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Abstract. Falcon is a very efficient and compact lattice-based signature scheme following the hash-
and-sign GPV paradigm. The scheme is in the third round of the NIST Post-Quantum competition. It
relies on the fast FFO sampler proposed by Ducas and Prest for sampling a Gaussian distribution over a
lattice, that require floating-point operations. Floating-point operations are complex to protect against
side-channel attack. We propose to tweak Falcon into Zalcon, an FPA-free alternative. We slightly
modify the key generation and replace the FFO sampler with a new sampler based on Ducas et al.
paper (Eurocrypt 2020). We specify the latter and show that it can be implemented without floating-
point arithmetic operations. We additionally separate the sampling into an off-line phase that can be
done in preprocessing and a fast and simple on-line sampling. This alternative is useful in constraint
environments like smart cards where the on-line phase should be both fast and protected against side-
channels. In this work-in-progress report, we also provide a provable masking and an implementation
of the on-line sampler. We believe that it is possible to secure the off-line sampler as well.

1 Introduction

Falcon is one of the most efficient and compact lattice-based signature scheme proposed to the NIST Post-
Quantum Competition. It follows the Hash-and-Sign paradigm proposed by Gentry, Peikert and Vaikun-
tanathan in [GPV08] with an efficient Gaussian sampler proposed by Ducas and Prest [DP16]. Its security is
based on the NTRU assumption, which provides a short trapdoor. The main drawback of this scheme is that
currently it relies on floating-point operations to compute the Gaussian sampler. This also makes it difficult
to protect against side-channel attacks since it is an open-problem to define secure masking scheme for such
representation. Consequently, designing a masked implementation of Falcon is an open-problem. Falcon is a
very interesting scheme and many researches around it have been made [CPS+20, FKT+20, HPRR20]. To
progress in this research vein, we propose to define a variant of Falcon, Zalcon, using only integers in its
sampling. Hence, we provide a portable alternative, easier to mask. The main idea is to modify the Gaussian
sampler with a one that uses integer operations, that are more suitable to mask.

Gaussian Sampling over a lattice. To prevent statistical attack on NTRU-based signature à la Nguyen-
Regev[NR06], Gentry, Peikert, and Vaikuntanathan [GPV08] propose to use a randomized closest vector
approximation algorithm. Hashing the message gives a vector v in some space and instead of computing the
closest lattice vector to this point as the signature s, we sample a spherical discrete Gaussian distribution
centered at v on the lattice points. Outputting the closest vector leaks information about the secret short
basis since the distribution of v − s is a publicly known Gaussian. Therefore the signature process consists
in sampling a discrete Gaussian over a lattice for a variable center and where the widths of the Gaussians in
each direction depend on the length of the secret basis.

Sampling over a lattice boils down to sampling over a discrete Gaussian over the integers, and using
CVP algorithms. Klein and Peikert samplers are respectively a generalization of Babai’s nearest plane and
Babai’s round-off algorithms that instead of outputting one lattice point, return a point according to a
discrete Gaussian over a lattice. Klein sampler [GPV08] is inherently sequential and needs the Gram-Schmidt
orthogonalization. Consequently, it requires to work with either integer operations for rationals with very
large denominators, or floating-point approximations. In [Pei10], Peikert proposed a parallel alternative
using Babai round-off algorithm where most of the expensive computational part, including floating-point
arithmetic, can be done in an offline phase, independent of the message to sign at the cost of increasing the
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width of the sampled Gaussian. The offline step samples a non-spherical Gaussian and requires a Cholesky
decomposition of the covariance matrix that is of a high precision. The online sampling can be reduced to
integer Gaussian sampling that is relatively easy and can be done with only integer operations. Recently,
Ducas et al. [DGPY20] shows that by replacing the high-precision Cholesky decomposition with an integral
Gram root, one can also remove the need of floating-point operation during the offline step.

Gaussian Sampling over NTRU lattice. Prest [Pre15] describes the hybrid sampler, which is an intermediate
sampler between Klein and Peikert trying to reach the best of both samplers. Klein and nearest plane
give short vectors but are sequential (with complexity O(n2)), while Peikert and Babai round-off output
larger vector but are parallel (complexity O(n log n) for NTRU). Moreover, Klein sampler is not adapted
to structured lattice since the Gram-Schmidt orthogonalization process breaks the underlying algebraic
structure. In a security point of view, short vectors are better, since this will make the attacker task harder
as to forge a signature, he will have to find a closer vector to v. Klein sampler outputs vectors of size
proportional to the length of the Gram-Schmidt basis vector, while Peikert sampler are proportional to
the first singular value of the basis. The latter value is usually larger than the former by a factor at least√

log n [Pre15]. Prest sampler uses Klein sampler as the main algorithm and uses Peikert sampler as a
subroutine. In the case of NTRU lattices, module of rank-2 over a polynomial ring of dimension n, it is
particularly efficient since Klein/Hybrid sampler is reduced to 2 steps of Peikert sampler. The quality is
better than Peikert sampler with a running time close to Peikert.

The Fast Fourier Orthogonalization sampler proposed in [DP16] fully exploit the algebraic structure and
output very short vector as close to Klein sampler. However, it requires to compactly store the Cholesky
decomposition, LDL, computed over the ring. FFO works over a tower of subrings in the case of cyclotomic
rings and usually computations are performed with floating-point operations since when we descend in the
tower of subfields, the denominators of intermediate values will grow rapidly. It is hard in this procedure to
control the required precision.

Gaussian Sampling over Z. There are several algorithms to sample from a discrete Gaussian over the integers.
The algorithms can be split into several categories according to their ability to sample with a variable center
and a variable and large width. For Falcon, we need to the last two properties. There are currently two
samplers for these two tasks: MW was proposed by Micciancio and Walter [MW17] and the other one by
Karney [Kar16]. Karney sampler can be implemented over the integers. For our range of parameters, we
prefer to use MW sampler since Karney sampler relies on the rejection sampling method. Indeed, on the one
hand, one needs to study whether this non-constant time rejection sampling does not leak information and
on the other hand, the rejection sampling requires the evaluation of a polynomial on a large input with very
high precision, even with Rényi divergence arguments. This leads to storing unrealistically large integers.
MW can be implemented efficiently using integer operations.

Security of the Implementation of Falcon. Falcon is the successor of the DLP scheme designed by
Ducas, Lyubashevsky, and Prest [DLP14a] using a NTRU trapdoor with a Klein sampler, where the sampler
has been changed to a more efficient one given in [DP16] and called the FFO sampler. For DLP, an efficient
attack on the non-secure implementation of DLP has been described in [FKT+20] exploiting some timing
information, allowing to recover the lengths of the Gram-Schmidt vectors. In particular, this attack shows
that for NTRU, it is possible to recover the secret basis given only the size of the Gram-Schmidt vectors.
For Falcon, this attack is more costly since the FFO tree makes the information harder to exploit, however
the recent isochronous implementation [HPRR20] avoid this leakage.

The standard implementation of Falcon to the NIST follows the constant-time paradigm, meaning that
in the execution tree, there is no branching on secret values and all memory accesses are independent of the
secret. Except, a fault attack described in [MHS+19] by McCarthy et al., there is no attack or side-channel
attacks reported. However, we aim to propose a side-channel implementation. We do not target cache effect
since on Cortex M4, usually only one process is executed at one time.

Our Contributions. We propose a variant of the Falcon signature scheme where the Gaussian sampling
is changed so that computations can be performed over the integers since our final goal is to propose a
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portable and masked implementation for such scheme. Only the key generation part requires floating point
arithmetic. It is possible to remove the FP in this part and we did it for small modulus. However, more
study remains be done to avoid problems in large range of parameters. Since this operation is less sensitive
and performed only once, we decided to not go into this step in this work.

Our scheme is based on Ducas et al.’s algorithm [DGPY20] which requires two base samplers: DZ,Lr and
DZ,r,c with c ∈ 1

L · Z, where L is any integer larger than some polynomial bound and can be chosen as a
power of 2. The off-line and on-line steps can be implemented over the integers. To improve the quality of
our sampler and achieve better security level, we propose to tweak the key generation to look for specific
NTRU parameters with small first singular values without increasing the number of Gaussian sampling we
need.

In our implementation, we rely on the MW base sampler using fixed-point operations. MW is a generic
sampler that relies on smaller base samplers over the integers. We use CDT tables to implement the samplers
with small widths and for the different values of small number of bits of the centers.

For the masking of the base samplers, we have to deal with the masking of the table look-up search.
Moreover, contrary to other lattice-based schemes, we need to mask polynomial products over Z[X] with
two secret polynomial. We use NTT for a large modulus and multiply only n values with ISW. Since the
NTT and inverse NTT are linear operations, these steps can be easily masked. The modulus is sufficiently
large so that no wrap around occurs.

