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Based CCA Encryption Scheme

Distributed Decryption 

Adding threshold capability to any IND-CCA encryption scheme is 
problematic 

I Cannot release the plaintext in clear until the CCA check is 
complete 

For post-quantum schemes this becomes more complex 
I PQC schemes not particularly well suited to distributed 

decryption 
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Based CCA Encryption Scheme

Distributed Decryption 

We propose to do this for a LWE based PQC scheme. 
I Using a combination of various MPC technologies 
I GC and LSSS 
I ISN and Shamir secret sharing 

Tailor the MPC to the specifc situation 
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Based CCA Encryption Scheme

The LIMA Scheme: KeyGen 

1. a = (a0, . . . , aN−1) ← FN .q
XOF 

2. For i = 0 to N − 1 do si ← GenerateGaussianNoiseXOF(σ). 
3. For i = 0 to N − 1 do ei 

0 ← GenerateGaussianNoiseXOF(σ). 
4. a ← FFT(a), s ← FFT(s), e0 ← FFT(e0). 
5. b ← (a ⊗ s) ⊕ e0 , 
6. sk ← (s, a, b). 
7. pk ← (a, b). 
8. Return (pk, sk) 
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Based CCA Encryption Scheme

KeyGen 
The random values produced in lines 2 and 3 use the following 
operation: 

GenerateGaussianNoiseXOF(σ) 

1. t ← XOF[5]; interpretting t as a bit string of length 40. 
2. s ← 0. 
3. For i = 0 to 19 do 

3.1 s ← s − t [2 · i] + t [2 · i + 1]. 

4. Return s. 

If we replace the XOF by producing a source of random bits, this 
means the KeyGen operation is totally linear 

I As FFT is linear 
This means creating a distributed KeyGen will be easy (see later). 
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Based CCA Encryption Scheme

The LIMA Scheme: Enc-CPA-Sub(m, pk, XOF) 
1. ` = |m|. 
2. If ` > N then return ⊥. 
3. µ ← BV-2-RE(m), 
4. For i = 0 to N − 1 do vi ← GenerateGaussianNoiseXOF(σ). 
5. For i = 0 to N − 1 do ei ← GenerateGaussianNoiseXOF(σ). 
6. For i = 0 to N − 1 do di ← GenerateGaussianNoiseXOF(σ). 
7. v ← FFT(v), e ← FFT(e). 
8. x ← d +Δq · µ (mod q). 

9. s ← FFT−1(b ⊗ v). 
10. t ← s + x . 
11. c0 ← Trunc(t , `). 
12. c1 ← (a ⊗ v) ⊕ e. 
13. Output c = (c0, c1). 
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Based CCA Encryption Scheme

The LIMA Scheme: Dec-CPA(c, sk) 

1. Defne ` to be the length of c0. 
2. If ` =6 0 (mod 8) then return ⊥. 
3. v ← FFT−1(s ⊗ c1). 
4. t ← Trunc(v , `). 
5. f ← c0 − t . 
6. Convert f into centered-representation modulo q. m

2 

8. m ← RE-2-BV(µ). 

���j���7. µ ← fq

9. Return m. 
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Based CCA Encryption Scheme

The LIMA Scheme: CCA version 

The problem comes in the CCA version of the scheme: 

Enc-CCA(m, pk, r): 
1. If |r| 6= 256 or |m| ≥ N − 256 then return ⊥. 
2. µ ← mkr. 
3. XOF ← KMAC(µ, 0x03, 0). 
4. c ← Enc-CPA-Sub(µ, pk, XOF). 
5. Return c. 
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Based CCA Encryption Scheme

The LIMA Scheme: CCA version 

The problem comes in the CCA version of the scheme: 

Dec-CCA(c, sk): 
1. µ ← Dec-CPA(c, sk). 
2. If |µ| < 256 then return ⊥. 
3. XOF ← KMAC(µ, 0x03, 0). 
4. c0 ← Enc-CPA-Sub(µ, pk, XOF). 
5. If c 6= c0 then return ⊥. 
6. mkr ← µ, where r is 256 bits long. 
7. Return m. 

We need to evaluate the KMAC (SHA-3) algorithm on µ before we 
release the m component of µ. 
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Based CCA Encryption Scheme

Distributed Decryption 

We choose a three party, one active adversary, scenario 

We share the secret key using Ito–Nishizeki–Saito sharing 

1,2 1,3In particular S1 is assumed to hold (s1 , s1 ) ∈ ZN
q , S2 is assumed 

1,2 2,3 1,3 2,3to hold (s2 , s1 ) ∈ ZN
q , and S2 is assumed to hold (s2 , s2 ) ∈ ZN

q 
such that 

1,2 1,2 1,3 1,3 2,3 2,3 s + s = s + s = s + s = s.1 2 1 2 1 2 
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Based CCA Encryption Scheme

Round Function 

We require a protocol which takes an ISN-sharing of a vector f and 
produces the output of the function 

µ ← 

����j 2
f 

q 

���� m

This is done using a special actively secure GC protocol for the 
(1, 3)-threshold setting (see paper). 

