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Abstract—Recent advance in the quantum computing field has
initiated a new round of cryptosystem innovation as the existing
public-key cryptosystems are proven to be vulnerable against the
attacks launched from a mature quantum computer. Along with
this innovation, several types of cryptographic algorithms have
been proposed for possible post-quantum cryptography (PQC)
candidates, where the lattice-based key encapsulation mechanism
(KEM) Saber is one of the promising cryptosystems. Noticing that
the recent trend in the field has switched more on the efficient
implementation of PQC algorithms, in this paper, we propose
to present a novel compact coprocessor for KEM Saber on the
field-programmable gate array (FPGA) platform. Particularly,
the proposed strategy aims to obtain a generic method suits for
different security levels of Saber with flexible processing styles
yet with low-complexity.

In total, we have carried out four layers of major innovations to
finalize the proposed work: (i) we have formulated and derived
a Scalable Matrix Originated Processing (SMOP) strategy for
the main computation-intensive operation, i.e., polynomial mul-
tiplication, of the mentioned KEM Saber in a general format;
(ii) we have then presented the details of the SMOP strategy
based polynomial multiplication algorithm including the algorith-
mic operation and structural/implementational innovation with
respect to the Saber PQC scheme; (iii) we have also followed
the existing coprocessor design process to build a new compact
coprocessor for KEM Saber deploying the proposed polynomial
multiplication architecture based on novel algorithm-architecture
co-implementation techniques, along with other important build-
ing blocks; (iv) we have also finally given thorough complexity
analysis and comparison to demonstrate the superior efficiency
of the proposed compact coprocessor (including the polynomial
multiplication architecture) over the state-of-the-art solutions.
The proposed design strategy and the coprocessor are highly
efficient: (a) ultra low-complexity; (b) flexible processing rate;
(c) structural generic; and (d) suitable for practical lightweight
application environments. To the authors’ best knowledge, this
is the FIRST paper on compact based implementation for the
KEM Saber in a generic format. The outcome of this work
is expected to be useful reference for further development and
related standardization for KEM Saber.

Index Terms—Field-programmable gate array (FPGA), flexible
processing, hardware implementation, instruction-set coproces-
sor, lattice-based cryptography, low-complexity, module-learning-
with-rounding (MLWR) scheme, polynomial multiplication, post-
quantum cryptography (PQC), scalable matrix originated pro-
cessing

I. INTRODUCTION

Along with the rapid progressing in quantum computing
technology, more and more attentions have switched on devel-
oping next-generation cryptosystem as the current public-key

cryptosystems are proved to be vulnerable toward the attacks
launched from powerful quantum computers executing Shor’s
algorithm [1], [2] (which is expected to be happened in the
next 15 to 20 years). Post-quantum cryptography (PQC) refers
to the cryptographic algorithm that is resistant against quantum
attacks, and several PQC algorithms have been proposed in the
past years. Among these possible PQC candidates, the lattice-
based cryptography is regarded as one of the most promising
class due to its high security, efficiency, and simplicity for
implementation [3]. Moreover, the importance of the lattice-
based PQC is also confirmed by the very recently released
National Institute of Standards and Technology (NIST) third
round of PQC standardization process, where three out of four
encryption scheme finalists are lattice-based schemes [4], [5].

The lattice-based PQC can be divided into two categories,
one category is built on the N -th degree truncated polynomial
ring (NTRU)-based scheme while the other is based on the
learning-with-errors (LWE)-based scheme [2], [3], [6], [7].
As the latter category, many research works have developed a
number of variants for possible complexity reduction and prac-
tical application, including the learning-with-rounding (LWR)-
based scheme [8], [9] (as well as its variant Module-LWR
(MLWR)-based scheme). The LWR is a variant of the LWE
problem, where the error term is introduced by a rounding
operation rather than obtaining it from a random distribution.
The MLWR is based on the LWR problem with the module
matrices, and quite a number of works have been done related
to this important problem. Moreover, in the NIST’s third round
PQC standardization process, one of the lattice-based finalists,
Saber [9], [10], is also based on the MLWR problem, which
uses power-of-two moduli to achieve flexibility, simplicity,
high security, and efficiency.
Existing Works. The authors of Saber firstly proposed to use
the Toom-Cook method for the polynomial multiplication of
the Saber to achieve better implementation [10]. This strategy
is then optimized further in [11] and [12], respectively, for
more efficient implementations. These designs are software
based implementations and hence can be improved through
hardware implementations to obtain better performance. Es-
pecially that the recent trend in the PQC field has gradually
switched to the efficient implementation of the cryptographic
algorithms on the hardware platforms [2], [5]. But overall, the
reported hardware designs for the mentioned KEM Saber are
still very limited. On the other side, there are mainly two types



of hardware implementation strategies, namely the hardware-
software co-design and the full hardware design. The former
can be seen in a recent paper at [13], where the authors use
a Toom-Cook method to reduce the computational complexity
of the involved polynomial multiplication for the efficient
implementation of Saber on the FPGA device. Another such
design is newly released in [14], where the design achieves
better performance but at the cost of large resource usage.
Very recent work uses the number theoretic transform (NTT)
based method to implement the polynomial multiplication for
Saber through field extension and the Chinese Remainder
Theorem, but the main computation module is executed on
a RISC-V accelerators [15]. For the latter type, i.e., the full
hardware implementations, the first report is released in [16],
where the main arithmetic operation is based on a school-
book based method to achieve high speed and moderate area
consumption. Recently, a parallel 8-level Karatsuba algorithm
based polynomial multiplier is proposed to be deployed to
obtain a low-power KEM Saber [17]. But due to the iterative
nature, the proposed hardware structure has a large area and
long critical-path. The authors of [18] very recently present
area/performance trade-offs of polynomial multiplication for
Saber on hardware platforms, targeting both lightweight and
high-speed implementations. These mentioned works repre-
sent the main efforts in the field.

It is known that the polynomial multiplication in the ring
is the key arithmetic operation for the mentioned KEM Saber,
and hence the efficiency of the polynomial multiplication plays
a critical role in the overall performance of the cryptosys-
tem. For lattice-based cryptography such as Ring-LWE based
scheme, the polynomial multiplication can be carried out by
the fast algorithm based method (NTT) [19], based on the
specific parameter setting on the modulo ring. While Saber
uses power-of-two moduli and the NTT based method is thus
not convenient to be used in this case. This type of parameter
setup undoubtedly has made the efficient implementation of
Saber an interesting and challenging research topic.

Noticing that the above mentioned KEM Saber PQC scheme
is also targeted for compact and lightweight applications, its
low-complexity implementations on the hardware platform,
however, still needs significant improvement since (i) there
is so far only one lightweight version of polynomial multi-
plication available in the literature for the KEM Saber; (ii)
the available hardware implementations are based on existing
polynomial multiplication algorithms and no further improved
algorithmic derivation process is provided [16], [17]; (iii) the
reported compact hardware architecture, particularly refers to
the corresponding polynomial multiplication for KEM Saber
(which is the key arithmetic operation of the scheme), is very
limited on throughput rate (ONLY one fixed rate) and no
other flexible versions proposed; (iv) there lacks a generic
compact implementation of the KEM Saber, which can be
fit in different application environments based on the resource
availability. All these factors indicate that the efficient imple-
mentation of compact KEM Saber cryptoprocessor is highly
demanded.

Major Contributions. Based on this consideration, in this
paper, we aim at presenting a novel design strategy for efficient
implementation of KEM Saber on the hardware platform,
i.e., a novel compact coprocessor. In particular, the proposed
strategy fits for various types of application environments,
which still maintains efficiency in timing-complexity (also
the resource usage). The proposed work is based on a novel
Scalable Matrix Originated Processing (SMOP) strategy, and
we have conducted several layers of coherent interdependent
efforts to carry out the overall research.

• We have presented detailed mathematical formulation and
derivation process to propose a novel SMOP strategy
for the polynomial multiplication of the mentioned KEM
Saber in a general format, which lays a solid theoretical
foundation for the obtaining of the desired compact
coprocessor.