Related Work. Masking lattice-based cryptography is an interesting problem addressed in many work.
For signature schemes, Fiat-Shamir with Abord signature are easier to mask. For instance, the GLP signa-
ture scheme [GLP12] has been protected by Barthe et al. in [BBE+18] and a concrete implementation for
Dilithium has been given in [MGTF19] by Migliore et al.. In the same line of research, Gérard and Rossi
concretely implement a masked version of qTelsa Signature scheme [BAA+19] in [GR19]. For BLISS signa-
ture scheme [DDLL13], after many side-channel attacks [EFGT17, BDE+18], a formal masking scheme has
finally been proposed in [BBE+19]. Recently, some attacks on the NIST KEM candidates have been pre-
sented [RRCB20, RBRC20b, RBRC20a] showing that these schemes are fragile against side-channel attacks.

Organization of the paper. In section 2, we recall basic results regarding lattices, gaussians, and NTRU
properties. Then, we describe our Signature scheme called Zalcon and analyze its security. Section 4 presents
our integer Gaussian samplers with details, and finally we give some experiments and masking properties in
sections 5 and 6.

2 Preliminaries

2.1 Notations

We denote vectors (resp. matrices) with bold lower case letters (resp. bold upper case letters). Vectors are
in column form. Let ‖v‖ be the Euclidean norm of the vector v. We use log to denote the logarithm of base
2. Let ε > 0 be a small number; we write ε̂ = ε+O(ε2). For q > 0, let baeq = baqe/q ∈ (1/q) · Z for a ∈ R.

2.2 Linear algebra

For A ∈ Rn×m, let A(i,j) be the element in the i-th row and j-th column of A, and At the transpose of

A. Let ‖A‖2 = maxx6=0
‖Ax‖
‖x‖ =

√
e1(AtA) and ‖A‖F =

√∑
i,j A2

(i,j). It is known that ‖At‖2 = ‖A‖2,

‖AB‖2 ≤ ‖A‖2‖B‖2 and ‖A‖2 ≤ ‖A‖F . Let ‖A‖max = max |A(i,j)|.
Let B = (b0, · · · ,bn−1) ∈ Fm×n of rank n over some field F. It can be decomposed as B = B∗U where

B∗ = (b∗0, · · · ,b∗n−1) consists of pairwise orthogonal column vectors and U is an upper triangle matrix with
1 on the diagonal. We call B∗ and U the Gram-Schmidt orthogonal and the Gram-Schmidt coefficient matrix
of B. Let ‖B‖GS = maxi{‖b∗i ‖}.
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Let Σ ∈ Rn×n be a symmetric matrix. We write Σ � 0 (resp. Σ � 0) when Σ is positive definite (positive
semi-definite), i.e. xtΣx > 0 (xtΣx ≥ 0) for all non-zero x ∈ Rn. We also write Σ1 � Σ2 (resp. Σ1 � Σ2)
when Σ1 −Σ2 � 0 (resp. Σ1 −Σ2 � 0). It holds that Σ � 0 if and only if Σ−1 � 0 and that Σ1 � Σ2 � 0
if and only if Σ−12 � Σ−11 � 0. For a positive semi-definite Σ ∈ Rn×n, let e1(Σ) ≥ e2(Σ) ≥ · · · ≥ en(Σ) ≥ 0
be its eigenvalues. If Σ � 0, then ei(Σ) · en−i(Σ−1) = 1.

2.3 Lattices

A lattice L is a discrete additive subgroup of Rm. If L is generated by B ∈ Rm×n, we write L := L(B) =
{Bv | v ∈ Zn}. If B has a full column rank, we call B a basis, n the rank and m the dimension of L. When
the rank of L equals its dimension, L is full-rank.

Given a lattice L, its dual lattice is L̂ = {u ∈ span(L) | ∀v ∈ L, 〈u,v〉 ∈ Z}. Let n be the rank of
L. For k ≤ n, the k-th minimum λk(L) is the smallest value r ∈ R such that there are at least k linearly
independent vectors in L with lengths ≤ r.

Given A ∈ Zn×m with m ≥ n, let Λ⊥(A) = {v ∈ Zm | Av = 0} be the orthogonal lattice defined by A.
When the rank of A is n, the rank of Λ⊥(A) is (m− n).

2.4 Gaussians

Let ρ√Σ,c(x) = exp
(
−π(x− c)tΣ−1(x− c)

)
be the n-dimensional Gaussian weight with center c ∈ Rn and

(scaled)1 covariance matrix Σ. We also denote r
√

Σ =
√
r2 ·Σ for r > 0. When c = 0, the Gaussian function

is written as ρ√Σ and is called centered. When Σ = s2In, we write the subscript
√

Σ as s directly, and call
the Gaussian spherical of width s.

The discrete Gaussian distribution over a lattice L with center c and covariance matrix Σ is defined
by the probability function DL,

√
Σ,c(x) =

ρ√Σ,c(x)

ρ√Σ,c(L)
for any x ∈ L. We recall some notions related to the

smoothing parameter.

Definition 1 ([MR07], Definition 3.1). Given a lattice L and ε > 0, the ε-smoothing parameter of L is

ηε(L) = min
{
s | ρ1/s

(
L̂
)
≤ 1 + ε

}
.

Definition 2 ([Pei10], Definition 2.3). Given a full-rank lattice L, ε > 0 and Σ � 0, we write
√

Σ ≥ ηε(L)

if ηε

(√
Σ
−1 · L

)
≤ 1 i.e. ρ√Σ−1

(
L̂
)
≤ 1 + ε.

We list two basic facts: for a full-rank lattice L and ε ∈ (0, 1),

1. ηε(rL) = r · ηε(L) for arbitrary r > 0;

2. if Σ1 � Σ2 and
√

Σ2 ≥ ηε(L), then
√

Σ1 ≥ ηε(L).

We define ηε(Zn) =
√

ln(2n(1+1/ε))
π .

Lemma 3 ([MR07], Lemma 3.3). Let L be an n-dimensional lattice and ε ∈ (0, 1), ηε(L) ≤ ηε(Zn)·λn(L).

We recall the convolution theorem for discrete Gaussians introduced in [Pei10].

Theorem 4 (Adapted from Theorem 3.1 [Pei10]). Let Σ1,Σ2 ∈ Rn×n be positive definite matrices.
Let Σ = Σ1 + Σ2 and let Σ3 ∈ Rn×n be such that Σ−13 = Σ−11 + Σ−12 . Let L1,L2 be two full-rank lattices
in Rn such that

√
Σ1 ≥ ηε(L1) and

√
Σ3 ≥ ηε(L2) for ε ∈ (0, 1/2). Let c1, c2 ∈ Rn. Then the distribution of

x1 ←↩ DL1,
√

Σ1,x2−c2+c1
where x2 ←↩ DL2,

√
Σ2,c2

is within max-log distance 4ε̂ of DL1,
√

Σ,c1
.

1 The scaling factor is 2π and we omit it in this paper for convenience.
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2.5 Power-of-2 Cyclotomics

Let Rn = Z[x]/(xn + 1) with n a power-of-2. Let Kn = Q[x]/(xn + 1). When the context is clear, we
write R = Rn and K = Kn for omission. Let f denote the conjugate of f ∈ K, i.e. f = f(x−1). Let

‖f‖ =
√∑n−1

i=0 f
2
i and ‖f‖∞ = maxn−1i=0 |fi| be the `2 and `∞ norm of f ∈ Kn respectively. For a =

(a0, · · · , am−1),b = (b0, · · · , bm−1) ∈ Km, let 〈a,b〉K =
∑m−1
i=0 aibi ∈ K and ‖a‖K = 〈a,a〉K. We extend baeq

coefficient-wise to K. Let Ua,n =

(
1 a

1

)
∈ K2×2

n , then U−1a,n = U−a,n.

Each f ∈ Kn can be represented by fe, fo ∈ Kn/2 as f(x) = fe(x
2) + xfo(x

2). The multiplication matrix
of f can be represented as a 2× 2 block matrix as follows:

Fn(f) =

(
Fn/2(fe) Fn/2(xfo)
Fn/2(fo) Fn/2(fe)

)
.

In this paper, we use Fn(f) as the matrix representation of f . If Fn(f) � 0, we call f is positive definite
and write ei(f) = ei(Fn(f)) for short.

For f ∈ Rn, let σi(f) = f(x2i+1) ∈ Rn be a conjugate of f . Let ξ2n be a 2n-th primitive root of 1. We
call f(ξ2i+1

2n ) ∈ C an embedding of f .

