
Updates from the Open Quantum Safe Project 

Open Quantum Safe core team: 

Michael Baentsch 
Vlad Gheorghiu, evolutionQ & University of Waterloo 

Basil Hess, IBM Research 
Christian Paquin, Microsoft Research 
John Schanck, University of Waterloo 

Douglas Stebila, University of Waterloo 
Goutam Tamvada, University of Waterloo 

April 23, 2021 

Abstract 

The Open Quantum Safe (OQS) project is an open-source project that aims to support the 
development and prototyping of quantum-resistant cryptography. This short note provides an 
update on the tools OQS makes available. 

1 Introduction 

The Open Quantum Safe (OQS) project1 is an open-source project that aims to support the develop-
ment and prototyping (of applications) of quantum-resistant cryptography. 

OQS consists of the following main lines of work: liboqs, an open source C library for quantum-
resistant cryptographic algorithms, and prototype integrations into protocols and applications, 
including a fork of the widely used OpenSSL library. These tools support research by ourselves and 
others. To reduce the hurdle for getting started and to aid the uptake and use of these components, 
our tools are also available as ready-to-use binaries in the form of Docker images and test servers. 

In this short note, we provide an update on the Open Quantum Safe project. 

2 liboqs 

liboqs is an open source C library for quantum-safe cryptographic algorithms. liboqs makes accessible 
a collection of open-source implementations of quantum-safe key encapsulation mechanism (KEM) 
and digital signature algorithms through a common API. liboqs builds on Linux, macOS, and 
Windows, on Intel, AMD, and ARM platforms. Some of the implementations of these algorithms 
have been directly contributed to liboqs by members of the NIST submission teams; others are 
incorporated from the PQClean project. 

In March 2021 we released version 0.5.0 of liboqs, which contains implementations of all 
algorithms that have advanced to NIST Round 3 as fnalists or alternate candidates (except GeMSS). 
This version also includes optimized versions of most of these algorithms for Intel platforms, which 

1https://openquantumsafe.org, https://github.com/open-quantum-safe 

1 

https://github.com/open-quantum-safe/liboqs
https://github.com/PQClean/PQClean
https://github.com/open-quantum-safe/liboqs/releases/tag/0.5.0
https://openquantumsafe.org
https://github.com/open-quantum-safe


can be compiled to run optimized for a specifc architecture or in a portable executable with CPU 
extensions detected at runtime. 

Testing. We run a battery of tests on the cryptographic primitives that we provide: we test the 
functionality of each primitive on random inputs and on its Known Answer Tests; we test for 
memory errors and undefned behaviour using LLVM’s ASan and UBSan tools; and we test for 
secret-dependent branching using Valgrind. 

The basic functionality tests are run by a continuous integration system, and we are currently 
exploring ways to run the ASan, UBSan, and Valgrind tests more regularly. 

We are also in the process of expanding our tests with coverage-guided fuzzing. We have 
developed a test harness that allows libFuzzer to manipulate the outputs of random bit sources 
and random oracles. Using this harness, the fuzzer can quickly explore code paths that are rarely 
executed in random tests and which are not executed at all by the Known Answer Tests. The fuzzer 
can also check that different implementations of the same primitive behave identically on these 
rarely executed code paths. 

2.1 Language wrappers 

We provide a set of language wrappers that aid in using the liboqs C API safely from within different 
different programming languages, including C++, Go, Python, C#, Java, and Rust. All wrappers use 
the same API (or as similar as possible, up to programming language conventions and constraints), 
regardless of the programming language. 

Low-level programming chores such as deallocating memory or zero-ing hot memory (e.g., 
memory that used to store secret keys) are automatically managed by the wrappers, allowing the 
programmer to switch focus from the system code to the application code. All wrappers have 
zero overhead, aside from the intrinsic overhead of calling C code from within the corresponding 
programming language. 

Unit testing suites and continuous integration for liboqs and its language wrappers are provided 
via CircleCI, AppVeyor, and GitHub’s workfows. 

3 TLS 

We’ve integrated liboqs into forks of BoringSSL and OpenSSL to provide prototype post-quantum 
key exchange and authentication in the TLS protocol. With respect to hybrid key exchange, these 
implementations follow an Internet-Draft currently under consideration by the IETF TLS working 
group.2 

Our OpenSSL 1.1.1 fork implements post-quantum and hybrid key exchange and post-quantum 
public key authentication in TLS 1.3, and also supports post-quantum algorithms in X.509 certifcate 
generation and S/MIME / CMS message handling. This post-quantum-enabled OpenSSL fork can be 
used in many applications that rely on OpenSSL, and we have successfully done so with the Apache 
and nginx web servers, HAProxy (an HTTP load balancer), and the curl command-line HTTP client. 

The new architecture of the forthcoming OpenSSL 3.0 aims to make easy the integration of new 
cryptographic mechanisms. We have made available an OpenSSL 3 provider that adds post-quantum 
key exchange to TLS via a simple binary add-on (shared library). This demonstrates the possibility 
to add post-quantum cryptography without the need to change the internal logic of the TLS code 
within OpenSSL. 