• We have then presented the details of the SMOP strate-
gy based polynomial multiplication algorithm, including
the algorithmic operation and structural innovation with
respect to the specific PQC encryption scheme.

• We have also followed the existing coprocessor design
process to obtain the targeted compact coprocessor, de-
ploying the proposed polynomial multiplication with the
help of several algorithm-architecture co-implementation
techniques.

• We have given thorough complexity analysis and compar-
ison to confirm the superior performance of the proposed
hardware coprocessor under different styles than the state-
of-the-art solutions.

• We have also carried out a series of FPGA based im-
plementation and comparison along with the competing
designs (available in the literature) to demonstrate the
efficiency of the proposed coprocessor over the existing
ones.

• We have finally presented a thorough discussion and
analysis on the unique features of the proposed strategy
and structures as well as their possible extensions and
applications.

To the authors’ best knowledge, this is the FIRST paper on
compact implementation for the KEM Saber in a generic and
flexible format.

Overall, the proposed strategy and hardware coprocessor for
the KEM Saber offers many unique advantages:

• Low-complexity. The proposed SMOP strategy brings
efficiency on the overall computational time-complexity
reduction to the coprocessor (including polynomial mul-
tiplication) theoretically and structurally and resources
usage.

• Flexibility and scalability. The proposed SMOP strategy
and designed coprocessor offer great flexibility and scala-
bility on the processing size/rate (also the related area and
timing performance), suitable for different application
environments.

• Generic and versatility. The proposed strategy and copro-
cessor fit well for Saber and can be extended to the other



important lattice-based schemes.
Organization of the paper. The rest part of the paper
is organized as follows. Section 1 covers the preliminary
knowledge related to KEM Saber and the involved polynomial
multiplication. Section 2 presents the proposed mathematical
process for the general form of the polynomial multiplication
and the proposed SMOP strategy. Section 3 gives a detailed
coprocessor design process deploying the proposed polynomial
multiplication architecture. Section 4 provides the thorough
complexity analysis and comparison as well as the FPGA
based implementation to show the superior performance of
the proposed coprocessor over the competing ones. Finally,
the conclusion of this paper is presented in Section 5.

II. PRELIMINARIES

This section mainly gives a brief introduction of the men-
tioned KEM Saber and the corresponding polynomial multi-
plication. Note that we follow the parameter notations in the
existing literature to present the preliminaries, and the detailed
information can be referred to the specific papers [10].

A. Notation

We follow the existing paper [9], [10], [16] to list the
following notation, for a better understanding to the potential
readers. Define p and q as two powers of 2 as p = 2εp and
q = 2εq and let Zq be the ring of integers modulo q. We also
define the ring of polynomials Rp = Zqp[x]/〈xN + 1〉 for p
and Rq = Zq[x]/〈xN + 1〉 for q, respectively. a is used to
represent a vector and a(x) is used to denote the polynomial
in R, where the coefficients can be seen as a vector and the
i-th coefficient is the i-th entry of the vector. Moreover, the
operator b·e denotes the rounding operation.

Besides that, βµ represents the binomial distribution based
on parameter µ, which produces values in the range of
[−µ/2, µ/2] with probability of µ!

(µ/2+x)!(µ/2−x)2
−µ. x← βµ

denotes that x is randomly sampled from the binomial distri-
bution. If we replace x with X, then it means a polynomial X
is sampled from the related binomial distribution. Finally, the
notation of x ← U(S) denotes that x is uniformly selected
from S.

B. The MLWR-based Encryption Scheme: KEM Saber

The LWR scheme is a variant of the LWE problem, where
the error term is introduced by a rounding operation rather than
obtaining it from a random distribution [10]. The samples for
LWR scheme are generated by (a, b = bpq 〈a, s〉ep) ∈ Znq ×Zp.
The MLWR scheme is based on the LWR problem with the
module matrices.

Saber is a IND-CCA secure KEM, which is built on the
hardness of the MLWR problem to achieve both classical and
quantum security [10] since it is proved to be computationally
infeasible both on classical and quantum computers. Saber is
firstly constructed into a Chosen Plaintext Attack (CPA) secure
public-key encryption scheme based on the using power-of-
two moduli (both p and q). After that, a CCA-secure Saber

KEM is finalized through the Fujisaki-Okamoto transforma-
tion [20].

In brief, the Saber public-key encryption scheme consists
of three phases, namely the key generation, encryption, and
decryption. In the key generation phase (see Algorithm 1),
a public matrix of polynomials A and a secret vector of
polynomials s are generated. Meanwhile, the vector b is
obtained through the scaling and rounding of the product As,
where the public key consists of A and b and the secret key
is the vector s.

Algorithm 1 Saber.PKE.KeyGen() [9], [10]

seedA ← U(0, 1)256.
A = gen(seedA) ∈ Rl×lq .
r = U({0, 1}256).
s = βµ(Rl×1q ; r).
b = ((AT s + h)mod q)� (εq − εp) ∈ Rl×1p .
return (pk := (seedA,b), sk := (s)).

In the encryption phase, the message is encrypted by v1′ =
s′bT (s′ is a vector specifically generated for the encryption).
The produced ciphertext involves the vector b′ (from rounding
As′). The details can seen at Algorithm 2.

Algorithm 2 Saber.PKE.Enc(pk := (seedA,b),m ∈ R2; r)
[9], [10]

A = gen(seedA) ∈ Rl×lq .
if r is not specified then

r = U({0, 1}256).
s′ = βµ(Rl×1q ; r).
b′ = ((As′ + h)mod q)� (εq − εp) ∈ Rl×1p .
v1
′ = bT (s′ mod p) ∈ Rp.

cm = (v1
′ + h1 − 2εp−1m mod p)� (εp − εT ) ∈ RT return

(c := (cm,b′).

While in the decryption phase, the message is recovered
through the approximation of v1 (from sb′), as shown in
Algorithm 3.

Algorithm 3 Saber.PKE.Dec(sk = s, c = (cm,b′)) [9], [10]

v1 = b′T (s mod p) ∈ Rp.
m′ = ((v1 − 2εp−εT cm + b2) mod p)� (εp − 1) ∈ R2.
return m′.

The KEM Saber is built based on the encryption scheme
with further ensuring the correctness of private key reusability
[]. According to FIPS 202 standard [], let F : {0, 1}∗ →
{0, 1}n and G : {0, 1}∗ → {0, 1}l×n denote the hash functions
SHA3-256 and SHA3-512, respectively, we have the following
Algorithms 4, 5, and 6 to represent the operations of the CCA-
secure KEM Saber.



Algorithm 4 Saber.KEM.PKE.KeyGen() [9], [10]

(seedA,b, s)=Saber.PKE.KeyGen().
pk = (seedA,b).
pkh = F(pk).
z1 = U({0, 1}256).
return (pk := (seedA,b), sk := (s, z1, pkh)).

Algorithm 5 Saber.KEM.Encaps(pk = (seedA,b)) [9], [10]

m = U({0, 1}256).
(K̂, c) = G(F(pk),m).
c=Saber.PKE.Enc(pk,m; r).
K = F(K̂, c).
return (c,K).

Algorithm 6 Saber.KEM.Decaps(sk = (s, z, pkh), pk =
(seedA,b), c) [9], [10]

m′=Saber.PKE.Dec(s, c).
(K̂ ′, c′) = G(pkh,m′).
c′=Saber.PKE.Enc(pk,m′; r′).
if c = c′ then return K = H(K̂, c).
else return K = H(z1, c).

Parameter Setting. There are three sets of parameters setting
for the NIST security levels 1, 3, and 5, respectively, called
as LightSaber, Saber, and FireSaber. The polynomial degree is
set as N = 256 and moduli q = 213 and p = 210. The related
secrets are sampled from the binomial distribution as [-5,5]
(LightSaber), [-4,4] (Saber), to [-3,3] (FireSaber), respectively
[9], [10].