2.6 NTRU

Given f, g ∈ R such that f is invertible modulo some q ∈ Z, we let h = f−1g mod q. The NTRU lattice
determined by h is

LNTRU = {(u, v) ∈ R2 | u− vh = 0 mod q}.

In NTRU cryptosystems, the secret key is commonly (f, g) where f, g ∈ R2 are short, while h is the public

key. Some NTRU schemes use the trapdoor basis that is some B =

(
g G
f F

)
∈ R2×2 and gF − fG = q.

There are many (F,G)’s resulting in a trapdoor basis for the same (f, g). Yet these bases have the same
orthogonalization, i.e.

B∗ =

(
g G∗ = G− vg
f F ∗ = F − vf

)
=

(
g − qf

ff+gg

f qg

ff+gg

)
∈ K2×2

where v = Ff+Gg

ff+gg
and 〈b∗0 = (g, f),b∗1 = (G∗, F ∗)〉K = 0. As shown in [DLP14b], ‖B‖GS = max{‖(f, g)‖, ‖(G∗, F ∗)‖}.

This paper is interested in optimal NTRU bases, that is ‖(g, f)‖ ≈ ‖(G∗, F ∗)‖.

3 Zalcon Signature Scheme

In this section, we present a variant of Falcon signature, called Zalcon. Zalcon is also an instantiation of
the GPV hash-and-sign scheme over NTRU lattices, but its Gaussian sampling procedure does not require
floating-point arithmetic, which provides satisfactory determinism and feasibility of an masked implementa-
tion.

The lattice Gaussian sampler of Zalcon uses the framework of Peikert’s approach [Pei10], consisting of
on-line and off-line phases. The original Peikert’s sampler requires larger parameters compared with the GPV
sampler [GPV08]. To mitigate the overhead, we propose to use s2I− r2B∗B∗t instead of s2I− r2BBt as the
perturbation covariance, where B∗ is the Gram-Schmidt orthogonalization (with respect to Kn) of B. This
modification effectively improves the parameter, as ‖B∗‖2 is asymptotically smaller than ‖B‖2. To avoid
high-precision arithmetic, we further replace B∗ with its approximation and combine the recent techniques
in [DGPY20] for the perturbation sampling.

Prior to the formal algorithmic description, let us first summarize all system parameters in Table 1.
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Table 1. Description and bounds of all the system parameters.

Description Requirement

n degree of the ring 2`

Rn Z[x]/(xn + 1)
q modulus
ε closeness parameter very small
ε̂ closeness parameter ε̂ = ε+O(ε2)
r base Gaussian width r ≥ ηε(Z2n)
An,q upper bound of ‖B∗‖2 pre-computed experimentally
s′ scaled Gaussian width s′ ∈ N, s′ ≥ An,q + 1
s Gaussian width s = s′r

p approximation precision p ∈ N
B upper bound of

∥∥∥pB̃∗∥∥∥
2

B ∈ N, B = p ·An,q = ω(n2)

b base for gadget decomposition b ∈ N, b3 ≥ (n+ 1)
(
B + n

8

)
+ 6nb2,

p2s′2 − p2 −B2 − 1 ≥ b6−1
b2−1

`+ b3

m integers s.t. the Gram root A ∈ R2×m
n m = 6`+ 9

L upper bound of λmn−n(Λ⊥(A)) L ∈ N , L ≥ 2b2
√
n

3.1 Key Generation

The key generation of Zalcon is similar to that of Falcon, consisting of NTRU trapdoor generation and some

pre-computation for signing. The secret key is an NTRU trapdoor basis B =

(
g G
f F

)
∈ R2×2 such that ‖B∗‖2

is bounded by a pre-computed threshold An,q. This is different from that in Falcon case, mainly because
we change the sampler for signing. The choice of An,q is discussed in Section 3.2 according to experimental
measures. In addition, Zalcon and Falcon execute totally different pre-computation in their key generation.
For Falcon, the pre-computation is constructing the so-called Falcon tree. The Falcon tree contains all
intermediate values of Gram-Schmidt orthogonalization of B, thus it is of high-precision and large size. In
contrast, the pre-computation by Zalcon is computing an integral Gram root of the perturbation covariance.
The resulting integral Gram root is over integers and can be stored efficiently. The formal description of the
key generation is provided in Algorithm 1.

In order to obtain better compactness and higher security, we search among all (f, σk(g))’s for the smallest

max
{
e1

(
d
(k)
0

)
, e1

(
d
(k)
1

)}
that determines the signature size. For any d ∈ Kn, the set of all eigenvalues of

Fn(d) is {d(ξ2i+1
2n ) | i ∈ Zn}. Immediately, it follows that

max
{
e1

(
d
(k)
0

)
, e1

(
d
(k)
1

)}
= max

max
i∈Zn

{
d
(k)
0 (ξ2i+1

2n )
}
,

q2

mini∈Zn

{
d
(k)
0 (ξ2i+1

2n )
}
 .

Since all σk(g)’s have the same set of n embeddings, we only need to compute the embeddings of f and

g, and then can quickly get those of d
(k)
0 . An experimental estimate of mink

{
max

{
e1(d

(k)
0 ), e1

(
d
(k)
1

)}}
is

given in Section 3.2. We are not aware of the impact on security by this technique, and similar idea also
applies to Falcon.

The algorithm NTRUSolve(f, g) is explicated in [PP19] and we omit its description. The implementation
of IntGram(Σ) follows the ring-based approach in [DGPY20]: we first compute C =

⌊√
d′I−Σ

⌉
∈ R2×2

n for
some d′ ∈ N and then decompose (d − d′)I − (CCt − d′I + Σ) that is diagonally dominant. Algorithm 2
presents a sketch of IntGram(Σ). While A is much wider than the trapdoor itself, it can be stored efficiently
as shown in [DGPY20].
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Algorithm 1 Key Generation KeyGen

Input: system parameters (see Table 1)
Output: public key pk = h ∈ Rn and

secret key sk = (B, ṽ,A) where B ∈ R2×2
n , ṽ ∈ 1

p
Rn and A ∈ R2×m

n .
1: if n = 512 then
2: rsk ← 1.17

√
2π
√

q
2n

3: end if
4: if n = 1024 then
5: rsk ← 1.17

√
2π
√

q
2n

6: end if
7: f ′, g′ ← DRn,rsk

8: if f ′ or g′ is not invertible over Rn/qRn then
9: restart

10: end if
11: find k ∈ Zn minimizing max

{
e1
(
d
(k)
0

)
, e1
(
d
(k)
1

)}
where d

(k)
0 = f ′f ′ + σk(g′)σk(g′), d

(k)
1 = q2/d

(k)
0

12: if max
{
e1
(
d
(k)
0

)
, e1
(
d
(k)
1

)}
> A2

n,q then

13: restart
14: end if
15: (f, g)← (f ′, σk(g′))
16: (F,G)← NTRUSolve(f, g) {F,G ∈ Rn: gF − fG = q}

17: B←
(
g G
f F

)
18: ṽ ← bFf+Gg

ff+gg
ep

19: Ũ← Uṽ,n

20: B̃∗ ← BU−ṽ,n

21: A← IntGram
(
p2B̃∗B̃∗

t
)

{A ∈ R2×m
n : AAt = p2

(
(s′2 − 1)I− B̃∗B̃∗

t
)
}

22: h = f−1g mod q
23: return sk = (B, ṽ,A) and pk = h

3.2 Signing

Since Zalcon follows the GPV hash-and-sign paradigm, the signing procedure is essentially to sample from
some lattice Gaussian centered at the hashed message. We therefore directly exhibit the new Gaussian
sampler.

To sample DL(B),s,c, our sampler proceeds as follows. First it generates a perturbation vector p from

DR2,
√

Σp
where Σp = s2I − r2B̃∗B̃∗

t
. This can be done in the off-line phase. Then the remaining work is

to sample from D
L(B),r

√
B̃∗B̃∗

t
,c−p

in the on-line phase. By a linear transformation, it suffices to sample a

vector v′ from DL(Ũ),r,B̃∗
−1

(c−p)
and then to output v = B̃∗v′. The formal algorithmic description is given

in Algorithm 3.

With the auxiliary matrix A, we can sample a perturbation vector fully over integers. Precisely, the
sampling procedures consist of DZ,Lr and DZ,r,c with c ∈ 1

pLZ. Algorithm 4 shows the details.

