Adding Distributed Decryption and Key Generation to a Ring-LWE Based CCA Encryption Scheme

N.P. Smart

COSIC, KU Leuven, ESAT, Kasteelpark Arenberg 10, bus 2452, B-3001 Leuven-Heverlee, Belgium.

Joint work with Michael Kraitsberg, Yehuda Lindell, Valery Osheter, and Younes Talibi Alaoui

February 18, 2019

N.P. Smart Adding Distributed Decryption and Key Generation to a Ring-LWE

Distributed Decryption

Adding threshold capability to any IND-CCA encryption scheme is problematic

 Cannot release the plaintext in clear until the CCA check is complete

For post-quantum schemes this becomes more complex

 PQC schemes not particularly well suited to distributed decryption

We propose to do this for a LWE based PQC scheme.

- Using a combination of various MPC technologies
- GC and LSSS
- ISN and Shamir secret sharing

Tailor the MPC to the specific situation

The LIMA Scheme: KeyGen

1.
$$a = (a_0, \ldots, a_{N-1}) \underset{\text{XOF}}{\leftarrow} \mathbb{F}_q^N$$
.

2. For i = 0 to N - 1 do $s_i \leftarrow$ GenerateGaussianNoise_{XOF}(σ).

- 3. For i = 0 to N 1 do $e'_i \leftarrow$ GenerateGaussianNoise_{XOF}(σ).
- 4. $\mathbf{a} \leftarrow \mathsf{FFT}(a), \mathbf{s} \leftarrow \mathsf{FFT}(s), \mathbf{e}' \leftarrow \mathsf{FFT}(e').$
- 5. $\mathbf{b} \leftarrow (\mathbf{a} \otimes \mathbf{s}) \oplus \mathbf{e}'$,
- **6.** $\mathfrak{st} \leftarrow (\mathbf{s}, \mathbf{a}, \mathbf{b}).$
- 7. $\mathfrak{pt} \leftarrow (\mathbf{a}, \mathbf{b})$.
- 8. Return (pt, st)

KeyGen

The random values produced in lines 2 and 3 use the following operation:

GenerateGaussianNoise_{XOF}(σ)

- 1. $t \leftarrow XOF[5]$; interpretting t as a bit string of length 40.
- **2**. *s* ← 0.
- 3. For *i* = 0 to 19 do

3.1
$$s \leftarrow s - t[2 \cdot i] + t[2 \cdot i + 1].$$

4. Return s.

If we replace the XOF by producing a source of random bits, this means the KeyGen operation is totally linear

As FFT is linear

This means creating a distributed KeyGen will be easy (see later).

The LIMA Scheme: Enc-CPA-Sub(**m**, pt, XOF)

- 1. $\ell = |\mathbf{m}|$.
- 2. If $\ell > N$ then return \perp .
- **3**. $\mu \leftarrow \mathsf{BV-2-RE}(\mathbf{m})$,

4. For i = 0 to N - 1 do $v_i \leftarrow$ GenerateGaussianNoise_{XOF}(σ).

- 5. For i = 0 to N 1 do $e_i \leftarrow$ GenerateGaussianNoise_{XOF}(σ).
- 6. For i = 0 to N 1 do $d_i \leftarrow$ GenerateGaussianNoise_{XOF}(σ).

7.
$$\mathbf{v} \leftarrow \mathsf{FFT}(\mathbf{v}), \mathbf{e} \leftarrow \mathsf{FFT}(\mathbf{e})$$

- 8. $x \leftarrow d + \Delta_q \cdot \mu \pmod{q}$.
- 9. $s \leftarrow FFT^{-1}(\mathbf{b} \otimes \mathbf{v})$.
- 10. $t \leftarrow s + x$.
- 11. $c_0 \leftarrow \operatorname{Trunc}(t, \ell)$.
- 12. $c_1 \leftarrow (a \otimes v) \oplus e$.
- **13**. Output $\mathbf{c} = (c_0, \mathbf{c}_1)$.

The LIMA Scheme: Dec-CPA($\mathbf{c}, \mathfrak{st}$)

- 1. Define ℓ to be the length of c_0 .
- 2. If $\ell \neq 0 \pmod{8}$ then return \perp .
- 3. $v \leftarrow FFT^{-1}(\mathbf{s} \otimes \mathbf{c}_1)$.
- 4. $t \leftarrow \text{Trunc}(v, \ell)$.
- 5. $f \leftarrow c_0 t$.
- 6. Convert *f* into centered-representation modulo *q*.
- **7**. $\mu \leftarrow \left| \left\lfloor \frac{2}{q} f \right] \right|$
- 8. $\mathbf{m} \leftarrow \mathsf{RE-2-BV}(\mu)$.
- 9. Return **m**.