C. Polynomial Multiplication for KEM Saber

The polynomial multiplication is the key operation of the
Saber protocol, where one polynomial involves small-size
coefficients (e.g., in the range of -4 to +4 for Saber) and the
other polynomial operand has coefficients of either 10-bit or
13-bit (the design for 13-bit can be reused for the 10-bit one).
The most recent report of [18] has utilized this feature to derive
a lightweight structure based on the schoolbook multiplication
algorithm. Though this structure has advantages such as low-
complexity, it has limitations of (i) fixed throughput rate and
(ii) high memory access overhead, and hence further efforts
need to be made in this area.

III. SMOP: MATHEMATICAL FORMULATION &
DERIVATION

Overall Description. This section will present the general
mathematical derivation strategy and then through the related
processes to obtain the desired SMOP strategy.

A. Mathematical Formulation & Derivation

As discussed in Section 1, the most complicated operation
for KEM Saber is the polynomial multiplication over ring
Zp/q/(xN + 1). Without loss of generality, for simplicity of
discussion, we can thus have the following definitions in a
general format.
Definition 1. Following the above discussion, here we just
define the polynomial multiplication over ring as

W = GD mod f(x), (1)

where f(x) = xN + 1, W =
∑N−1
i=0 wix

i, G =
∑N−1
i=0 gix

i,
and D =

∑N−1
i=0 dix

i. Note that the wi (t-bit), gi (t-bit), and
di (h-bit) are integers over ring Zl/(xN + 1), which will be
determined by the specific PQC scheme later.
Proposed Mathematical Formulation & Derivation Strat-
egy. For compact implementation, it is ideal that the original
polynomial multiplication can be transferred into a number
of small-size sub-components, where these sub-components
can be realized through the form of serial accumulation,
i.e., desirable for low-complexity compact and lightweight
implementation. The conventional methods like Karatsuba
algorithm [21], when the original polynomial multiplication is
decomposed into smaller-size sub-polynomial-multiplications,
the involved sub-components typically involve the irregular
degree of x and thus are hard to process these sub-units in an
orderly format [21]. Based on this consideration, we propose
to use a novel derivation strategy to achieve this specific goal.

Following the above discussions, we set our mathemat-
ical formulation & derivation strategy as: (i) deriving the
polynomial multiplication into the equivalent form of the
additions of small-size sub-polynomial-multiplications (where
each sub-polynomial-multiplication remains a certain degree
of similarity and modularity); (ii) looking for unique/common
features from these sub-components that they can be easily
processed/implemented by a regular format for possible com-
pact and lightweight implementation.

Following the above strategy, let us rewrite (1) as

W =(Gd0 +Gd1x+ · · ·+GdN−1x
N−1) mod f(x)

=G(0)d0 +G(1)d1 + · · ·+G(N−1)dN−1,
(2)

where G mod f(x) = G(0) = G, Gx mod f(x) = G(1),. . . ,
GxN−1 mod f(x) = G(N−1). We can then remove the
modulo reduction over f(x) by substituting xN with xN ≡ −1
as

G(1) =− gN−1 + g0x+ · · ·+ gN−2x
N−1,

G(2) =− gN−2 − gN−1x+ · · ·+ gN−3x
N−1,

· · · · · · · · ·
G(N−1) =− g1 − g2x− · · ·+ g0x

N−1.

(3)

Let N = u× v (u, v are integers). We can then define that

D = D0 +D1x
u +D2x

2u + · · ·+Dv−1x
(v−1)u, (4)



where

D0 =d0 + d1x+ d2x
2 + · · ·+ du−1x

u−1,

D1 =du + du+1x+ du+2x
2 + · · ·+ d2u−1x

u−1,

· · · · · · · · ·
Dv−1 =duv−u + duv−u+1x+ · · ·+ duv−1x

u−1.

(5)

Similarly, we can have G = G0+· · ·+Gv−1x(v−1)u, where
(the similar decomposition strategy applies to other G(i) for
1 ≤ i ≤ N − 1)

G0 =g0 + g1x+ g2x
2 + · · ·+ gu−1x

u−1,

G1 =gu + gu+1x+ gu+2x
2 + · · ·+ g2u−1x

u−1,

· · · · · · · · ·
Gv−1 =guv−u + guv−u+1x+ · · ·+ guv−1x

u−1,

(6)

Then, we can rewrite (2) into

W =G(D0 +D1x
u + · · ·+Dv−1x

(v−1)u) mod f(x)

=GD0 +G(u)D1 + · · ·+G(uv−u)Dv−1,
(7)

where the original polynomial multiplication has been de-
composed into the addition of several sub-polynomial-
multiplications in a preliminary way. For further decompo-
sition, we can have the following derivations.

Without loss of generality, we just cover GD0 of (7) first

GD0 =(G0 +G1x
u +G2x

2u + · · ·+Gv−1x
(v−1)u)D0

=G0D0 +G1x
uD0 + · · ·+Gv−1x

(v−1)uD0,
(8)

where we can further define that

T
(0)
0 = G0D0, · · · , T

(0)
v−1 = Gv−1x

(v−1)uD0, (9)

which can then be substituted into (8) to have

GD0 = T
(0)
0 + T

(0)
1 + · · ·+ T

(0)
v−1, (10)

where the sub-polynomial-multiplication is further decom-
posed into the addition of smaller-size components (which
satisfies the first aspect of the proposed derivation strategy).

It is clear that (consider T (0)
0 first)

T
(0)
0 =G0(d0 + d1x+ d2x

2 + · · ·+ du−1x
u−1)

=G0d0 +G
(1)
0 d1 +G

(2)
0 d2 + · · ·+G

(u−1)
0 du−1,

(11)

which can be transferred into a matrix-vector product form of
(connecting with (3), note that G0 = G

(0)
0 )

[T
(0)
0 ] =


g0 −gN−1 · · · −gN−u+1

g1 g0 · · · −gN−u+2

...
...

. . .
...

gu−1 gu−2 · · · g0



d0
d1
...

du−1


=[G0][D0],

(12)

where [G0] is an u × u matrix. Interestingly, we can have
the following observations on [G0]: (i) the elements in the
main diagonal are identical (say g0); (ii) the rest elements
are regularly distributed in two regions (the upper-right and
the lower-left ones) and meanwhile the values in the specific
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Fig. 1. Example of N = 256 and u = 4 ([G0]), where the values are
regularly distributed in the regions (colored areas).

region are symmetrically identical along with the direction of
main diagonal of the matrix; (iii) the subscripts of the values of
each row/column within each region are following a pattern
of decreasing sequence (e.g., from gu−1 to g0 and then to
−gN−u+1); (iv) there are actually in total (2u − 1) values
contained in the [G0] (counting the related signs), namely
gu−1, · · · , g0, · · · , −gN−u+1, which is the values in the far left
column and the first top row. These unique features indicate
that all the elements within the matrix [G0] can be obtained
through the circularly shifting of the coefficients of polynomial
G, which facilitates the actual implementation (see the next
Section).

For a clear demonstration and clarification, we have used
a case study example of N = 256 and u = 4 and have
shown [G0] in Fig. 1, where the mentioned two regions are
highlighted as the blue and green areas, respectively. One
can see that the actual values for this matrix, contained in
the dotted red area, are in total (2u − 1 = 7) numbers,
where the subscripts are decreasing, following the sequence
in Fig. 1. Besides that, the values in the specific region are
symmetrically identical along with the line of main diagonal.

In summary, one can conclude that these unique properties
are very much related to the elements in the matrix main
diagonal, and the other elements are distributed following a
specific order. Besides that, as the matrix size u (for [G0])
is not a fixed number and it potentially involves scalability.
Hence, we temporarily conclude these features as “Scalable
Matrix Originated Diagonal Spreading (SMODS)”.

For a more general conclusion, one can find that these
observed unique features do not stick to [G0] only. In fact,
these properties apply also to other sub-products of (8). For
instance, we can have T (0)

1 as

T
(0)
1 =


gu gu−1 · · · g1
gu+1 gu · · · g2

...
...

. . .
...

g2u−1 g2u−2 · · · gu



d0
d1
...

du−1

 = [G1][D0],

(13)

where all the elements within the main matrix [G1] follow the
same pattern of SMODS, as specified above.

Likewise, T (0)
2 , . . ., T (0)

v−1 of (10) can be transferred into
the similar matrix-vector products and the involved matrices
share the same features of SMODS, as those discussed above
(connecting with (3)).