The on-line sampling follows the framework of the GPV sampler [GPV08] but does not need floating-point
arithmetic neither. Indeed the center is of the form 1

pqR
2
n, because

B̃∗
−1

= Uṽ,nB−1 =
1

q
Uṽ,n

(
F −G
−f g

)
∈ 1

pq
· R2×2

n .
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Algorithm 2 Integral Gram root decomposition IntGram(Σ)

Input: a positive definite matrix Σ ∈ R2×2
n such that B2 ≥ ‖Σ‖2

Output: A ∈ R2×m
n such that AAt = (p2s′2 − p2)I−Σ and A · Rmn = R2

n.
1: C←

⌊√
B2I−Σ

⌉
∈ R2×2

n (by Cholesky decomposition)

2: ∆← CCt −
(
B2I−Σ

)
{‖∆‖max ≤ (n+ 1)B + n(n+1)

8
}

3: compute A′ =

(
1 b b2 d0

a0 a1 a2 d1

)
∈ R2×(6`+5)

n such that |ai|∞ < b and

A′A′t = ((p2s′2 − p2)−B2 − 1)I−∆ (see [DGPY20] for details)
4: return A =

(
I C A′

)
Algorithm 3 The NTRU Gaussian sampler NTRUSampler(sk = (B, ṽ,A), c)

Input: secret key sk = (B, ṽ,A) and c ∈ R2
n

Output: a sample v from a distribution within max-log distance 10ε̂ of DL(B),s,c.
Off-line phase:

1: p← OfflineSampling(A) {p ∼ DR2
n,r
√

Σp
}

On-line phase:

2: cpert ← B̃∗
−1

(c− p) {B̃∗ = BU−ṽ,n}
3: v′ ← OnlineSampling(ṽ, cpert) {v′ ∼ DL(Ũ),r,c′}
4: return v = B̃∗v′

Additionally, Ũ =

(
1 ṽ

1

)
has a very simple Gram-Schmidt orthogonalization over Kn, which naturally

supports ring-friendly operations and makes all base samplings of the same width. The algorithmic description
is shown in Algorithm 5.

Algorithm 5 The on-line sampling OnlineSampling(ṽ, cpert)

Input: ṽ ∈ 1
p
· Rn, cpert =

(
c1
c2

)
∈ 1

pq
· R2

n

Output: a sample u from a distribution within max-log distance 4ε̂ of DL(Uṽ,n),r,c

1: u′2 ← DRn,r,c2

2: c′1 ← c1 − u′2 · ṽ
3: u′1 ← DRn,r,c

′
1

4: return u =

(
1 ṽ

1

)(
u′1
u′2

)

Parameter Requirements. Firstly, we present the parameter conditions required by Algorithms 2 and 4.
According to Lemmata 6 and 12 in [DGPY20], Algorithm 2 is correct when

b3 ≥ (n+ 1)
(
B +

n

8

)
+ 6nb2; p2s′2 − p2 −B2 − 1 ≥ b6 − 1

b2 − 1
`+ b3.

By Theorem 3 in [DGPY20], the correctness of Algorithm 4 is satisfied with

r ≥ ηε(Z2n); Lr ≥ ηε(Λ⊥(A)).

Secondly, we estimate ‖B̃∗‖2 that determines the minimal Gaussian width s = s′r. Let U = Uv,n where

v = Ff+Gg

ff+gg
, then B∗ =

(
g G∗

f F ∗

)
= BU−1. A routine computation shows that (B∗)tB∗ =

(
d0

d1

)
where
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Algorithm 4 The off-line sampling OfflineSampling(A)

Input: integral Gram root matrix A ∈ R2×m
n such that AAt = p2(Σp − I)

Output: a sample p from a distribution within max-log distance 8ε̂ of DR2
n,r
√

Σp
.

1: p′ ← 1
pL
·A ·DRm

n ,Lr

2: p← DR2
n,r,p

′

3: return p

d0 = ff + gg and d1 = F ∗F ∗ +G∗G∗ = q2

d0
are positive definite. Then∥∥∥B̃∗∥∥∥

2
≤
∥∥∥B(Ũ−1 −U−1)

∥∥∥
2

+ ‖B∗‖2

≤
∥∥∥∥(g(v − bvep)
f(v − bvep)

)∥∥∥∥
2

+
√

max {e1(d0), e1 (d1)}

≤n
1.5

2p
‖(g, f)‖+

√
max {e1(d0), e1 (d1)}.

We now estimate max {e1(d0), e1 (d1)} that equals mink

{
max

{
e1

(
d
(k)
0

)
, e1

(
d
(k)
1

)}}
according to our

key generation. We suppose (f ′, g′) follows some discrete Gaussian of width α ·
√

2π ·
√

q
2n and experimentally

searched the optimal α minimizing max {e1(d0), e1 (d1)}, and exhibit the experimental data in Figure 1. As
a result, we observe that:

– For n = 512, the optimum is around α = 1.36 leading to (the median of)
√

max {e1(d0), e1 (d1)} ≈ 282.07.

– For n = 1024, the optimum is around α = 1.47 leading to (the median of)
√

max {e1(d0), e1 (d1)} ≈
340.38.

Hence we set An,q = 283 for n = 512 and An,q = 341 for n = 1024.

1.1 1.2 1.3 1.36 1.4 1.5 1.6 1.7

α

282.07
284.53

290

300

310

320

330

340

n=512

mean of √max{e1(d0), e1(d1)}
median of √max{e1(d0), e1(d1)}

1.1 1.2 1.3 1.4 1.471.5 1.6 1.7

α

340.38

350
353.32

360

370

380

390

400

410

n=1024

mean of √max{e1(d0), e1(d1)}
median of √max{e1(d0), e1(d1)}

Fig. 1. The left figure is for (n, q) = (512, 12289) and the right one for (n, q) = (1024, 12289). Experimental values
measure over 1000 random (f, g) for each α. We plot the curves for both median and mean of max {e1(d0), e1 (d1)}.
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Remark 5. In [Pre15], Prest estimated
√

max {e1(d0), e1 (d1)} for f, g drawn from DR,rsk . His heuristic

analysis assumes that the minimum of
√

max {e1(d0), e1 (d1)} is achieved when rsk ≈ 1.17
√

2π
√

q
2n ; the

suggested threshold is about 1.265
√
`q that ≈ 420.7 (resp. 443.5) for n = 512 (resp. 1024) larger than our

An,q. This is mainly due to that we select the optimal combination (f, σk(g)) out of n candidates. Note that
the reduced threshold An,q yields smaller signatures and about 10 bits security increase.

Finally, we bound L. Let M = mn− n be the dimension of Λ⊥(A). From Lemma 3, we have

ηε(Λ
⊥(A)) ≤ ηε(ZM ) · λM (Λ⊥(A)).

By the same argument of [DGPY20], it holds that λM (Λ⊥(A)) ≤ b2
√

2n when B = ω(n2) that coincides our
setting. Combining that ηε(ZM ) ≤

√
2r, it suffices to choose L ≥ 2b2

√
n.

Correctness of the Sampler. The correctness of Algorithm 3 is given by Lemma 6.

Lemma 6. Let n = 2` ∈ N, B =

(
g G
f F

)
∈ R2×2

n , c ∈ R2
n, p ∈ N. Let B̃∗ be defined as in Algorithm 3 and

s′ ≥ ‖B̃∗‖2 + 1 be an integer. Let s = s′r where r ≥ ηε(Z2n) and ε′ ∈ (0, 1). Then the distribution of the
output of Algorithm 3 is within max-log distance 14ε̂ of DL(B),s,c.

Proof. We first verify the correctness of three sub-routines. As shown in Section 3.2, Algorithms 2 and 4 are
correct under the parameter restriction in Table 1. As for Algorithm 5, we first note that ‖Uṽ,n‖GS = 1. By
the same proof for Theorem 4.1 of [GPV08], the correctness of Algorithm 5 follows immediately.

We now prove the correctness of Algorithm 3. Let Σ1 = B̃∗B̃∗
t
, Σ2 = Σp and Σ3 ∈ K2×2

n such that
Σ−13 = Σ−11 + Σ−12 . The probability function can be expressed as

Pr (NTRUSampler(s,B, c, p, ε) = v)

∝
∑
p

Pr (OfflineSampling(n,m, r′, L,Σp, p,A, ε) = p) · ρr,c′(v′) ·
[

1− 2ε̂

1 + 2ε̂
,

1 + 2ε̂

1− 2ε̂

]
∝
∑
p

ρr
√

Σ2
(p) · ρr√Σ1,c−p(v) ·

[
1− 4ε

1 + 4ε
· 1− 2ε̂

1 + 2ε̂
,

1 + 4ε

1− 4ε
· 1 + 2ε̂

1− 2ε̂

]
∝ρr√Σ3

(
R2
n

)
· ρs,c(v) ·

[
1− 4ε

1 + 4ε
· 1− 2ε̂

1 + 2ε̂
· 1− ε

1 + ε
,

1 + 4ε

1− 4ε
· 1 + 2ε̂

1− 2ε̂
· 1 + ε

1− ε

]
∝ρs,c(v) ·

[
1− 7ε̂

1 + 7ε̂
,

1 + 7ε̂

1− 7ε̂

]
The correctness of Algorithms 5 and 4 respectively lead to the first and second equation. The third equation
follow by the same argument in [Pei10] and the fact that r

√
Σ3 ≥ ηε

(
R2
n

)
. The last equation comes from a

routine computation. So far, the proof is completed. ut

Comparison with Other Samplers. We now compare our sampler with other samplers.