Requires one garbled circuit to be produced, of 262, 144 AND gates. 

This effectively gives us Dec-CPA. 
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Based CCA Encryption Scheme

SHA-3 Evaluation 

Given the output of Dec-CPA we need to pass it into the XOF to get 
the output needed for the Enc-CPA-Sub routine. 

This requires evaluating the SHA-3 round function a number of 
times. 

I 38,400 AND gates per round 

The rest of Enc-CPA-Sub becomes essentially locally computations 
as FFT is linear 

Only need to produce the truncation of d +Δq · µ + x in a secure 
fashion for testing equality 

I Also done with a garbled circuit 
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Based CCA Encryption Scheme

Distributed Decryption: Run Time 

Despite one execute of a garbled SHA-3 round function taking only 
16ms, the overall decryption time takes over 4 seconds! 

Why? 

The real problem is the round function having to be computed on 
each coeffcient 

In LWE schemes there are a lot of coeffcients, the ring dimension. 
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Based CCA Encryption Scheme

Distributed KeyGen 

Distributed Key Generation is much easier. 

Here we use SCALE-MAMBA in Shamir (1, 3) mode. 
I An offine/online based MPC system 
I Offine produces shared random Beaver triples (frst two 

components are random) 
I Offine phases allows production of shared random bits! (v. 

important for us) 
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Based CCA Encryption Scheme

Distributed KeyGen 

As we can produce shared random bits, production of approximate 
discrete Gaussians is trivial... 
SecGauss() 

1. [a] ← 0. 
2. For i ∈ [0, . . . , 19] do 

2.1 [b] ← Bits, [b0] ← Bits. 
2.2 [a] ← [a] + [b] − [b0]. 

3. Return [a]. 
In fact this is (after the offine phase) a completely local computation. 
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Based CCA Encryption Scheme

Distributed KeyGen 

From this distrbuted KeyGen is simply linear operations (FFTs) and 
then converting data to the ISN shared format. 

The per-coeffcient operation is given by 

KG-Coeff(i) 
1. [s]i ← SecGauss(), [e]i ← SecGauss(). 

1,2 1,3 2,32. ([s1 ]i , [s1 ]i , [c]) ← Triples, ([s1 ]i , [b], [c]) ← Triples. 
1,2 1,2 1,3 1,3 2,3 2,33. [s2 ]i ← [s]i − [s1 ]i , [s2 ]i ← [s]i − [s1 ]i , [s2 ]i ← [s]i − [s1 ]i . 

1,2 1,34. Output-To(1, [s1 ]i), Output-To(1, [s1 ]i). 
2,3 1,25. Output-To(2, [s1 ]i), Output-To(2, [s2 ]i). 
1,3 2,36. Output-To(3, [s2 ]i), Output-To(3, [s2 ]i). 
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Based CCA Encryption Scheme

Distributed KeyGen 
KeyGen() 

1. All players agree on a key for a XOF XOF. 
2. a ← FN

q . 
XOF 

3. For i ∈ [0, . . . , N − 1] execute KG-Coeff(i). 
4. [b] ← a · [s] + [e] (mod Φ2·N(X )). 

This is a completely local operation as a is public 
5. For i ∈ [0, . . . , N − 1] execute Output([b]i). 
6. a ← FFT(a), b ← FFT(b) [ Again local operations] 
7. pk ← (a, b). 

1,2 1,2 1,3 1,38. Player S1 executes s ← FFT(s1 ) and s ← FFT(s1 ).1 1 
1,2 1,2 2,3 2,39. Player S2 executes s ← FFT(s2 ) and s ← FFT(s1 ).2 1 
1,3 1,3 2,3 2,310. Player S3 executes s ← FFT(s2 ) and s ← FFT(s2 2 2 ). 
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Based CCA Encryption Scheme

KeyGen Runtime 

We timed this with SCALE-MAMBA v1.2 and obtained a run time of 
1.22 seconds 

Of this one second was actually producing the output 
I Due to SCALE-MAMBA doing IO in serial as opposed to 

parallel protocol. 
I Requiring 6144 rounds as opposed to one. 
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Based CCA Encryption Scheme

Conclusions 
We have shown that MPC can be used to produce 
distributed/threshold implementations of a PQC encryption scheme. 

Runtimes are a little disappointing. 
I Main issue is the large ring degree (1024) used in LIMA. 

The problem is not in the CCA transform (i.e. the SHA-3 evaluation) 

The use of FFT like operations is also not a problem as these are 
linear 

I Assuming you split up the MPC operation in a sensible manner 
to exploit this. 

Suggest looking at distributed/threshold capabilities as a potential 
secondary criteria in the NIST competition. 
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Based CCA Encryption Scheme

Any Questions? 
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