Similarly, G(u)D1 can be composed as

G(u)D1 = T
(1)
0 + T

(1)
1 + · · ·+ T

(1)
v−1, (14)

where T
(1)
0 = G

(u)
0 D1, T (1)

1 = G
(u)
1 xuD1, · · · , T (1)

v−1 =

G
(u)
v−1x

(v−1)uD1. The same strategy can be extended to
G(2u)D2, · · · , G(uv−u)Dv−1, as

G(2u)D2 =T
(2)
0 + T

(2)
1 + · · ·+ T

(2)
v−1,

· · · · · · · · ·
G(uv−u)Dv−1 =T

(v−1)
0 + T

(v−1)
1 + · · ·+ T

(v−1)
v−1 ,

(15)

where we can find that each sub-polynomial-multiplication of
(7) has now been further decomposed into v number of sub-
components. Besides that, all these sub-components can be
transferred into the matrix-vector product forms, where the
main u × u matrix have the features as SMODS, following
the examples in (12), (13), and Fig. 1 (connecting (3)).

The above steps, mainly from (4)-(15), undoubtedly have
fully satisfied the two mentioned aspects of the proposed
mathematical derivation strategy. Hence, we can summarize
the proposed decomposition strategy as follows:
Proposed SMOP Strategy. For a general polynomial multipli-
cation over ring Zl/(xN+1), we can follow the above steps of
(4)-(15) to decompose the original polynomial multiplication
into the addition of in total v2 number of regular sub-
components, where each sub-component is equivalent to a
matrix-vector product involved with the main matrix sharing
the pattern of observed SMODS. As the matrices involved
are following the features of SMODS, we here define this de-
composition/processing strategy as Scalable Matrix Originated
Processing (SMOP) strategy. The detailed algorithmic process
for the polynomial multiplication with respect to the KEM
Saber is presented below.

IV. SMOP BASED POLYNOMIAL MULTIPLICATION
ALGORITHM FOR KEM SABER

Following the proposed SMOP strategy, we can further
derive the desired polynomial multiplication algorithm for
KEM Saber.

Let us firstly decompose W into v sub-polynomials as

W =W0 +W1x
u +W2x

2u + · · ·+Wv−1x
(v−1)u, (16)

where W0 = w0 + w1x + w2x
2 + · · · + wu−1x

u−1, W1 =
wu + wu+1x + wu+2x

2 + · · · + w2u−1x
u−1, · · · , Wv−1 =

wuv−u−1 + wuv−ux+ · · ·+ wuv−1x
u−1.

From (7), one can further have

W0 =T
(0)
0 + T

(1)
0 + · · ·+ T

(v−1)
0 =

v−1∑
j=0

T
(j)
0 ,

W1 =T
(0)
1 + T

(1)
1 + · · ·+ T

(v−1)
1 =

v−1∑
j=0

T
(j)
1 ,

· · · · · · · · ·

Wv−1 =T
(0)
v−1 + T

(1)
v−1 + · · ·+ T

(v−1)
v−1 =

v−1∑
j=0

T
(j)
v−1.

(17)

where each output sub-polynomial becomes the accumulation
of v number of T (j)

k (for Wk =
∑v−1
j=0 T

(j)
k ).

For compact implementation, we can thus have the proposed
polynomial multiplication here as below

Algorithm 7 Proposed algorithm for the polynomial multipli-
cation in KEM Saber

Inputs: G and D are polynomials (G and D are polynomials
with coefficients over ring and the actual bit-width of these
coefficients follows the specific KEM Saber).
Output: W = GD mod f(x) (f(x) = xN + 1).
1. Initialization (preparation) step
1.1. make ready input polynomials G and D.
1.2. W = 0.
2. Main step
2.1. decompose D into {D0, D1, · · · , Dv−1}. // see (4)
2.2. obtain G(1), G(2), · · · , G(N−1) from G, respectively. //
(3)
2.3. decompose G into {G0, G1, · · · , Gv−1}. // see (6)

2.4. for k = 0 to v − 1.
2.5. for j = 0 to v − 1.
2.6. obtain all the corresponding G(ju)

k .

2.7. W =W + T
(j)
k .//follow (17) & the SMOP strategy

2.8. end for.
2.9. Wk =W .

2.10. end for.
3. Final step
3.1. obtain the output W from serially delivered Wk.

Details of the Algorithm. Overall, the procedures presented in
Algorithm 7 are crystal clear (see also the detailed processes in
Section 2) except the computation of each T (j)

k as well as the
obtaining of related G

(ju)
k during the actual implementation

process. Here we present the details of them as below.
(a) Computation of Each T

(j)
k . The computation of each

T
(j)
k follows the regular calculation process presented in

Section 2, i.e., transfer each T
(j)
k into the equivalent matrix-

vector product and then obtain the related output (u number)
in parallel through point-wise multiplication-and-addition op-
erations (Step 2.7 of Algorithm 7 is the serial accumulation
of T (j)

k ).
For example, (12) can be calculated as

[T
(0)
0 ] =


g0d0 − gN−1d1 − · · · − gN−u+1du−1
g1d0 + g0d1 − · · · − gN−u+2du−1

· · · · · · · · ·
gu−1d0 + gu−2d1 + · · ·+ g0du−1

 , (18)

which applies to other T (j)
k of Algorithm 7.

(b) Obtaining of Related G(ju)
k Sequentially. As the related

T jk are serially accumulated, the obtaining of corresponding
G

(ju)
k also needs to be carried out in a sequential format. For



simplicity of discussion, we can have [G
(0)
0 ] ([G0], see (12))

and [G
(u)
0 ] (as below)

[T
(u)
0 ] =


−gN−u −gN−u−1 · · · −gN−2u+1

−gN−u+1 −gN−u · · · −gN−2u+2

...
...

. . .
...

−gN−1 −gN−2 · · · −gN−u

 ,
(19)

where there are actually (2u − 1) number of values in-
volved within, i.e., {−gN−1, · · · ,−gN−u, · · · ,−gN−2u+1},
according to the SMOP property (Section 2). Comparing
with the actual (2u − 1) values contained in [G0], namely
{gu−1, · · · , g0, · · · ,−gN−u+1}, these values (subscripts) are
circularly related to one another and there also exist an
overlap of (u − 1) values (i.e., {−gN−1, · · · ,−gN−u+1}).
This property facilitates the using of circular shift-register
(CSR) to deliver out the desired outputs per every cycle for the
construction of proper G(ju)

k (the detailed hardware structure
is presented in Section 4). Similar strategy applies to the
following obtaining G(2u)

0 from G
(u)
0 , which can be extended

to the obtaining of other G(ju)
k in a sequential order.

Another aspect of obtaining G
(ju)
k in Algorithm 7 also

involves the assigning of correct signs to the corresponding co-
efficient within a certain [G

(ju)
k ] since the original coefficients

of the polynomial G are assumed to have positive values (no
additional sign inverting). Again, here we combine the SMOP
property (Section 2) with the feature of the sign distributions
within two regions of the matrix [G

(ju)
k ] to obtain the accurate

sign assignment, and the detailed implementation process can
be seen in Section 4.
Parameters With Respect to the Specific PQC Scheme.
Finally, when the proposed Algorithm 1 is applied to the actual
PQC scheme, we need to take the corresponding parameter
setting into consideration. Specifically, following the original
setup, one polynomial for KEM Saber has coefficients of either
13-bit or 10-bit (the structure for the 13-bit can be used for
the 10-bit one), while another polynomial (from the binomial
sampler) involves coefficients of 4-bit [9] ([-5,5], [-4,4], [-
3,3]). The polynomial-size N is fixed at 256. When Algorithm
7 is applied, we set G as the polynomial of 13-bit coefficients
(t = 13), and D is the one with 4-bit coefficients (h = 4).
Note that we follow the setup in [22], [23] that the coefficients
of D are represented in the sign-magnitude binary numbers.