1. In [DP16], Ducas and Prest proposed a ring variant of the Klein sampler [Kle00, GPV08]. This is used
in Falcon [FHK+] now. This sampler achieves the smallest Gaussian width ‖B‖GS · ηε(Z2n) and good

running time Õ(n), but heavily relies on floating-point arithmetic.

2. In [Pei10], Peikert proposed an efficient sampler for q-ary lattices running in Õ(n). With the techniques
of [DGPY20], the sampler can be fully performed over integers. But the main drawback is that the
minimal width becomes ‖B‖2 · ηε(Z2n), which leads to a significant quality loss.

3. In [Duc13], Ducas proposed a variant of the Klein sampler. That achieves the same quality as the Klein
sampler and does not need FPA in the sampling phase. However, FPA is still used in the final rejection
sampling. In addition, the sampler works for generic case and its running time is O(n2). It remains
unclear how to modify the sampler into a ring-efficient variant.
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4. In [Pre15], Prest proposed a hybrid sampler that somewhat inherits the merits of both the Klein and

Peikert samplers. The minimal Gaussian width is ‖B∗‖2 · ηε(Z2n) and the running time is Õ(n). One
issue is that removing FPA in this sampler seems complicated. In fact, our sampler achieves the same
efficiency and Gaussian quality as the Prest’s one but avoids FPA.

According to the analysis in [Pre15], it holds for optimal NTRU bases that

– ‖B‖GS ≈ ‖(g, f)‖
– ‖B‖2 ≈ 0.82 · n 1

4

√
log n‖(g, f)‖

– ‖B∗‖2 ≈ 1.08
√

log n‖(g, f)‖

Above comparisons are summarized as Table 2. We see that our sampler is both efficient and FPA-free at
the cost of a moderate quality loss.

Table 2. Comparison with existing samplers. We omit a factor of ηε(Z2n) when comparing the quality.

quality running time need for FPA

[DP16] ‖B‖GS Õ(n) Yes

[Pei10] ‖B‖2 Õ(n) No
[Duc13] ‖B‖GS O(n2) Yes

[Pre15] ‖B∗‖2 Õ(n) Yes

This work ‖B∗‖2 Õ(n) No

3.3 Concrete Parameters

We now provide two sets of concrete parameters of Zalcon in Table 3. For consistency, we fix r = 3.58 for
two sets of parameters and r ≥ ηε(Z) with ε = 2−57 and r ≥ ηε(Z2n) for (ε, n) = (2−47, 512), (2−46, 1024).
We list (ε, n) such that r ≈ ηε(Z2n) in Table 3.

Table 3. Concrete parameters.

n q ε r An,q s′ p B b L

Param-I 512 12289 2−47 3.58 283 300 221 283× 221 8192 235

Param-II 1024 12289 2−46 3.58 341 360 224 341× 224 20480 235

We estimate the security by lattice attacks based on BKZ reduction. There are two basic attack scenarios
for a signature scheme: key recovery attack and forgery attack. Since the trapdoor basis of Zalcon is generated
in the same manner as that of Falcon, Zalcon achieves the same security against key recovery attack as Falcon:
the blocksize required by key recovery attack is at least 482 (resp. 974) for n = 512 (resp. 1024). As for
forgery attack, the final Gaussian width s = s′r of Zalcon is larger than that of Falcon due to the larger s′.
This weakens the resistance against forgery attack: the minimal blocksize for forgery attack is only 312 (resp.
718) for n = 512 (resp. 1024). Given blocksize β, we use the Core-SVP hardness 20.265β as the estimated
security. This model is quite conservative and takes quantum speedups into account. Detailed numbers are
shown in Table 4.
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Table 4. Concrete security estimate for Zalcon based on lattice reduction. The item “A/B” represents the security
estimate A and the required blocksize B for BKZ.

Key Recovery Forgery

Param-I 134.4 / 507 82.7 / 312

Param-II 274.8 / 1037 190.3 / 718

Remark 7. For the same n, the security and compactness achieved by Zalcon is worse than those by Falcon,
due to larger Gaussian width caused by the new sampler. Nevertheless, compared with Dilithium, Zalcon is
more compact for the equal security level.

4 Integer Gaussian Sampling

The signing procedure requires two types of integer Gaussian samplings as follows:

– Gaussian with arbitrary centers, i.e. DZ,r,c where c is in either 1
pqZ or 1

pLZ. This appears in both the

on-line sampling (Algorithm 5)) and the off-line sampling (Algorithm 4).
– Gaussian with a large width, i.e. DZ,Lr where L is large. This only appears in the off-line sampling

(Algorithm 4).

4.1 Arbitrary Centers

We need to deal with two kinds of Gaussian centers: c ∈ 1
pqZ and c ∈ 1

pLZ. In Zalcon, the denominators pq

and pL are huge. For more efficient samplings, we exploit the technique introduced in [MW17]. Specifically,
we approximate the center c with its k-bit randomized rounding RRk(a) = b2kac/2k + Bα where Bα is a
Bernoulli variable with parameter α = 2ka mod 1, which only incurs a loss of about π2/22k for the max-
log distance [MW17]. Using the improvement of [Pre17, Section 4.1], for 256-bits of security, it suffices to
implement DZ,r,c with c ∈ 2−30Z.

We use the Micciancio-Walter sampler [MW17] to implement DZ,r,RR30(c) with RR30(c) ∈ 2−30Z. This
sampler decomposes the sampling with calls to an easier to handle Gaussian DZ,r1,c′ with different centers

and standard deviation. More precisely, r1 ≈ r and c′ ∈ 2−k
′Z where k′ � 30.

Let (β, l) be two parameters. The formal description of our adaptation of Micciancio-Walter sampler is
given in Algorithm 8. The algorithm proceeds iteratively. First, one need to find cfrac, cint ∈ Z such that

RR30(c) = cfrac/βl︸ ︷︷ ︸
<1

+ cint︸︷︷︸
∈Z

.

Drawing from DZ,r,RR30(c) is the same as drawing from DZ,rl,cfrac/βl and adding cint. At each level, it reduces
the sampling from DZ,rl,cfrac/βl to the sampling of DZ,rl−1,cfrac

′/βl−1 .

The underlying idea can be verified thanks to Theorem 4: sampling DZ,rl,c with c ∈ β−lZ can be done by
first sampling z2 ← β−l+1DZ,r1,βl−1c and then outputting z1 ← DZ,rl−1,z2 with z2 ∈ β−l+1Z.

For the correctness, we refer to [MW17] and make sure that r1 = r/
√∑l−1

i=0 β
−2i and r1 ≥

√
β+1
β ηε(Z).

One interesting advantage of this technique is that we can easily avoid FPA. We just have to implement
SampleC1 with a CDT (cumulative distribution table) approach [Pei10]: we pre-compute the respective

CDTs for each cfrac/β ∈
{

0
β ,

1
β , · · ·

β−1
β

}
. There is a tradeoff between β and l the number of calls of the base

sampler SampleC1 by SampleCl: larger β means less calls of the base sampler but more storage for CDTs. In
our implementation, we choose

(β, l) = (26, 5),
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for which the width of the base sampler is

r1 = r/

√√√√ l−1∑
i=0

β−2i ≈ 3.5796.

