
Based CCA Encryption Scheme

Adding Distributed Decryption and Key
Generation to a Ring-LWE Based CCA

Encryption Scheme

N.P. Smart

COSIC,
KU Leuven, ESAT,

Kasteelpark Arenberg 10, bus 2452,
B-3001 Leuven-Heverlee,

Belgium.

Joint work with Michael Kraitsberg, Yehuda Lindell, Valery Osheter, and Younes Talibi Alaoui

February 18, 2019

N.P. Smart
Adding Distributed Decryption and Key Generation to a Ring-LWE Slide 1

Based CCA Encryption Scheme

Distributed Decryption

Adding threshold capability to any IND-CCA encryption scheme is
problematic

I Cannot release the plaintext in clear until the CCA check is
complete

For post-quantum schemes this becomes more complex
I PQC schemes not particularly well suited to distributed

decryption

N.P. Smart
Adding Distributed Decryption and Key Generation to a Ring-LWE Slide 2

Based CCA Encryption Scheme

Distributed Decryption

We propose to do this for a LWE based PQC scheme.
I Using a combination of various MPC technologies
I GC and LSSS
I ISN and Shamir secret sharing

Tailor the MPC to the specifc situation

N.P. Smart
Adding Distributed Decryption and Key Generation to a Ring-LWE Slide 3

Based CCA Encryption Scheme

The LIMA Scheme: KeyGen

1. a = (a0, . . . , aN−1) ← FN .q
XOF

2. For i = 0 to N − 1 do si ← GenerateGaussianNoiseXOF(σ).
3. For i = 0 to N − 1 do ei

0 ← GenerateGaussianNoiseXOF(σ).
4. a ← FFT(a), s ← FFT(s), e0 ← FFT(e0).
5. b ← (a ⊗ s) ⊕ e0 ,
6. sk ← (s, a, b).
7. pk ← (a, b).
8. Return (pk, sk)

N.P. Smart
Adding Distributed Decryption and Key Generation to a Ring-LWE Slide 4

Based CCA Encryption Scheme

KeyGen
The random values produced in lines 2 and 3 use the following
operation:

GenerateGaussianNoiseXOF(σ)

1. t ← XOF[5]; interpretting t as a bit string of length 40.
2. s ← 0.
3. For i = 0 to 19 do

3.1 s ← s − t [2 · i] + t [2 · i + 1].

4. Return s.

If we replace the XOF by producing a source of random bits, this
means the KeyGen operation is totally linear

I As FFT is linear
This means creating a distributed KeyGen will be easy (see later).

N.P. Smart
Adding Distributed Decryption and Key Generation to a Ring-LWE Slide 5

Based CCA Encryption Scheme

The LIMA Scheme: Enc-CPA-Sub(m, pk, XOF)
1. ` = |m|.
2. If ` > N then return ⊥.
3. µ ← BV-2-RE(m),
4. For i = 0 to N − 1 do vi ← GenerateGaussianNoiseXOF(σ).
5. For i = 0 to N − 1 do ei ← GenerateGaussianNoiseXOF(σ).
6. For i = 0 to N − 1 do di ← GenerateGaussianNoiseXOF(σ).
7. v ← FFT(v), e ← FFT(e).
8. x ← d +Δq · µ (mod q).

9. s ← FFT−1(b ⊗ v).
10. t ← s + x .
11. c0 ← Trunc(t , `).
12. c1 ← (a ⊗ v) ⊕ e.
13. Output c = (c0, c1).

N.P. Smart
Adding Distributed Decryption and Key Generation to a Ring-LWE Slide 6

Based CCA Encryption Scheme

The LIMA Scheme: Dec-CPA(c, sk)

1. Defne ` to be the length of c0.
2. If ` =6 0 (mod 8) then return ⊥.
3. v ← FFT−1(s ⊗ c1).
4. t ← Trunc(v , `).
5. f ← c0 − t .
6. Convert f into centered-representation modulo q. m

2

8. m ← RE-2-BV(µ).