V. PROPOSED COMPACT CRYPTOPROCESSOR FOR KEM
SABER

A. Design Strategy and Overview of the Coprocessor

While considering the existing fully hardware implemen-
tation of the cryptoprocessors, there are basically two types:
the first type belongs to the traditional design strategy that the
major arithmetic operations are mapped into the related hard-
ware structures but the top-level signals such as input/output
data flow, reset control, and clock signals are heavily rely
on the outward resource support [24], which is “ideal”setup;
while the second type emerges out recently that fully utilizes

the available resource on modern hardware platform, like
the System-on-a-Chip (SoC) based FPGA device, to build
an instruction-set coprocessor, which not only includes the
necessary arithmetic units required for the cryptosystem, but
also integrates the complete instruction-set based control to
coordinate the overall operation of the whole cryptosystem,
ranging from the basic input/output data processing and clock
signal setup to the operational phase switching and processor
start & initiation, etc. Obviously, the mentioned latter type of
design is more efficient than the former, especially considering
the actual application of the implemented cryptoprocessor. In-
deed, as the SoC FPGA has gradually become the mainstream
device in the market, it is expected that the instruction-set
coprocessor is highly desired.

With this point of view, in this paper, we follow the design
style of the existing instruction-set coprocessor for KEM Saber
[16] to obtain the proposed compact coprocessor. Despite
the following of the available coprocessor design, we have
also made quite a number of innovative efforts to uplift the
built instruction-set coprocessor to a higher level: (i) we have
innovatively transfer the proposed polynomial multiplication
algorithm into desired hardware architecture in the way of
generic and flexible, yet with very low resource usage and
computational delay; (ii) we have also successfully deployed
the proposed polynomial multiplication architecture into the
coprocessor to match the other building components; (iii)
we have also designed a novel input/output coordinator such
that the deployed polynomial multiplication component can
adequately operate with the instruction-set in a generic and
flexible format; (iv) we have finally updated and improved
all the necessary control signal setup, instruction-set, and data
path manager for better coordination of the related building
components to finalize the desired coprocessor.

Following the above-mentioned design strategy, we have
thus presented the proposed cryptoprocessor for the KEM
Saber, as shown in Fig. 2, where the major operations such as
polynomial multiplication are based on Algorithms 1-7. The
overall coprocessor consists of a number of necessary building
blocks, i.e., the processor interface & control unit, memory
blocks, data bus & manager, binomial sampler, polynomi-
al multiplication block, and related input/output coordinator,
Keccak core (Hash function), and other building components.
The whole coprocessor is operating in the constant time ac-
cording to the high-level instruction set, and all the individual
building block involves constant computational cycles with
respect to different operational phases of the KEM Saber,
which is quite practical for further employing in emerging
application environments.

The details of the involved building components of the
proposed compact coprocessor are introduced below. In par-
ticular, we will give a thorough description of the proposed
polynomial multiplication architecture along with necessary
coordinating components for the proper operation of the
proposed coprocessor.
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B. Data Memory: RAM-1

The data memory functions to store/read the data from/to
the processor interface and the data bus & manager as well as
those of the important components such as sampler, polyno-
mial multiplier, Keccak core, etc. We follow the existing co-
processor design style and have chosen the block RAM of 64-
bit available in the FPGA, which facilitates the fast and easy
transmission of data between different building blocks within
the coprocessor since one single word contains enough room
for multiple values/signals. Meanwhile, this type of RAM
selection also benefits the possible communication between
host computers and reduces the potential communication cost
on both data transfer and delay aspects.

C. Polynomial Multiplication Building Block

As introduced in Section 1. polynomial multiplication over
ring can be regarded as the most important building block

in the coprocessor, not only because the polynomial multipli-
cation is the most computational intensive operation within
the KEM Saber, but also that the other components such as
Keccak core can be directly obtained from the open-access re-
sources (though it has relatively large area-complexity) except
the polynomial multiplier core. The details of the proposed
polynomial multiplication architecture are presented below,
along with several algorithm-architecture co-implementation
techniques.

Overview of Polynomial Multiplication Structure (Gen-
eral Format). The overall polynomial multiplication structure
(general format) based on Algorithm 7 is shown in Fig.
3, where it consists of five main components, namely the
input processing component, the sign processing component,
the main computation component, and the control generating
component. In terms of the constitution of each component,
there are: (i) two CSRs in the input processing component;
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(ii) a sign block in the sign processing component; (iii) one
multiplication-and-addition (MAA) cell and one accumulation
(AC) cell in the main computation component; and (iv) a
control unit in the control generating component. Note that
the structure in Fig. 3 is presented in a general format, and
the specific bit-width of each data path depends on the setup
in the specific KEM Saber scheme.

Generally, the input processing component (two CSRs) is
firstly loaded with the necessary coefficients from the two
inputs, and then in the following cycles, it produces the
correct outputs to the following components. Connecting with
Algorithm 7, while the CSR-I is producing Dj (j = 0 to
v − 1) in a sequential format, the CSR-II is responsible for
generating the necessary values (in total 2u − 1 values) to
construct the corresponding G

(ju)
k . Of course, the sign pro-

cessing component (sign block) assists with the sign assigning
to all the delivered 2u − 1 values (in two paths) to form the
accurate G(ju)

k . When all the necessary values have been fed
to the main computation component, the MAA cell functions
to execute the computation of T (j)

k and the following AC cell
executes the related accumulation to deliver the desired Wk

(k = 0 to v − 1) as the output of the AC cell has u parallel
output coefficients to be further stored in the external memory.
The overall operation is carried out through different types of
control signals (some of them have already been specified in
Fig. 3) generated from the control unit.

The Input Processing Component. As seen from Fig. 4,
there are two CSRs contained in this component. The CSR-I
is responsible for generating the proper Dj (j = 0 to v − 1)
to the MAA cell in a repeated format (repeats every v cycles).
To realize this specific function, we have used a multi-path
based CSR, as shown in Fig. 4, where we have presented a
case study example when u = 2. This multi-path based CSR
actually consists of two sub-CSRs (each sub-CSR has N/2
registers), where the input to each sub-CSR is directly by a
De-MUX (D-MUX) and two connected MUXes attached to
the input of the sub-CSR. During the loading time, the control
signal to the D-MUX operates according to the sequence of
“0101· · · 0101”, which splits the coefficients of the polynomial
D into two groups (each group corresponds to the specific sub-
CSR), i.e., group of {dN−2, dN−4, · · · , d0} and another group
of {dN−1, dN−3, · · · , d1}. When all the necessary values are
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loaded into the sub-CSRs, the two MUXes then switch to
close the loop such that in the following cycles, the output
of the CSR-1 produces Dj (j = 0 to v − 1) correctly.
The design of Fig. 4 can be extended to other values of
u, such as the example shown in Fig. 5 for u = 4, where
we have used 4 sub-CSRs (each with N/4 registers) and a
1-to-4 D-MUX for splitting the input coefficients into four
groups as {dN−4, dN−8, · · · , d0}, {dN−3, dN−7, · · · , d1},
{dN−2, dN−6, · · · , d2}, and {dN−1, dN−5, · · · , d3}.

The CSR-II in the input processing component has a similar
design structure as those in Figs. 4 and 5. For a clear
demonstration, we have used u = 2 as the case study example
again, as shown in Fig. 6. Comparing with the CSR-I in Fig. 4,
the internal structure of the CSR-II is almost the same except
on the output setup aspect. When connecting with the actual
values contained in the two regions of Fig. 2 (applies to other
matrices also), we firstly define that all the values in the upper-
right region are generated by the path-I output of the CSR-II,
while the values in the lower-left region, as well as the one in
the main diagonal, are delivered out by the path-II.
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Considering the values contained within each G
(ju)
k , e.g.,

G
(0)
0 (G0, see (12)), there are only {g0, g1, g255} involved (not

counting the sign, which is done by the following sign block).
Hence, as seen in Fig. 6, the far-right register’s output (only
bottom sub-CSR) is used for path-I delivering while both the
far left registers’ outputs (two sub-CSR) are used for path-II
delivering. In second cycle, the CSR-II delivers the outputs of
{g255, g254, g253}, which is exactly the actual values contained
in G

(2)
0 (connecting with (19)). When the desired output for

G
(254)
0 (for the example here, at the N/2th cycle) is delivered

(g2, g1, g3), all the registers in the CSRs will be disenabled
for one cycle, i.e., the same output values are delivered out
for the next cycle, which matches the actual values contained
within G(2)

0 (see (19)). Then, the registers in the CSR-II will be
enabled again in the following cycles (the disabling of registers
in the CSR-II repeats every N/2 cycles until all the proper
outputs are delivered).