2https://datatracker.ietf.org/doc/draft-ietf-tls-hybrid-design/ 

2 

https://github.com/open-quantum-safe/liboqs-cpp
https://github.com/open-quantum-safe/liboqs-go
https://github.com/open-quantum-safe/liboqs-python
https://github.com/open-quantum-safe/liboqs-dotnet
https://github.com/open-quantum-safe/liboqs-java
https://github.com/open-quantum-safe/liboqs-rust
https://github.com/open-quantum-safe/openssl
https://github.com/open-quantum-safe/oqs-demos
https://github.com/open-quantum-safe/oqs-demos
https://www.openssl.org/docs/OpenSSLStrategicArchitecture.html
https://github.com/open-quantum-safe/oqs-provider
https://datatracker.ietf.org/doc/draft-ietf-tls-hybrid-design/


Our BoringSSL fork implements post-quantum and hybrid key exchange and post-quantum-only 
public key authentication in TLS 1.3, and is interoperable with our OpenSSL 1.1.1 fork. We also 
provide a binary version of the Chromium web browser that uses post-quantum algorithms with the 
help of the BoringSSL fork. 

3.1 TLS interop server 

To facilitate simple tests between post-quantum-enabled TLS clients and the OQS implementation, we 
have made available a public interoperability test server at https://test.openquantumsafe.org. 

This is an nginx server running the OQS-enabled OpenSSL stack using TLS 1.3, currently 
offering 3651 ports with all supported combinations of post-quantum certifcates and key exchange 
algorithms, both with simple post-quantum algorithms as well as hybrid PQ+classic cryptography. 

We welcome implementers of PQ-enabled TLS implementations to run their implementations 
against our implementations and interop server, and report any interoperabiltity issues on our Github 
issue tracker. 

4 Other protocols 

SSH. We provide a fork of OpenSSH that implements post-quantum and hybrid key exchange and 
authentication in the SSH protocol. 

CMS and S/MIME. Our OpenSSL 1.1.1 fork includes support for post-quantum and hybrid signing 
operations in the CMS and S/MIME secure mail protocols. 

5 Profling 

We recently launched a new dashboard at https://openquantumsafe.org/benchmarking visualiz-
ing the performance of the implementations at different levels of the software stack on different 
architectures. Currently, measurements on x86 64 (Intel/AMD) and aarch64 (ARM64) are obtained 
at the core algorithm level in liboqs and OpenSSL, and at the level of TLS handshakes (both PQ-only 
and hybrid) in OpenSSL. Also shown are the results of executing the pure reference (C-only) code 
as well as optimized code versions, and memory consumption fgures (stack and heap). 

These tests are meant to complement the much more detailed SUPERCOP tests with virtual-
machine-based, application-level performance numbers that are more indicative of the performance 
to be seen in actual (cloud) deployments. 

6 Getting started quickly with Docker images 

To enable researchers and developers to get started quickly with post-quantum cryptography, we 
provide ready-to-run Docker images containing PQ-enabled versions of many of the applications 
described above, including: 

• curl 

• Apache httpd 

• OpenSSH 

3 

https://github.com/open-quantum-safe/boringssl
https://github.com/open-quantum-safe/oqs-demos/releases
https://test.openquantumsafe.org
https://github.com/open-quantum-safe/oqs-demos/issues
https://github.com/open-quantum-safe/oqs-demos/issues
https://github.com/open-quantum-safe/openssh
https://github.com/open-quantum-safe/openssl
https://openquantumsafe.org/benchmarking
https://bench.cr.yp.to/supercop.html
https://hub.docker.com/repository/docker/openquantumsafe/curl
https://hub.docker.com/repository/docker/openquantumsafe/httpd
https://hub.docker.com/repository/docker/openquantumsafe/openssh


• nginx 

• HAProxy 

7 Third-party usage of OQS tools 

Since the second NIST PQC workshop, the following uses of OQS tools by third parties have come to 
our attention: 

• Cisco: Post-quantum TLS 1.3 and SSH performance (preliminary results) 

• IBM: IBM Cloud delivers quantum-safe cryptography and Hyper Protect Crypto Services to 
help protect data in the hybrid era 

• Microsoft Research: Post-quantum cryptography VPN 

• strongSwan: Post-quantum cryptography in IKEv2 using strongSwan 

OQS tools were also used in the following research papers: 

• PQFabric: A permissioned blockchain secure from both classical and quantum attacks, by Bhar-
gav Das, Amelia Holcomb, Michele Mosca, and Geovandro C. C. F. Pereira. arXiv:2010.06571. 

• Post-quantum TLS without handshake signatures, by Peter Schwabe, Douglas Stebila, and 
Thom Wiggers. ACM CCS 2020. 

• Benchmarking post-quantum cryptography in TLS, by Christian Paquin, Douglas Stebila, and 
Goutam Tamvada. PQCrypto 2020. 

• Assessing the overhead of post-quantum cryptography in TLS 1.3 and SSH, by Dimitrios 
Sikeridis, Panos Kampanakis, and Michael Devetsikiotis. CoNEXT 2020. 