���j���7. µ ← fq

9. Return m.

N.P. Smart
Adding Distributed Decryption and Key Generation to a Ring-LWE Slide 7

Based CCA Encryption Scheme

The LIMA Scheme: CCA version

The problem comes in the CCA version of the scheme:

Enc-CCA(m, pk, r):
1. If |r| 6= 256 or |m| ≥ N − 256 then return ⊥.
2. µ ← mkr.
3. XOF ← KMAC(µ, 0x03, 0).
4. c ← Enc-CPA-Sub(µ, pk, XOF).
5. Return c.

N.P. Smart
Adding Distributed Decryption and Key Generation to a Ring-LWE Slide 8

Based CCA Encryption Scheme

The LIMA Scheme: CCA version

The problem comes in the CCA version of the scheme:

Dec-CCA(c, sk):
1. µ ← Dec-CPA(c, sk).
2. If |µ| < 256 then return ⊥.
3. XOF ← KMAC(µ, 0x03, 0).
4. c0 ← Enc-CPA-Sub(µ, pk, XOF).
5. If c 6= c0 then return ⊥.
6. mkr ← µ, where r is 256 bits long.
7. Return m.

We need to evaluate the KMAC (SHA-3) algorithm on µ before we
release the m component of µ.

N.P. Smart
Adding Distributed Decryption and Key Generation to a Ring-LWE Slide 9

Based CCA Encryption Scheme

Distributed Decryption

We choose a three party, one active adversary, scenario

We share the secret key using Ito–Nishizeki–Saito sharing

1,2 1,3In particular S1 is assumed to hold (s1 , s1) ∈ ZN
q , S2 is assumed

1,2 2,3 1,3 2,3to hold (s2 , s1) ∈ ZN
q , and S2 is assumed to hold (s2 , s2) ∈ ZN

q
such that

1,2 1,2 1,3 1,3 2,3 2,3 s + s = s + s = s + s = s.1 2 1 2 1 2

N.P. Smart
Adding Distributed Decryption and Key Generation to a Ring-LWE Slide 10

Based CCA Encryption Scheme

Round Function

We require a protocol which takes an ISN-sharing of a vector f and
produces the output of the function

µ ←

����j 2
f

q

���� m

This is done using a special actively secure GC protocol for the
(1, 3)-threshold setting (see paper).

Requires one garbled circuit to be produced, of 262, 144 AND gates.

This effectively gives us Dec-CPA.

N.P. Smart
Adding Distributed Decryption and Key Generation to a Ring-LWE Slide 11

Based CCA Encryption Scheme

SHA-3 Evaluation

Given the output of Dec-CPA we need to pass it into the XOF to get
the output needed for the Enc-CPA-Sub routine.

This requires evaluating the SHA-3 round function a number of
times.

I 38,400 AND gates per round

The rest of Enc-CPA-Sub becomes essentially locally computations
as FFT is linear

Only need to produce the truncation of d +Δq · µ + x in a secure
fashion for testing equality

I Also done with a garbled circuit

N.P. Smart
Adding Distributed Decryption and Key Generation to a Ring-LWE Slide 12

Based CCA Encryption Scheme

Distributed Decryption: Run Time

Despite one execute of a garbled SHA-3 round function taking only
16ms, the overall decryption time takes over 4 seconds!

Why?

The real problem is the round function having to be computed on
each coeffcient

In LWE schemes there are a lot of coeffcients, the ring dimension.

N.P. Smart
Adding Distributed Decryption and Key Generation to a Ring-LWE Slide 13

Based CCA Encryption Scheme

Distributed KeyGen

Distributed Key Generation is much easier.