In a more general sense, when u is set as other values, all
the outputs of the far-right registers in all the sub-CSRs (not
including the top one) are used to deliver the values required
for path-I, while all the far-left registers (in all the sub-CSRs)
are used to form the path-II output. We have also presented
another example for u = 4, as seen in Fig. 7.

The Sign Processing Component. The sign block in the
sign processing component functions to assign the delivered
outputs from the CSR-II with proper signs according to the
distribution within each G

(ju)
k . As shown in Fig. 8(a), there

are basically two inverter cells (marked as x = −x) attached
correspondingly to two MUXes. The inverter cell contains (u−
1) (or u) sign inverters according to the two’s complement
representation requirement that all the bits of a certain value
are all inverted and then pass through the same number of
half-adder (HD) (with one carry-in set as ‘1’), as shown in
Fig. 8(b). The control signals (s-0 and s-1) of the MUXes are
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generated by the control unit.
The Main Computation Component. The main computa-

tion component contains two cells, namely the MAA and the
AC cells. The MAA cell is responsible for the calculation of
corresponding T (j)

k in Step 2.7 of Algorithm 7, while the AC
cell executes the following accumulation in the same step. As
specified in Section 3 (see (18)), the MAA directly obtains
the output from standard matrix-vector based calculation, and
hence its general structure is shown in Fig. 9, based on the
case study example of u = 2 (which applies to other values
of u) as well as the internal structure of the AC cell.

As seen from Fig. 9, the MAA cell mainly consists of
necessary multipliers and adders to perform the matrix-vector
product (connecting (18)). In the case study example of u = 2,
there is only one value contained in the upper-right region of
the main matrix of T (j)

k (path-I) as well as the one element
in the lower-left region (there are two values from path-II as
the one in the main diagonal is also included). Following this
setup, we can have the arrangement of multipliers and adders
in the MAA cell, as shown in Fig. 9, where one input value
(the element in the main diagonal) from path-II is reused twice
as the input to the multiplier while the other input values
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(including the ones delivered from the CSR-I) are connected
to the corresponding multipliers, respectively, following the
principle of matrix-vector product (size of 2×2). The produced
two outputs, namely the outputs of T (j)

k , are then accumulated
in the following AC cell through parallel processing to produce
two outputs. Note that the outputs of the adders in the AC cell
are directly connected to the outside as outputs of the main
computation component for the sake of saving one extra clock
cycle spent on the registers. The structure shown in Fig. 9 can
easily be extended to the design of other values of u. Note
that the registers can be inserted into the MAA cell to obtain
pipelined processing to maintain high-speed performance.

As discussed in Section 1 (for Saber), the output value from
the CSR-I (actually from the binomial sampler) lies in the
range of [-4,4] [23], we hence can use its absolute magnitude
to design the multiplier while the sign bit can be used in the
following part to determine the actual multiplication result in
either positive or negative status. As shown in Fig. 10, the
absolute magnitude of the output from the CSR-I (3-bit) is
used as the selecting signal to determine the multiplier’s output
result through the MUX (this part is similar to [23]). But after
this, we have used another MUX (with the help of a sign
inverter (SI)) to determine the actual result (where the sign bit
is used as the selecting signal).

The Control Generating Component. This component
plays a key role in the whole polynomial multiplication
architecture as all the involved operations are under the coor-
dination of all the related control signals generated from this
component (control unit), including the sign control signals
(sign block), clear signals (mainly for the registers), enable sig-
nals (mainly registers), and selecting signals (for MUXes/D-
MUXes), etc. All the necessary control signals can be easily
added/generated since we have used a double loop component
centered control unit, as shown in Fig. 11, where the entire
work status for the entire computation of W = GD mod f(x)
is divided into two stages, namely the loading and calculating
stages. The details of the two working stages are introduced
below.

During the load stage, the control unit takes N cycles to

serially receive all the coefficients of input polynomials G and
D into the corresponding registers in the CSRs. Note that the
control signal (ctr-1, see Fig. 4) is set as ‘0’ throughout this
stage such that the two CSRs are all working in the loading
mode. Once all the values are initiated in the related registers,
the control unit switches to the calculating stage.

The overall calculating stage takes (N/u)2 cycles
to produce (N/u) batches of desired results, namely
[w0, ..., wu−1], ..., [wN−u, wN−1] (from W0 to Wv−1), if no
pipelined registers are inserted in the MAA cell. One part of
the work for the control unit during this stage is to generate the
necessary sign control signals for the sign block in Fig. 3 and
Fig. 8. To achieve the accurate sign assigning to the correct
coefficients, we have used a novel sign control generating
strategy here: (i) first of all, we observe that the signs for all the
element within a certain matrix [Gjuk ] (connecting Algorithm
7) can be categorized into three conditions, namely a) all the
values in the whole matrix have positive signs, b) the values
in the lower-left region have positive signs but all negative
signs in the upper-right region of the matrix, c) all the values
in the whole matrix have negative signs; (ii) secondly, we
hence propose to use indices y (horizontal) and z (vertical)
to represent every element in the matrix [Gjuk ] (e.g., y = 0
and z = 0 represent the element in the left-top corner of the
matrix) such that we only need to consider three conditions
of a) y − z = 0, b) y − z = −1, c) z = (N/u) − 1 (the
transition between two states happens whenever one of three
transition condition is satisfied), which can be realized by a
three-state finite state machine (sign FSM). As shown in Fig.
11, the sign FSM produces the correct sign control signals,
where the first bit of the sign signal determines the signs in
the lower-left region (including the main diagonal), and the
second bit of sign control signal determines the signs in the
upper-right region of the matrix.

The control unit also sets the enable signal for the CSR-
II to ‘0’ when transition condition c) is satisfied because the
main matrix in the last computation block of T (v−1)

k and the
main matrix in the first computation block of T (0)

k+1 consists of
exactly the same values (with only different signs, as discussed
in Section 3). Furthermore, the checking of the transition
condition c) also enables the control unit to generate the clear
signal for the AC cell as well as the loading signal for the final
PISO component. The proposed control unit fully utilizes the
reusability of checking transition of condition c) to reduce the
area consumption for the entire control unit.

D. Polynomial Multiplication Input/Output Coordinator

This coordinator functions to facilitate the smooth input
and output data processing between the data memory (data
bus) and the polynomial multiplication building block. The
input side is implemented with 2 FIFOs. One FIFO sends
the secret coefficients to the multiplication core while another
FIFO sends out the public coefficients. The output buffer
takes responsibility to transfer u 13-bit output data into 64-
bit memory words. (i) The first step is to expand each 13-bit
data to 16 bit by inserting zeros at the head of the data. (ii)
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(connecting Algorithm 1). CMP: comparator. FSM: finite state machine.

While the next step depends on the value of u: (ii-a) when
u = 2, the output data is not registered, instead of writing to
a buffer; (ii-b) when u = 4, the output data is directly written
to the memory; (ii-c) otherwise, when u > 4, the output data
is registered and written back to the memory in u/4 cycles.

E. Keccak Core Building Block

The Hash functions SHA3-256 and SHA3-512 are necessary
as required by the operations for KEM Saber, according to
Algorithms 4, 5, and 6. We hence to use the open-source high-
speed Keccak hardware core available in the literature [22] to
realize this function, which is also similarly being used in
other PQC schemes, including the recent hardware Saber of
[16]. Besides that, as our proposed polynomial multiplication
architecture possesses high-speed capability, we thus adopt the
high-speed Keccak core used in the existing Saber coprocessor
to generate high-speed and stable output, i.e., 1,344 bits of
pseudo-random string every 28 cycles, to be used in other
components within the coprocessor.