The LIMA Scheme: CCA version

The problem comes in the CCA version of the scheme:

Enc-CCA(**m**, pt, **r**):

- 1. If $|\mathbf{r}| \neq 256$ or $|\mathbf{m}| \geq N 256$ then return \perp .
- **2**. $\mu \leftarrow \mathbf{m} \| \mathbf{r}$.
- **3.** XOF \leftarrow KMAC(μ , 0x03, 0).
- 4. $\mathbf{c} \leftarrow \mathsf{Enc-CPA-Sub}(\mu, \mathfrak{pt}, \mathsf{XOF}).$

5. Return c.

The LIMA Scheme: CCA version

The problem comes in the CCA version of the scheme:

 $Dec-CCA(\mathbf{c}, \mathfrak{st}):$

- 1. $\mu \leftarrow \text{Dec-CPA}(\mathbf{c}, \mathfrak{sl}).$
- 2. If $|\mu| <$ 256 then return \perp .
- **3.** XOF \leftarrow KMAC(μ , 0x03, 0).
- 4. $\mathbf{c}' \leftarrow \mathsf{Enc-CPA-Sub}(\mu, \mathfrak{pt}, \mathsf{XOF}).$
- 5. If $\mathbf{c} \neq \mathbf{c}'$ then return \perp .
- 6. $\mathbf{m} \| \mathbf{r} \leftarrow \mu$, where \mathbf{r} is 256 bits long.
- 7. Return m.

We need to evaluate the KMAC (SHA-3) algorithm on μ before we release the **m** component of μ .

Distributed Decryption

We choose a three party, one active adversary, scenario

We share the secret key using Ito-Nishizeki-Saito sharing

In particular S_1 is assumed to hold $(\mathbf{s}_1^{1,2}, \mathbf{s}_1^{1,3}) \in \mathbb{Z}_q^N$, S_2 is assumed to hold $(\mathbf{s}_2^{1,2}, \mathbf{s}_1^{2,3}) \in \mathbb{Z}_q^N$, and S_2 is assumed to hold $(\mathbf{s}_2^{1,3}, \mathbf{s}_2^{2,3}) \in \mathbb{Z}_q^N$ such that

$$\mathbf{S}_1^{1,2} + \mathbf{S}_2^{1,2} = \mathbf{S}_1^{1,3} + \mathbf{S}_2^{1,3} = \mathbf{S}_1^{2,3} + \mathbf{S}_2^{2,3} = \mathbf{S}.$$

N.P. Smart Adding Distributed Decryption and Key Generation to a Ring-LWE

Round Function

We require a protocol which takes an ISN-sharing of a vector **f** and produces the output of the function

$$\mu \leftarrow \left| \left\lfloor \frac{2}{q} f \right| \right|$$

This is done using a special actively secure GC protocol for the (1,3)-threshold setting (see paper).

Requires one garbled circuit to be produced, of 262, 144 AND gates.

This effectively gives us Dec-CPA.

N.P. Smart Adding Distributed Decryption and Key Generation to a Ring-LWE

SHA-3 Evaluation

Given the output of Dec-CPA we need to pass it into the XOF to get the output needed for the Enc-CPA-Sub routine.

This requires evaluating the SHA-3 round function a number of times.

38,400 AND gates per round

The rest of Enc-CPA-Sub becomes essentially locally computations as FFT is linear

Only need to produce the truncation of $d + \Delta_q \cdot \mu + x$ in a secure fashion for testing equality

Also done with a garbled circuit

Distributed Decryption: Run Time

Despite one execute of a garbled SHA-3 round function taking only 16ms, the overall decryption time takes over 4 seconds!

Why?

The real problem is the round function having to be computed on *each coefficient*

In LWE schemes there are a lot of coefficients, the ring dimension.

Distributed Key Generation is much easier.

Here we use SCALE-MAMBA in Shamir (1,3) mode.

- An offline/online based MPC system
- Offline produces shared random Beaver triples (first two components are random)
- Offline phases allows production of shared random bits! (v. important for us)

As we can produce shared random bits, production of approximate discrete Gaussians is trivial...