• Post-quantum authentication in TLS 1.3: A performance study, by Dimitrios Sikeridis, Panos 
Kampanakis, and Michael Devetsikiotis. NDSS 2020. 

• Towards quantum-safe VPNs and Internet, by Maran van Heesch, Niels van Adrichem, Thomas 
Attema, and Thijs Veugen. 

• Two PQ signature use-cases: Non-issues, challenges and potential solutions, by Panos Kam-
panakis and Dimitrios Sikeridis. 7th ETSI/IQC Quantum Safe Cryptography Workshop 2019. 

7.1 IBM Cloud: QSC-enabled Kubernetes ingress controller & QSC-enabled OpenShift 
router 

To enable clients with quantum-safe cryptography (QSC) protected access to clusters in the IBM 
Cloud, IBM Research implemented a custom ingress controller for IBM Cloud Kubernetes Service 
(IKS) and a custom router for Red Hat OpenShift on IBM Cloud (managed OpenShift), with QSC 
provided by Open Quantum Safe. Both enable QSC access to the related clusters in the IBM 
Cloud. With that, clients can access their clusters beneftting from QSC protected TLS session key 
establishment, while not having to change anything for the services inside their clusters. 

The custom ingress controller for Kubernetes and custom router for ROKS respectively are 
terminating TLSv1.3 connections from a QSC-enabled application client and feature full backward 
compatibility for non-QSC operation. This approach enables network connections to use QSC KEM 
algorithms for session key establishment, and also offer the possibility to use hybrid QSC/non-QSC 

4 

https://hub.docker.com/repository/docker/openquantumsafe/nginx
https://hub.docker.com/repository/docker/openquantumsafe/haproxy
https://blogs.cisco.com/security/tls-ssh-performance-pq-kem-auth
https://newsroom.ibm.com/2020-11-30-IBM-Cloud-Delivers-Quantum-Safe-Cryptography-and-Hyper-Protect-Crypto-Services-to-Help-Protect-Data-in-the-Hybrid-Era
https://newsroom.ibm.com/2020-11-30-IBM-Cloud-Delivers-Quantum-Safe-Cryptography-and-Hyper-Protect-Crypto-Services-to-Help-Protect-Data-in-the-Hybrid-Era
https://github.com/Microsoft/PQCrypto-VPN
https://github.com/strongX509/docker/tree/master/pq-strongswan
https://arxiv.org/abs/2010.06571
https://eprint.iacr.org/2020/534
https://eprint.iacr.org/2019/1447
https://dl.acm.org/doi/10.1145/3386367.3431305
https://eprint.iacr.org/2020/071
https://eprint.iacr.org/2019/1277
https://eprint.iacr.org/2019/1276
https://www.ibm.com/cloud
https://www.ibm.com/cloud
https://cloud.ibm.com/docs/containers?topic=containers-getting-started
https://cloud.ibm.com/docs/containers?topic=containers-getting-started
https://cloud.ibm.com/docs/openshift?topic=openshift-getting-started
https://github.com/IBM/qsc-ingress/blob/main/kubernetes/nginx
https://github.com/IBM/qsc-ingress/blob/main/openshift


session key establishment. This hybrid mode of QSC enablement in TLS offers a way to prepare 
for the future and take a staged transition to QSC operation. The implementation is based on the 
community NGINX ingress controller and HAProxy ingress controller, with QSC-enabled OpenSSL 
1.1.1g libraries provided by Open Quantum Safe. 

More information as well as performance testing with concurrent requests can be found under 
https://github.com/IBM/qsc-ingress. 

8 Getting involved 

All our work is done as open source via our GitHub project. We welcome all types of contributions: 
new algorithms, source code, code review, bug reports, new integrations, and documentation. Feel 
free to begin participating on GitHub, or reach out to any of our core team members for more 
information. 

9 Acknowledgements 

The Open Quantum Safe project incorporates and adapts a variety of open source cryptographic 
software. See the individual project pages for lists of contributors and external software. We 
especially acknowledge algorithm implementations via the PQClean project. 

Direct fnancial support for the development of Open Quantum Safe has been provided by 
Amazon Web Services, the Canadian Centre for Cyber Security, and Unitary Fund. 

Major in-kind contributions of developer time have been made by Amazon Web Services, evolu-
tionQ, IBM Research, and Microsoft Research. 

Research projects which developed specifc components of OQS have been supported by various 
research grants, including Australian Research Council (ARC) Discovery Project grant DP130104304, 
Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery grant RGPIN-
2016-05146, NSERC Discovery Accelerator Supplement grant RGPAS-2016-05146, and NSERC 
Alliance grant ALLRP-556330-20. 

5 

https://github.com/IBM/qsc-ingress
https://github.com/open-quantum-safe

	Introduction
	liboqs
	Language wrappers

	TLS
	TLS interop server

	Other protocols
	Profiling
	Getting started quickly with Docker images
	Third-party usage of OQS tools
	IBM Cloud: QSC-enabled Kubernetes ingress controller & QSC-enabled OpenShift router

	Getting involved
	Acknowledgements