F. Binomial Sampler

The binomial sampler is used to generate the secret coeffi-
cients for the KEM Saber, including three different security
levels as LightSaber [-5,5], Saber [-4,4], and FireSaber [-
3,3]. Meanwhile, considering that the proposed polynomial
multiplication architecture involves the assigning of signs to
different values following the SMODS feature of the targeted
specific “scalable matrix”, we have decided to set the secret
coefficients to be represented in the sign-magnitude format
for the facilitating of sign installing. Based on this aspect of
view, we follow the existing binomial sampler design [16] and
have used it in our proposed design. This sampler’s output is
designed to be the values represented in the sign-magnitude
form of 4-bit. This sampler’s details can be seen at [16].

G. Data Bus & Manager

This building block functions to coordinate the other build-
ing components’ working sequence and data transferring be-
tween the related blocks. Overall, this data bus & man-
ager contains several FSMs and combinational circuit cells
to realize the required function. This data bus & manager
is controlled by the processor interface block through the
program memory.

Specifically, for the proper operation of the proposed poly-
nomial multiplication, the data bus component directs the data
from RAM-1 to the polynomial multiplication I/O coordinator
for further processing. When the polynomial multiplier deliver-
s the desired output, the data bus & manager again coordinates
with the I/O coordinator to transfer the output data to the data
memory (RAM-1). Similar to operation operations required by
the specific KEM Saber scheme.

Besides that, the data bus & manager always offers working
priority to the processor interface & control unit component,
i.e., the processor interface can reset any building block, and it
also can write words into memory blocks at any time. While
the other building blocks’ working priorities are set as the
same level, according to the data bus & manager building
block’s design, namely the component functions first is given
priority.

H. Program Memory: RAM-2

Another block RAM is used to store and deliver correspond-
ing control signals necessary for the proper operation of the
coprocessor. Similar to RAM-1, RAM-2 is also designated as
37-bit for the ease of fast and simple read/write of required
control signals. RAM-2 coordinates with the data bus building
block and the processor interface component for the proper co-
ordinating of generating correct processor-level control signals
to the different building blocks such as sampler, polynomial
multiplier and the related coordinator, Keccak core, and other
components. In the actual instruction setup for RAM-2, all
instruction words are 35-bit wide: 5-bit for instruction code,
10-bit for one input operand address while another 10-bit for
another operand address and the last 10 bits are used for the
result address.

I. Processor Interface & Control Unit

The processor interface component is used to help the
coprocessor connect with the host processor embedded in the
SoC FPGA device through AXI-4 interface. Inside of this
interface component, seven 32-bit registers are being used,
where four registers are used to transfer the data from the
host processor to the coprocessor, and the remaining three
are for delivering data from the coprocessor to the host
processor. Note that the signals transferred from the processor
are basically contained in two 64-bit words, one 64-bit word



contains the data information, and another word is used for
containing the control signals. While the signals from the
coprocessor side to be transferred to the host processor are just
one 32-bit word that contains status information, and another
64-bit word contains data information. The key benefits of
having this kind of setup in the processor interface component
are that even when the host processor has a higher frequency
than the coprocessor, both sides still can coordinate to work
together.

While the involved control unit’s function can be catego-
rized into three main states: (i) handing the control priority to
the host processor that it can read/write to the data memory
or program memory directly; (ii) providing the necessary data
context for the building blocks that are going to operate; (iii)
waiting for the working/on-going building block to return the
desired result for next step of the operation.

J. Other Components

We follow the existing coprocessor design [16] to setup
the other components, namely AddPack, AddRound, Verify,
CMOV, and Copy-Words components. The Verify compo-
nent basically does the word-to-word comparison between
the received ciphertext and re-encrypted ciphertext during a
decapsulation process. The CMOV block is used to copy
the decryption key or a pseudorandom string. While the Ad-
dRound block is designed to perform the point-wise addition
of the constant h in Algorithms 1 and 2. The AddPack
component performs the coefficient-wise addition of a constant
in Algorithm 2 followed by the message. Since the involved
computational complexity is relatively very small, the related
resource usage is also minor when compared to the other
building blocks.

VI. COMPLEXITY & COMPARISON

The whole coprocessor is coded in the way of mixed VHDL
and Verilog, since some of the open-source core like the
Keccak core is written in Verilog, but the proposed polynomial
multiplication architecture is described in VHDL as well
as related I/O coordinator. The binomial sampler and other
component building blocks are also adopted from the open-
source codes, but we have updated the related control signals
and setups in the data bus & manager and the processor
interface & control unit. Overall, the whole project is written
in a generic format1, and we have used the Vivado 2020.2 to
synthesize and implement it on the targeted Xilinx UltraScale+
XCZU9EG-2FFVB1156 FPGA device. Due to the design
nature of a compact coprocessor, we have selected u = 2,
u = 4, and u = 8 for different security levels of KEM Saber
(LightSaber, Saber, and FireSaber) for N = 256, and the
detailed performance results are provided as follows.

A. Area Usage

The area usage for the mentioned PQC scheme, unified
coprocessor for LightSaber, Saber, and FireSaber, with respect

1The source code of this work will be released upon acceptance for official
publication in journal/conference.

TABLE I
AREA-COMPLEXITY FOR THE COMPACT COPROCESSOR WHEN u = 2,

UNIFIED ARCHITECTURE FOR LIGHTSABER, SABER, AND FIRESABER.
THE CLOCK FREQUENCY CONSTRAINT IS SET AS 250MHZ.

Building Block LUTs FFs CLBs DSPs BRAMs
Keccak Core 5866 2982 920 0 0

Sampler 230 88 62 0 0
Polynomial Multiplier 324 58 70 0 0

I/O Coordinator 225 679 89 0 1
Other Blocks 1989 2890 498 0 2

Whole Coprocessor 8634 6697 1639 0 3
(% of overall FPGA) 3.15 1.22 4.78 0 0.33

TABLE II
AREA-COMPLEXITY FOR THE COMPACT COPROCESSOR WHEN u = 4,

UNIFIED ARCHITECTURE FOR LIGHTSABER, SABER, AND FIRESABER.
THE CLOCK FREQUENCY CONSTRAINT IS SET AS 250MHZ.

Building Block LUTs FFs CLBs DSPs BRAMs
Keccak Core 5603 2985 886 0 0

Sampler 101 88 58 0 0
Polynomial Multiplier 996 634 217 0 0

I/O Coordinator 254 485 101 0 1
Other Blocks 2135 2892 477 0 2

Whole Coprocessor 9089 7084 1739 0 3
(% of overall FPGA) 3.32 1.29 5.08 0 0.33

to different values of u are listed in Tables I, II, and III,
respectively, where the frequency is set as 250MHz. We have
also used extra registers in the MAA cell of the polynomial
multiplication architecture to enhance the pipeline processing.

As seen from Tables I, II, and III, the proposed polynomial
multiplication core (including the I/O coordinator) actually
occupies very small resource usage when compared with other
components involved within the coprocessor. For instance,
even under the case of u = 8, the proposed polynomial
multiplier still has very small resource usage, i.e., 2,162 LUTs
and 1,656 FFs, which occupies only 21.4% and 21.5% LUT
and FF usage in the whole coprocessor, respectively. Besides
that, we have to mention that due to the using of pipelined
technique in the MAA cell of the polynomial multiplication
block, the frequency of the coprocessor is maintained at
250MHz, which is very ideal for practical usage.

TABLE III
AREA-COMPLEXITY FOR THE COMPACT COPROCESSOR WHEN u = 8,

UNIFIED ARCHITECTURE FOR LIGHTSABER, SABER, AND FIRESABER.
THE CLOCK FREQUENCY CONSTRAINT IS SET AS 250MHZ.

Building Block LUTs FFs CLBs DSPs BRAMs
Keccak Core 5655 2984 888 0 0

Sampler 229 88 77 0 2
Polynomial Multiplier 2162 1656 448 0 0

I/O Coordinator 69 81 44 0 1
Other Blocks 1996 2890 483 0 2

Whole Coprocessor 10111 7699 1940 0 3
(% of overall FPGA) 3.69 1.40 5.66 0 0.33



TABLE IV
TIME-COMPLEXITY FOR THE UNIFIED COMPACT COPROCESSOR WHEN
u = 2, u = 4, AND u = 8, RESPECTIVELY. THE CLOCK FREQUENCY

CONSTRAINT IS SET AS 250MHZ.