Algorithm 6 SampleCl
Input: c ∈ 1

pq
Z or 1

pL
Z

Output: z ∼ DZ,r,RR30(c) ∼ DZ,r,c
1: crr ← RR30(c) · βl
2: cfrac ← crr mod βl {Fractionnal part. Note that cfrac ∈ [0, βl − 1].}
3: cint ← b c

rr

βl c {Integral part.}
4: for i := 1 to l do
5: cfrac ← SampleC1(cfrac)
6: end for
7: return cint + cfrac

Algorithm 7 SampleC1

Input: cfrac ∈ Z
Output: z ∼ DZ,r1,cfrac/β

1: c0 ← cfrac mod β {Fractional part of cfrac/β}
2: c1 ← b c

frac

β
c {Integral part of cfrac/β}

3: return c1 + CDTr1,c0()

Halving the storage of CDTs. Let us denote CDTr1,c a CDT-based sampler for the center c ∈{
0
β ,

1
β , · · ·

β−1
β

}
. We observe that if z ∼ DZ,r1,c, then z′ = 1− z ∼ DZ,r1,1−c. This means that with CDTr1,c,

can be used for both DZ,r1,c and DZ,r1,1−c with no additional cost. Therefore, it suffices to store the full

CDTs for c ∈
{

0
β ,

1
β , · · ·

β/2
β

}
, which halves the storage of CDTs for free.

To estimate the precision of the CDT samplers, we use Renyi divergence results from [BLL+15] that were
reused in [Pre17, HPRR20]. Let QCDT denote the number of queries to all the base samplers (CDTr1,c)c. A
sufficient condition for providing λ−O(1) bits of security is the following.

R2λ−1 (CDTr1,c, DZ,r1,c) ≤ 1 +
1

4QCDT
.

The number of queries is bounded as follows.

QCDTc ≤ m× n×
calls︷︸︸︷
l ×

max queries︷︸︸︷
264 = (6`+ 1)× 2` × l × 264 = 280 for ` ∈ {9, 10} and l = 5.

Using tools from [HPRR20] we generate all the tables such that R383 (CDTr1,c, DZ,r1,c) ≤ 1 + 2−82 for all

c ∈
{

0
β ,

1
β , · · ·

β/2
β

}
. They each contain 15 coefficients of 82 bits. The storing of β tables seems possible even

on constraint systems because of their relatively small size.

Remark 8. If an attacker is able to see which table is examined by analyzing the memory management, it
may be possible to recover the sensitive center values. Nevertheless, this attack belongs in a very strong
side-channel attack model.
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Remark 9. Micciancio and Walter also proposed in [MW17] to separate the base samplings (i.e. CDTr1,c)
and the remaining combination operations into two devices with shared buffers. Each buffer corresponds to
a coset in Z/β. By filling these buffers with a certain number of samples in off-line, SampleCl can output
the result quickly. One interesting feature is the fact that, depending on the context, this off-line buffer
filling technique could be left unprotected against side channels (either not isochronous and/or not masked).
Thus, both the on-line sampling and the off-line sampling can be faster for the price of a buffer storing.
Nevertheless, it is not beneficial in any contexts: for better protection and general use case, we also present
SampleC1 in a fully side-channel secure manner (see Section 6).

4.2 Large Width

We now move to the sampling of DZ,Lr. Let us first clarify that this part is still in progress. The large width
samplings only perform in the off-line phase. There exist some controversial views on the efficiency, cost and
side-channel security with respect to the off-line sampling. While we have seen several candidate samplers
for DZ,Lr, more reviews are needed to select a proper one especially considering various restrictions on the
off-line sampling.

In the following, we introduce a working approach to implementing DZ,Lr that is introduced in [MW17]
as well. The sampling of DZ,Lr is decomposed into l levels; at the i-th level, we sample from DZ,ri . According
to [MW17], the sequence {ri}i satisfies that rl = Lr and

ri = ri−1

√
z2i−1 + (zi−1 − 1)2 where zi−1 ≤

⌊
ri−1√
2ηε(Z)

⌋
.

Algorithm 8 SampleLWl

Output: z ∼ DZ,rl
Pre-computation:

1: v← (), N ← 2l

2: for i := 0 to N − 1 do
3: (b0 · · · bl−1)← the binary represent of i
4: v ←

∏l−1
j=0(zj − bj)

5: v← (v, v)
6: end for

Sampling:
7: s← DN

Z,r0
8: return 〈s,v〉

In Zalcon, we fix L = 235 and r = 3.58. Similar to the case in Section 4.1, one can implement the base
sampling DZ,r0 with CDT approach. We suggest to set l = 4 and {(ri, zi)}i as in Table 4.2. Then the table
for DZ,r0 should contain about d6r0e = 136 entries. Each call of DZ,Lr requires 24 = 16 calls of DZ,r0 along
with a few simple integration operations.

i = 4 i = 3 i = 2 i = 1 i = 0

ri/r 235 185364.507 431.869 22.605 6.270

zi 131072 304 14 3

Table 5. The suggested (ri, zi).
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Remark 10. The off-line sampling is costly. One important cause is the large column number of the integral
Gram root A: the overall calls of the base sampler achieves n × m × 16 = 29 · 63 · 24 ≈ 219 for n = 512.
But unlike the sampling in Section 4.1, all base samplings required by large width samplings are the same,
namely DZ,r0 , which is more convenient for parallel instructions.

5 Preliminary benchmarks results

Since this work is still ongoing research, providing a solid implementation optimized on a specific platform
is not reasonable as it would have to be heavily modified later. However, while an accurate comparison with
sibling schemes is only possible once the design is fixed and several optimization passes have been made, it
is always nice to have some basic experimental result to ensure that the performances will be reasonable.
We implemented the on-line phase of the algorithm in plain C and ran it on a mid-range laptop with an
Intel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz. The code was compiled with the -O2 optimization flag
and implements our first parameter set. We averaged around 400 on-line phases per second. While this
performances are not yet at the level of a fully-fledged scheme, these are quite encouraging results for a first
unoptimized iteration of the code. The sampling of a full polynomial from DRn,r,c costs approximately 1.5
Mcycles. Polynomial multiplication was performed using a textbook version of Karatsuba’s algorithm.
Our intuition is that the most important implementation challenge this scheme will face in the signing phase
is how to handle the large values (> 264) that appear after multiplications in R.

6 Side-channel protection

First, our sampler is isochronous by design. According to [HPRR20], isochrony ensures independence be-
tween the running time of the algorithm and the secret values. Indeed, the use of integers and the absence of
conditional branches implies that its timing is independent from the secret key. The only point of attention
should be the CDT sampling where the implementation must go through the whole table instead of stopping
when the sample is found. In this Section, we turn our sampler into an equivalent one which is protected
against more powerful side-channel attacks that exploit the leakage of several executions. We provide here a
masked version with a proof in the ISW model [ISW03]. Essentially, we will provide a functionally equivalent
alternative algorithm where any set of at most d intermediate variables is independent from sk = (B, ṽ,A).
The final output of the sampling, v, will part of the signature of the algorithm and thus it will be unmasked
before being returned.

In this work in progress, we focus on the most sensitive part: the on-line part of the sampling, namely
lines 2 to 4 of Algorithm 3. However, we do not see any immediate difficulty in generalizing the masking to
the off-line part (line 1 of Algorithm 3) and we plan on providing a masked off-line part as well in a future
version of this paper. Thus, the masked off-line phase, denoted MaskedOfflineSampling, will temporarily be
ignored in this document as it is less sensitive and could be performed without masking.

As often in masked lattice-based schemes, some parts of the algorithms are suited for an arithmetical
masking and some other ones are suited for Boolean masking. We thus need to perform Boolean to arithmetic
conversions (see Section 6.1). We choose an arithmetical masking everywhere in Algorithm 9 except in the
function MaskedSampleC1 that needs Boolean comparisons. In addition, the masking of the on-line sampler
presents two unprecedented difficulties in masked lattice-based schemes.

1. The computations are performed in Z instead of a modular ring. This feature does not appear in any
other lattice-based scheme. Thus, we need to fix a bound on the size of the masks and make sure that the
computations will never pass this bound. Let Qmask be the maximum size of the manipulated integers.
Qmask should be sufficiently large so that no wrap around occurs. We find this bound with a careful
analysis of the sizes of the secret key and the samples. It is also possible to use several Qmask with CRT
techniques to reduce the size of Qmask if needed as it is proposed in the Falcon description with RNS.
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2. Some polynomial multiplications need both inputs to be masked. This unusual operation does not appear
in LWE-based schemes where the multiplications are performed between a public matrix of polynomial
and a masked vector. We handle this problem with a function denoted SecNTTMult in Section 6.1.

As formally proved in [BBD+16], a proof of masking in the d-probing model can be divided into proofs
of subparts, called gadgets. The gadgets should be proved d-NI and d-SNI; we refer to [BBD+16] for the
formal description of these properties. In a nutshell, a gadget is d-non-interfering (d-NI) iff any set of at
most d observations can be perfectly simulated from at most d shares of each input. A gadget is d-strong
non-interfering (d-SNI) iff any set of at most d observations whose dint observations on the internal data
and dout observations on the outputs can be perfectly simulated from at most dint shares of each input. It is
easy to check that d-SNI implies d-NI which implies d-probing security. In Table 6, we introduce the known
and new gadgets necessary for our sampler along with their properties. These properties will be proved in
Section 6.1.