Here we use SCALE-MAMBA in Shamir (1, 3) mode.
I An offine/online based MPC system
I Offine produces shared random Beaver triples (frst two

components are random)
I Offine phases allows production of shared random bits! (v.

important for us)

N.P. Smart
Adding Distributed Decryption and Key Generation to a Ring-LWE Slide 14

Based CCA Encryption Scheme

Distributed KeyGen

As we can produce shared random bits, production of approximate
discrete Gaussians is trivial...
SecGauss()

1. [a] ← 0.
2. For i ∈ [0, . . . , 19] do

2.1 [b] ← Bits, [b0] ← Bits.
2.2 [a] ← [a] + [b] − [b0].

3. Return [a].
In fact this is (after the offine phase) a completely local computation.

N.P. Smart
Adding Distributed Decryption and Key Generation to a Ring-LWE Slide 15

Based CCA Encryption Scheme

Distributed KeyGen

From this distrbuted KeyGen is simply linear operations (FFTs) and
then converting data to the ISN shared format.

The per-coeffcient operation is given by

KG-Coeff(i)
1. [s]i ← SecGauss(), [e]i ← SecGauss().

1,2 1,3 2,32. ([s1]i , [s1]i , [c]) ← Triples, ([s1]i , [b], [c]) ← Triples.
1,2 1,2 1,3 1,3 2,3 2,33. [s2]i ← [s]i − [s1]i , [s2]i ← [s]i − [s1]i , [s2]i ← [s]i − [s1]i .

1,2 1,34. Output-To(1, [s1]i), Output-To(1, [s1]i).
2,3 1,25. Output-To(2, [s1]i), Output-To(2, [s2]i).
1,3 2,36. Output-To(3, [s2]i), Output-To(3, [s2]i).

N.P. Smart
Adding Distributed Decryption and Key Generation to a Ring-LWE Slide 16

Based CCA Encryption Scheme

Distributed KeyGen
KeyGen()

1. All players agree on a key for a XOF XOF.
2. a ← FN

q .
XOF

3. For i ∈ [0, . . . , N − 1] execute KG-Coeff(i).
4. [b] ← a · [s] + [e] (mod Φ2·N(X)).

This is a completely local operation as a is public
5. For i ∈ [0, . . . , N − 1] execute Output([b]i).
6. a ← FFT(a), b ← FFT(b) [Again local operations]
7. pk ← (a, b).

1,2 1,2 1,3 1,38. Player S1 executes s ← FFT(s1) and s ← FFT(s1).1 1
1,2 1,2 2,3 2,39. Player S2 executes s ← FFT(s2) and s ← FFT(s1).2 1
1,3 1,3 2,3 2,310. Player S3 executes s ← FFT(s2) and s ← FFT(s2 2 2).

N.P. Smart
Adding Distributed Decryption and Key Generation to a Ring-LWE Slide 17

Based CCA Encryption Scheme

KeyGen Runtime

We timed this with SCALE-MAMBA v1.2 and obtained a run time of
1.22 seconds

Of this one second was actually producing the output
I Due to SCALE-MAMBA doing IO in serial as opposed to

parallel protocol.
I Requiring 6144 rounds as opposed to one.

N.P. Smart
Adding Distributed Decryption and Key Generation to a Ring-LWE Slide 18

Based CCA Encryption Scheme

Conclusions
We have shown that MPC can be used to produce
distributed/threshold implementations of a PQC encryption scheme.

Runtimes are a little disappointing.
I Main issue is the large ring degree (1024) used in LIMA.

The problem is not in the CCA transform (i.e. the SHA-3 evaluation)

The use of FFT like operations is also not a problem as these are
linear

I Assuming you split up the MPC operation in a sensible manner
to exploit this.

Suggest looking at distributed/threshold capabilities as a potential
secondary criteria in the NIST competition.

N.P. Smart
Adding Distributed Decryption and Key Generation to a Ring-LWE Slide 19

Based CCA Encryption Scheme

Any Questions?

N.P. Smart
Adding Distributed Decryption and Key Generation to a Ring-LWE Slide 20