Instruction Cycles/Time (µs)
KeyGen Encapsulation Decapsulation

u = 2

LightSaber 101840/407 135122/540 168670/675
Saber 151376/606 201170/805 251230/1005

FireSaber 200912/804 267218/1067 333790/1335
u = 4

LightSaber 27632/111 36370/145 45374/181
Saber 40064/160 53042/212 66286/265

FireSaber 52496/210 69714/279 87198/345
u = 8

LightSaber 9072/36 11538/46 14270/57
Saber 12224/49 15794/63 19630/79

FireSaber 15376/62 20050/80 24990/100

Meanwhile, one has to point out that the main resource us-
age of the proposed coprocessor is the Keccak core, which has
more than 50% area occupation to the whole coprocessor. This
indicates that if a higher efficient Keccak core is deployed, the
overall area usage of the proposed coprocessor can be much
less than the current version.

B. Timing Results

The time-complexities of the proposed compact coproces-
sor, in terms of the number of cycles and related computational
time, with respect to different security levels of Saber, are cal-
culated and listed in Table IV, where the frequency constraint
is set as 250MHz.

As seen from Table IV, the proposed coprocessor has
again very excellent performance on the timing performance,
especially that the case of u = 8 achieves excellent time
efficiency on three different operational phases.

C. Overall Performance Consideration

While taking the overall area-time complexities of the
proposed coprocessor into careful consideration, we can find
out that the proposed coprocessor under case of u = 8
achieves properly the best area-time efficiency among all the
implemented cases, i.e., relatively low area usage yet with very
efficient timing performance.

Meanwhile, we still have to mention that the cases of u = 2
and u = 4 are still promising in those resource-constrained
application environments, especially that a lower complexity
Keccak core is deployed for actual implementation at that time.

D. Comparison With The Existing Implementations

We have also listed the area-time complexities of the
proposed coprocessor (case of u = 8) along with the existing
implementations for a comparison, including the available
KEM Saber implementations [13], [14], [16], [17] and other
similar PQC designs [23]–[26] (Kyber).

As seen from Table V, when comparing with the existing
KEM Saber implementations, the proposed coprocessor has

significantly outperforms the existing designs of [13], [14],
[16], [17]. Especially considering the most recent two fully
hardware designs of [16], [17], respectively, the proposed co-
processor obtains much small resource usage while maintains
relatively efficient time-complexity. For instance, when com-
paring with the design of [16], the proposed design involves
more than 50% LUT and 20% FF usage, but only requires
' 30% longer time. While comparing with the design of [17],
the proposed coprocessor has more balanced performance in
terms of area usage and time-complexity. Note that the FPGA
implementation results of [17] are based on the public-key
encryption scheme, rather than the KEM scheme.

While considering the comparison with the existing imple-
mentations for Kyber, the proposed design again obtains very
balanced performance on overall area-time complexity than
the existing ones of [23]–[26]. Note that the design of [24]
is not the cryptoprocessor style, since it does not involve the
data memory and program memory as well as other related
necessary components to support the designed instruction
based operation in different phases. In fact, as seen from [24],
it relies on the server and client structures to support the actual
operation, which indicates that the actual resource usage and
time-complexity are larger than the reported (only covers the
server module). Besides that, considering the overall flexibility
and resource usage aspect, the proposed compact coprocessor
undoubtedly is more fit for various application environments
where the resource is not that abundant.

E. Discussion

Overall, this is the FIRST paper about the compact copro-
cessor for KEM Saber, which achieves many unique aspects
of performance: (i) the proposed SMOP strategy offers very
low resource usage, as demonstrated by the performance
data shown in Tables I, II, and III; (ii) the finalized KEM
Saber coprocessor is suitable for various types of application
environment, due to its flexible processing style; (iii) the
designed SMOP based polynomial multiplication as well as
the overall hardware coprocessor is generic and can be easily
extended for actual deploying. Meanwhile, as the primary goal
of the proposed work is to obtain compact implementation of
KEM Saber, we do not take the other aspects of the hardware
implementation into considering such as side-channel attack
resistance, which can be seen as one of our future research
directions. Finally, we also want to point out that the proposed
KEM coprocessor has large area occupation on Keccak core,
which can be replaced by the smaller-size one to obtain much
higher efficiency in resource-constrained applications.

VII. CONCLUSION

This paper proposes a compact instruction-set coprocessor
for KEM Saber based on a novel SMOP design strategy.
Overall, we have proposed four innovative layers of coher-
ent interdependent efforts to finalize the proposed compact
coprocessor: (i) we have conducted a series of mathematical
formulation process to derive a novel SMOP strategy for the



TABLE V
COMPARISON OF THE AREA-TIME COMPLEXITIES FOR THE PROPOSED AND EXISTING HARDWARE SABER IMPLEMENTATION ON THE FPGA PLATFORM

Design Device Freq. Time (KenGen./Enca./Deca.) Area
(MHz) (µs) LUT FF DSP BRAM

Comparing with Existing Only KEM Saber Implementations
[13] Artix-7 125 3.2k/4.1k/3.8k 7.4k 7.3k 28 2
[14] UltraScale+ 322 -/60/65 '12.5k 11.6k 256 4
[16] UltraScale+ 250 21.8/26.5/32.1 23.6k 9.8k 0 2
[17] UltraScale+ 160 6.7/7.2/2.6 28.1k 9.5k 85 6

Comparing with Existing Unified KEM Saber Implementations

[16] UltraScale+ 150
18.4/26.9/33.6

24.9k 10.7k 0 236.4/44.1/53.6
60.2/68.4/82.0

[17]2 UltraScale+ 100
6.0/8.6/10.8

34.9k 9.9k 85 610.7/14.6/17.0
17.2/21.9/24.8

This Work (u = 8) UltraScale+ 250
36.3/46.2/57.1

10.1k 7.7k 0 348.9/63.2/78.5
61.5/80.2/100.0

With Other Implementations (Kyber)

[24]∗ Artix-7 161
23.4/30.5/41.3

7.4k 4.6k 3 239.2/47.6/62.3
58.2/67.9/86.2

[25] Artix-7 210
-/14.3/20.9 11,864 10,348

15 8-/19.2/26.5 11,884 10,380
-/27.4/35.2 12,183 12,441

[23] - - - 24K 11k 32 18

[26] Artix-7 59
12,034/16,458/14,746

1,842 1,634 34 5-
37,339/44,390/41,169

1: The time refers to the delay time of the hardware structure/coprocessor at different security levels (from LightSaber to FireSaber, for instance), in a way
of from top to bottom for one specific design.
2: The FPGA implementation results (area usage) shown here only supports the PKE scheme, not the KEM scheme. But the time is calculated based on the
KEM scheme.
∗: Note that the design of [24] is not a cryptoprocessor style, since it does not involve the data memory and program memory as well as other related
necessary components such as the instruction-set and instruction analyser. In fact, as seen from [24], it relies on the server and client based operations to
support the actual operation, which indicates that the actual resource usage and time-complexity are larger than the reported (only covers the server module),
from this point of view.

polynomial multiplication of the KEM Saber in a general for-
mat; (ii) we have then proposed the SMOP strategy based poly-
nomial multiplication algorithm as well as related arithmetic
details and structural innovation for practical implementation;
(iii) we have also constructed a new compact coprocessor for
KEM Saber deploying the proposed polynomial multiplication
architecture, following the existing coprocessor design style;
(iv) we have provided thorough complexity and comparison
to show that the proposed compact coprocessor has better
balanced area-time complexity than the existing PQC hardware
implementations.

The proposed compact coprocessor as well as the design
strategy, offer many unique features: (a) very low-complexity;
(b) flexible processing style; (c) design generic; and (d) fit for
various application environments. The outcome of this work
is expected to serve as an important reference for NIST PQC
standardization process and a useful prototype for compact
PQC hardware cryptoprocessor design.
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