Table 6. Masking properties of known and new gadgets

Gadget’s name Security Property Reference

SecAdd d-NI [BBE+18]
SecMult d-SNI [ISW03, RP10, BBD+16]
A2B and B2A d-SNI [CGV14, Cor17, BBE+18, SPOG19]
MaskedCDT d-NI [BBE+19, GR19]
SecNTTMult d-NI This work, Lemma 12
MaskedSampleC1 d-NI This work, Lemma 14
MaskedSampleCl d-NI This work, Lemma 15
MaskedOnlineSampling d-NI This work, Lemma 11

The overall structure of the sampler is presented in Algorithm 9. It consists in a linear succession of
gadgets with no dependency cycle, i.e. each line depends on freshly computed masked inputs. Thus, only a
proof for each line is necessary. Line 2 is a linear operation thus it is d-NI. Lines 3 and 5 are proofs d-NI in
Section 6.1. Line 6 does not manipulate any sensitive value.

Algorithm 9 MaskedNTRUSampler

Input: . A masked secret key in the following form: ((B̃∗i)0≤i≤d, (B̃∗
−1

i )0≤i≤d, (ṽi)0≤i≤d, (Ai)0≤i≤d) and a masked
vector (ci)0≤i≤d ∈ R2

n, both arithmetically masked mod Qmask

Output: an umasked sample v ∼ DL(B),s,c.
Off-line phase:

1: (pi)0≤i≤d ← MaskedOfflineSampling((Ai)0≤i≤d)
On-line phase:

2: (cpert
i)0≤i≤d ← (ci)0≤i≤d − (pi)0≤i≤d

3: (cpert
i)0≤i≤d ← SecNTTMult((B̃∗

−1

i )0≤i≤d, (c
pert

i)0≤i≤d)
4: (v′i)0≤i≤d ← MaskedOnlineSampling((ṽi)0≤i≤d, (c

pert
i)0≤i≤d)

5: (vi)0≤i≤d ← SecNTTMult((B̃∗i)0≤i≤d, (v
′
i)0≤i≤d)

6: return
∑d
i=0 vi mod Qmask

We present the masked function MaskedOnlineSampling in line 4 of Algorithm 9 in Algorithm 10. It
structure is presented in Figure 2. One can show that this algorithm is d-NI, as proved in Lemma 11 below.
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Algorithm 10 MaskedOnlineSampling

Input: Two arithmetically masked mod Qmask values (ṽi)0≤i≤d and (cpert
i)0≤i≤d =

(
(c1i)0≤i≤d
(c2i)0≤i≤d

)
Output: An arithmetically masked (ui)0≤i≤d
1: (u′2i)0≤i≤d ← MaskedSampleCl((c2i)0≤i≤d)
2: (xi)0≤i≤d ← SecNTTMult((u′2i)0≤i≤d, (ṽi)0≤i≤d)
3: (c′1i)0≤i≤d ← (c1i)0≤i≤d − (xi)0≤i≤d
4: (u′1i)0≤i≤d ← MaskedSampleCl((c

′
1i)0≤i≤d

5: (ui)0≤i≤d ←
(

(u′1i)0≤i≤d + (xi)0≤i≤d
(u′2i)0≤i≤d

)
6: return (ui)0≤i≤d

MaskedSampleCl SecNTTMult − MaskedSampleCl +(c2i)0≤i≤d

(ṽi)0≤i≤d (c1i)0≤i≤d

(u1i)0≤i≤d

(u2i)0≤i≤d

(u′2i
)0≤i≤d (xi)0≤i≤d (c′1i

)0≤i≤d (u′1i
)0≤i≤d

Fig. 2. Structure of the masked on-line sampling.

Lemma 11. Assuming the properties of Table 6, the algorithm MaskedOnlineSampling (Alg. 10) is d-NI.

Proof. We consider that the attacker made δ ≤ d observations during the execution of MaskedOnlineSampling.
In the following, we prove that all these δ observations can be perfectly simulated with at most δ shares of
(ṽi)0≤i≤d, (c1i)0≤i≤d and (c2i)0≤i≤d.
We consider the following distribution of the attacker’s δ observations: δ1 made during the first call to
MaskedSampleCl, δ2 made during the call to SecNTTMult, δ3 made during the subtraction, δ4 made during
the second call to MaskedSampleCl, and δ5 made during the final addition. We have

5∑
i=1

δi ≤ δ ≤ d.

We build the proof classically from right to left. Since the addition is linear with respect to the arithmetical
masking type, the final step is d-NI. It is also an affine gadget. In other words, each observation can be
simulated with exactly either one share of (xi)0≤i≤d or one share of (u1i)0≤i≤d. Thus, all the observations
from its call can be simulated with at most δ5 shares among all the shares of (xi)0≤i≤d and (u1i)0≤i≤d. More
precisely, all the observations from its call can be simulated with δ15 shares of (xi)0≤i≤d and δ25 shares of
(u1i)0≤i≤d such that δ15 +δ25 = δ5. By Table 6 properties, MaskedSampleCl is d-NI. Hence, all the observations
from its call can be simulated with δ15 + δ4 shares of (c′1i)0≤i≤d and δ25 shared of (xi)0≤i≤d. Next, the
subtraction is also a linear operation (we can ignore its affine property here). Thus, all the observations
from its call can be simulated with δ15 + δ4 + δ3 shares of (c1i)0≤i≤d and δ15 + δ25 + δ4 + δ3 = δ5 + δ4 + δ3
shares of (xi)0≤i≤d. Still by Table 6 properties, SecNTTMult is d-NI. Hence, the observations from its call
can be simulated with δ5 + δ4 + δ3 + δ2 shares of (u′2i)0≤i≤d and (ṽi)0≤i≤d (and still δ15 + δ4 + δ3 shares of
(c1i)0≤i≤d). Finally, by the d-NI property of MaskedSampleCl, the observations from the whole algorithm can
be simulated with
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– δ5 + δ4 + δ3 + δ2 + δ1 ≤ d shares of (c2i)0≤i≤d;
– δ5 + δ4 + δ3 + δ2 ≤ d shares of (ṽi)0≤i≤d;
– δ15 + δ4 + δ3 ≤ δ5 + δ4 + δ3 ≤ d shares of (c1i)0≤i≤d;

which concludes the proof. ut

6.1 Gadgets

Known gadgets For the masking of the new gadgets such as MaskedSampleCl and MaskedSampleC1, we
use several sub-gadgets used in the literature. We review them below.

– The SecAdd gadget performs an addition in Z of two Boolean masked inputs. It was inspired from the
Kogge-Stone adder of [CGTV15] and proved d-NI secure in [BBE+18].

– The SecMult gadget computes the multiplication of two Boolean masked inputs. It is one of the key
building blocks of masking theory and has been introduced in [ISW03, RP10] and proved d-SNI in
[BBD+16].

– Masking conversions: A2B and B2A allow to convert an arithmetical masking modulo Qmask to a Boolean
masking and vice versa. They were first introduced in [CGV14] in a d-SNI secure way. Then, they were
generalized and improved in [Cor17, BBE+18, SPOG19].

– The MaskedCDTr1,c gadget generates a sample in a Boolean masked form that follows a tabulated
Gaussian distribution of center c and of width r1. The table values are not sensitive so they are the same
as for the unmasked implementation. This masked CDT algorithm was introduced in [BBE+19, GR19]
and proved d-NI. In these references, the output is in arithmetical masked form but one can easily change
the masking type of the output by removing the last Boolean to arithmetic conversion.

– The MaskedRRk corresponds to the masked computation of RRk(a) where a is in Boolean masked form
and k is a public unmasked value (k = 30). Recall that RRk(a) = b2kac/2k +Bα where Bα is a Bernoulli
variable with parameter α = 2ka mod 1. We can define the masking algorithm from known building
blocks. First, the rounding operation has been introduced and proved d-NI secure in [GR19]. And, for
the Bernouilli, one can refresh the masking of a, compute 2k(ai)0≤i≤d mod 1 and compare it to a uniform
masked randomness. Depending on the comparison, a sharing of 0 or 1 can be added to obtained a masked
value for RRk(a).