SecGauss()

- **1**. [*a*] ← 0.
- 2. For *i* ∈ [0, . . . , 19] do
 - 2.1 $[b] \leftarrow \text{Bits}, [b'] \leftarrow \text{Bits}.$
 - 2.2 $[a] \leftarrow [a] + [b] [b']$.
- 3. Return [*a*].

In fact this is (after the offline phase) a completely local computation.

From this distrbuted KeyGen is simply linear operations (FFTs) and then converting data to the ISN shared format.

The per-coefficient operation is given by

KG-Coeff(i)

1.
$$[\underline{s}]_{i} \leftarrow \text{SecGauss}(), [\underline{e}]_{i} \leftarrow \text{SecGauss}().$$

2. $([\underline{s}_{1}^{1,2}]_{i}, [\underline{s}_{1}^{1,3}]_{i}, [c]) \leftarrow \text{Triples}, ([\underline{s}_{1}^{2,3}]_{i}, [b], [c]) \leftarrow \text{Triples}.$
3. $[\underline{s}_{2}^{1,2}]_{i} \leftarrow [\underline{s}]_{i} - [\underline{s}_{1}^{1,2}]_{i}, [\underline{s}_{2}^{1,3}]_{i} \leftarrow [\underline{s}]_{i} - [\underline{s}_{1}^{1,3}]_{i}, [\underline{s}_{2}^{2,3}]_{i} \leftarrow [\underline{s}]_{i} - [\underline{s}_{1}^{2,3}]_{i}.$
4. Output-To $(1, [\underline{s}_{1}^{1,2}]_{i}), \text{Output-To}(1, [\underline{s}_{1}^{1,3}]_{i}).$
5. Output-To $(2, [\underline{s}_{1}^{2,3}]_{i}), \text{Output-To}(2, [\underline{s}_{2}^{1,2}]_{i}).$
6. Output-To $(3, [\underline{s}_{2}^{1,3}]_{i}), \text{Output-To}(3, [\underline{s}_{2}^{2,3}]_{i}).$

KeyGen()

- 1. All players agree on a key for a XOF XOF.
- 2. $\underline{a} \leftarrow_{\mathsf{XOF}} \mathbb{F}_q^N$.
- 3. For $i \in [0, \ldots, N-1]$ execute KG-Coeff(i).
- 4. $[\underline{b}] \leftarrow \underline{a} \cdot [\underline{s}] + [\underline{e}] \pmod{\Phi_{2 \cdot N}(X)}$. This is a completely local operation as \underline{a} is public
- 5. For $i \in [0, ..., N 1]$ execute $Output([\underline{b}]_i)$.
- 6. $\mathbf{a} \leftarrow \mathsf{FFT}(\underline{a}), \mathbf{b} \leftarrow \mathsf{FFT}(\underline{b})$ [Again local operations]
- 7. $\mathfrak{pt} \leftarrow (\mathbf{a}, \mathbf{b})$.
- 8. Player S_1 executes $\mathbf{s}_1^{1,2} \leftarrow \mathsf{FFT}(\underline{s}_1^{1,2})$ and $\mathbf{s}_1^{1,3} \leftarrow \mathsf{FFT}(\underline{s}_1^{1,3})$.
- 9. Player S_2 executes $\mathbf{s}_2^{1,2} \leftarrow \mathsf{FFT}(\underline{s}_2^{1,2})$ and $\mathbf{s}_1^{2,3} \leftarrow \mathsf{FFT}(\underline{s}_1^{2,3})$. 10. Player S_3 executes $\mathbf{s}_2^{1,3} \leftarrow \mathsf{FFT}(\underline{s}_2^{1,3})$ and $\mathbf{s}_2^{2,3} \leftarrow \mathsf{FFT}(\underline{s}_2^{2,3})$.

We timed this with SCALE-MAMBA v1.2 and obtained a run time of 1.22 seconds

Of this one second was actually producing the output

- Due to SCALE-MAMBA doing IO in serial as opposed to parallel protocol.
- Requiring 6144 rounds as opposed to one.

Conclusions

We have shown that MPC can be used to produce distributed/threshold implementations of a PQC encryption scheme.

Runtimes are a little disappointing.

Main issue is the large ring degree (1024) used in LIMA.

The problem is not in the CCA transform (i.e. the SHA-3 evaluation)

The use of FFT like operations is also not a problem as these are linear

 Assuming you split up the MPC operation in a sensible manner to exploit this.

Suggest looking at distributed/threshold capabilities as a potential secondary criteria in the NIST competition.

Any Questions?

N.P. Smart Adding Distributed Decryption and Key Generation to a Ring-LWE

