31 9.44 6.86 X64 

randombytes 5.64 4.22 1.42 X64 
shake128 4.45 12.72 -8.27 ARM 

randombytes 5.13 3.85 1.28 X64 
GenMatrix 32.14 167.61 -135.47 ARM 
GenSecret 8.01 12.72 -47.84 ARM 

MatrixVectorMul 142.60 1678.03 -1535.43 ARM 
for1 0.772 7.88 -7.12 ARM 

POLVECq2BS 3.55 8.98 -5.42 ARM 
POLVECq2BS 2.37 7.63 -5.26 ARM 

memcpy 0.15 0.11 0.04 X64 
indcpa kem keypair 334.199 1969.69 -1635.5 ARM 

GenMatrix 31.4445 160.21 -128.77 ARM 
GenSecret 7.06 53.50 -46.44 ARM 

MatrixVectorMul 137.12 1631.43 -1494.31 ARM 
for1 0.654 12.72 -6.97 ARM 

POLVECp2BS 1.13 7.07 -5.94 ARM 
BS2POLVEC 3.05 7.14 -4.09 ARM 

InnerProd 46.35 543.84 -497.48 ARM 
BS2POLmsg 3.23 2.83 -0.39 ARM 

for2 0.56 2.58 -2.02 ARM 
POLT2BS 0.86 1.70 -0.84 ARM 

indcpa kem enc 363.62 2433.71 -2070.10 ARM 
BS2POLVECq 2.866 7.58 -4.71 ARM 
BS2POLVECp 1.52 7.07 -5.55 ARM 

InnerProd 46.94 544.12 -497.18 ARM 
BS2POLT 0.23 1.77 -1.53 ARM 

for1 0.41 2.58 -2.18 ARM 
POLmsg2BS 0.60 3.09 -2.49 ARM 

indcpa kem dec 127.94 574.89 -446.95 ARM 



Figure 26: Linux versus S20 Performance in Round Three 

4.4 Performance Evaluation 
Conclusions 

Saber code was improved in third round of NIST 
contest as shown in graphs for time consuming of 
key generation, encryption and decryption. SABER 
can be improved in part of code related to polyno-
mial multiplication. Some recent articles achieved 
the same conclusions, e.g. (Roy, 2020). It was also 
shown that the function ”MatrixVectorMul” for round 
three code had a better performance execution time in 
a ARM architecture and it seems to be less bottleneck 
than in a x64 architecture as shown in percentage of 
usage. 

5 Round Three Code Improvements 

5.1 Usage of Shift Operations 

It was found that polynomial multiplication algorithm 
used in Saber code could be improved in perfor-
mance by changing division operations of multiples 
of two by shift operations. It is known that shift 
operations have better performance than division op-
erations that use dividends multiple of two (https: 
//www.geeksforgeeks.org/bitwise-algorithms/). The 
improvements were made on Toom-Cook and Karat-
suba algorithms used by SABER. 

5.2 Some Code Adjustments 

It has also been performed a code adjustment in ”Ma-
trixVectorMul” function to decrease algorithm’s cost. 
This function was divided in two according to use of 
matrix transposed or not. Below it is shown the old 
and new functions and how it’s called in Saber code 
in key generation and encryption. 

void MatrixVectorMul( 
const uint16_t A[SABER_L][SABER_L][SABER_N], 
const uint16_t s[SABER_L][SABER_N], 
uint16_t res[SABER_L][SABER_N]) 
{ 

int i, j; 

for (i = 0; i < SABER_L; i++) { 
for (j = 0; j < SABER_L; j++) { 

poly_mul_acc(A[i][j], s[j], res[i]); 
} 

} 
} 

void MatrixVectorMulTranspose( 
const uint16_t A[SABER_L][SABER_L][SABER_N], 
const uint16_t s[SABER_L][SABER_N], 
uint16_t res[SABER_L][SABER_N]) 
{ 

int i, j; 

for (i = 0; i < SABER_L; i++) { 
for (j = 0; j < SABER_L; j++) { 

poly_mul_acc(A[j][i], s[j], res[i]); 
} 

} 
} 

void indcpa_kem_enc( 
const uint8_t m[SABER_KEYBYTES], 
const uint8_t seed_sp[SABER_NOISE_SEEDBYTES], 
const uint8_t pk[SABER_INDCPA_PUBLICKEYBYTES], 
uint8_t ciphertext[SABER_BYTES_CCA_DEC]) 
{ 

... 
MatrixVectorMul(A, sp, bp); 
... 

} 
void indcpa_kem_keypair( 
uint8_t pk[SABER_INDCPA_PUBLICKEYBYTES], 
uint8_t sk[SABER_INDCPA_SECRETKEYBYTES]) 
{ 

... 
MatrixVectorMulTranspose(A, s, b); 
... 

} 

5.3 Improvements 

The ”MatrixVectorMul” function was improved and 
its many execution times were profled in a fle to 
be evaluated statistically. The same steps for test-
ing Saber third round’s code was used to test our im-
provements on the ”MatrixVectorMul” and assert its 
increase in performance. For each round of the thirty 
rounds of code performance test, it was calculated 
”MatrixVectorMul” time consumption and plotted in 
a table to compare to its unchanged code time con-
sumption (Table 2). For each round, the difference be-
tween time consumption of ”MatrixVectorMul” new 
and old code was calculated and found improvement 
percentage (table 2). Upon improvements calculated 
for each round, it was calculated the improvement’s 
average and found that Saber improved 3.26 of per-
centage compared to the original code. 
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Table 2: MatrixVectorMul Before and After Improvements 

Before After Round Improvement 
138.3 133.2 R1 3.9 
138.2 133.8 R2 3.2 
137.8 133.3 R3 3.3 
138.2 133.4 R4 3.4 
137.4 133.8 R5 2.6 
137.6 133.7 R6 2.9 
138.4 133.0 R7 3.9 
138.5 133.1 R8 3.9 
138.4 133.3 R9 3.7 
137.6 133.4 R10 3.1 
136.8 133.2 R11 2.6 
137.6 134.2 R12 2.5 
138.0 133.4 R13 3.3 
138.2 133.3 R14 3.6 
138.3 134.3 R15 2.9 
138.1 133.8 R16 3.1 
137.5 133.3 R17 3.0 
138.0 133.5 R18 3.3 
140.7 132.9 R19 5.6 
138.1 132.6 R20 4.0 
137.7 133.2 R21 3.3 
137.8 133.7 R22 3.0 
138.1 133.7 R23 3.2 
137.8 133.8 R24 2.9 
137.9 133.4 R25 3.3 
137.8 133.8 R26 2.9 
137.6 134.5 R27 2.3 
138.2 132.4 R28 4.2 
137.5 132.6 R29 3.6 
138.0 132.9 R30 3.7 

6 CONCLUSIONS 

Saber is a post-quantum cryptographic algorithm that 
seems to be suitable for Android environments ac-
cording to performance results. It was also found 
that the Saber reference implementation code could 
be improved if some arithmetic operations would be 
changed to shift operations in polynomial multiplica-
tions. A small code improvement was also proposed 
to better algorithm cost in calls to multiplication of 
polynomials. 
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