Multiplication In some lattice-based schemes such as Kyber or Dilithium, polynomial multiplication is
always performed between a sensitive and a public polynomial. This means that, using polynomials protected
with arithmetic masking, one can multiply each share independently by the public unmasked polynomial
and obtain an arithmetic sharing of the result of the multiplication. In this work, we have polynomials mul-
tiplications with both operand in arithmetic masked form. Given {a′i} and {b′i} ∈ Rd+1

n , we want to compute

{c′i} ∈ Rd+1
n such that

∑d
i=0 c

′
i =

(∑d
i=0 a

′
i

)
·
(∑d

i=0 b
′
i

)
. To perform this masked polynomial multiplica-

tion, we propose to rely on an NTT-based2 multiplication. Using NTT, the product of two polynomials
a, b ∈ ZQmask [x]/(xn + 1) is given by

NTT−1(NTT(a) ◦ NTT(b))

with ◦ the coefficient-wise product between two vectors in ZnQmask . Since the NTT is linear, it can be applied
on each share independently and we only have to mask the coefficient-wise multiplication between elements
of ZQmask using the technique of [ISW03]. While a naive multiplication algorithm would require n2 ISW
multiplications, we only need n of them. Since we want to multiply the polynomials in Z and not in ZQmask ,
we need to work with a modulus large enough to avoid any reduction in the result. Recall that it is also
possible to use several Qmask with CRT techniques to reduce the size.

2 The reason why we do not use a standard DFT to multiply polynomials with integer coefficients is to avoid
reintroducing FPA
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Let us define SecNTTMult, the masked product of two polynomials (ai)0≤i≤d, (bi)0≤i≤d arithmetically
masked in ZQmask [x]/(xn + 1) by

NTT−1((SecMult(NTT((ai)0≤i≤d)j ,NTT((bi)0≤i≤d)j)0≤j≤n).

By linearity of the NTT with arithmetical masking, we can easily conclude with the following Lemma.

Algorithm 11 SecNTTMult

Input: Arithmetical maskings (ai)0≤i≤d and (bi)0≤i≤d of a, b ∈ Zq[x]/(xn + 1)
Output: An arithmetical masking (ci)0≤i≤d of c ∈ Zq[x]/(xn + 1) such that c = a · b.
1: (âi)0≤i≤d ← NTT((ai)0≤i≤d) {Apply NTT on each share independently}
2: (b̂i)0≤i≤d ← NTT((bi)0≤i≤d)
3: for j := 1 to n do
4: (ĉi)0≤i≤d ← SecMult((â[j]i)0≤i≤d, (b̂[j]i)0≤i≤d)
5: end for
6: (ci)0≤i≤d ← NTT−1((ĉi)0≤i≤d)
7: return (ci)0≤i≤d

Lemma 12. SecNTTMult is d-NI secure.

Gaussian sampling We present the masked version of Algorithms 8 and 7 below in Algorithms 12 and 13.
Algorithm 13 is inspired from the masked CDT sampling from [BBE+19, GR19]. Both d-NI securities are
proved in Lemmas 15 and 14.

Remark 13. In repercussion of Remark 9, the same can be performed in a masked form. Instead of computing
line 5 of Algorithm 13 on the fly, one can generate many samples for each center off-line and store them in a
buffer. That way, depending on the context, this off-line generation may even be performed in an unmasked
way. The only drawback of this method in a masked way is the fact that instead of consuming l elements of
the buffer, the masked version needs to consume l · β masked elements of the buffer.

Algorithm 12 MaskedSampleCl
Input: An arithmetical masking (ci)0≤i≤d with c ∈ 1

pq
Z or 1

pL
Z

Output: An arithmetical masking of an element (zi)0≤i≤d following DZ,r,cfrac/βl .
1: (ci)0≤i≤d ← A2B((ci)0≤i≤d) {We perform all this algorithm with Boolean masking}
2: (crri)0≤i≤d ← MaskedRR30((ci)0≤i≤d) · βl
3: cfrac ← ((βl − 1) ∧ crri)0≤i≤d
4: cint ← (crri)0≤i≤d � log2(βl)
5: for j := 1 to l do
6: (cfraci)0≤i≤d ← MaskedSampleC1((cfraci)0≤i≤d)
7: end for
8: (zi)0≤i≤d ← B2A((cfraci)0≤i≤d)
9: return (zi)0≤i≤d {Going back to arithmetical masking}

Lemma 14. MaskedSampleC1 is d-NI secure.

Proof. A graphical representation of MaskedSampleC1 is presented in Figure 3.
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Algorithm 13 MaskedSampleC1(c)

Input: A Boolean masking (cfraci)0≤i≤d of cfrac ∈ Z.
Output: A Boolean of an element (zi)0≤i≤d following DZ,r1,cfrac/β .
1: (zi)0≤i≤d := (0, . . . , 0)
2: (c0i)0≤i≤d := ((β − 1) ∧ cfraci)0≤i≤d
3: (c1i)0≤i≤d := (cfraci)0≤i≤d � log2(β) {cfrac = c0 + β × c1 }
4: for 0 ≤ j < β do
5: (yi)0≤i≤d ← MaskedCDTr1,j/β()
6: initialize (Ji)0≤i≤d as a (log2(β) + 1)-bit Boolean masking of −j
7: (δi)0≤i≤d ← SecAdd

(
(c0i)0≤i≤d, (Ji)0≤i≤d) {δ = 0 ⇐⇒ c = j and 1 otherwise}

8: (bi)0≤i≤d ← SecMult (¬(δi)0≤i≤d, (yi)0≤i≤d) {b = y ⇐⇒ c = j and 0 otherwise}
9: (zi)0≤i≤d := (bi)0≤i≤d ⊕ (zi)0≤i≤d

10: end for
11: (zi)0≤i≤d ← SecAdd

(
(zi)0≤i≤d, (c

1
i)0≤i≤d)

12: return (zi)0≤i≤d

– First, let us prove that each iteration has a ”weak” d-SNI property: any set of at most d observations
whose dint observations on the internal data and dout observations on the outputs can be perfectly
simulated from at most dint shares of the input (c0i)0≤i≤d and dint +dout shares of (zi)0≤i≤d. The result
comes from the structure of this sub-gadget: the dependencies of the observations on the returned values
are stopped by the d-SNI property of SecMult.

– Similarly to the proof of Lemma 11, we consider that the attacker made δ ≤ d observations during the
execution of MaskedSampleC1. We aim at proving that all these δ observations can be perfectly simulated
with at most δ shares of (cfraci)0≤i≤d.
We consider the following distribution of the attacker’s δ observations: δ1 made during the shift � in
line 3, δ2 made during the ∧ in line 2, δ03 made during the first iteration (considered as a black box), δj3
made during the j-th iteration, and δ4 made during the call to SecAdd. We have

δ1 + δ2 +

β∑
0=1

δj3 + δ4 ≤ δ ≤ d.

Let us build the proof from right to left. Since the SecAdd gadget is d-NI, all the observations from its call
can be perfectly simulated with at most δ4 shares of the last computed (zi)0≤i≤d and (c1i)0≤i≤d. Next,
the last iteration has the ”weak” d-SNI property showed in the first item, thus, all the observations from
its call can be simulated with at most δβ3 +δ4 shares of (zi)0≤i≤d and δβ3 shares of (c0i)0≤i≤d. Recursively,

all the observations from the first call to iter can be simulated with at most
∑β

0=1 δ
j
3 shares of (c0i)0≤i≤d

and δ4 +
∑β

0=1 δ
j
3 shares of the first (zi)0≤i≤d, namely (0, ..., 0). The linearity and affine properties of

the � and ∧ gadgets allow to conclude that all the adversary’s observations can be perfectly simulated
with at most (δ1 + δ4) + (δ2 +

∑β
0=1 δ

j
3) ≤ δ ≤ d shares of (cfraci)0≤i≤d. This is enough to prove that

MaskedSampleC1 is d-NI secure. ut

Lemma 15. MaskedSampleCl is d-NI secure.

Proof. We first note that the linearity and affine properties of the � and ∧ gadgets break the dependency
cycle on (crri)0≤i≤d. Thus, this algorithm is a linear succession of d-NI gadgets without dependency cycle.
This is enough to prove that MaskedSampleCl is d-NI secure. ut
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iter iter iter ... SecAdd (zi)0≤i≤d

(c0i)0≤i≤d

(c1i)0≤i≤d

∧

�

(cfraci)0≤i≤d

(0, ..., 0)
(zi)0≤i≤d (zi)0≤i≤d (zi)0≤i≤d

iter

SecAdd

(c0i)0≤i≤d

(Ji)0≤i≤d

¬

SecMultMaskedCDTr1,j/β

⊕(zi)0≤i≤d (zi)0≤i≤d

(δi)0≤i≤d

(δi)0≤i≤d

(yi)0≤i≤d

(bi)0≤i≤d

Fig. 3. Structure of MaskedSampleC1. In blue, we represent the d-SNI gadgets while the white ones are the d-NI secure
one.
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