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Objectives for System Aware Cyber

Security Research

Increase cyber security by developing new system
engineering-based technology that provides a Point
Defense option for cyber security

* Inside the system being protected, for the most critical functions

 Complements current defense approaches of network and perimeter
cyber security

Directly address supply chain and insider threats that
perimeter security does not protect against

* Including physical systems as well as information systems

Provide technology design patterns that are reusable and
address the assurance of data integrity and rapid forensics,
as well as denial of service

Develop a systems engineering scoring framework for
evaluating cyber security architectures and what they
protect, to arrive at the most cost-effective integrated
solution
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System-Aware Cyber Security Architecture

e System-Aware Cyber Security Architectures combine design
techniques from 3 communities

— Cyber Security
— Fault-Tolerant Systems
— Automatic Control Systems

 The point defense solution designers need to come from
the communities related to system design, providing a new
orientation to complement the established approaches of
the information assurance community

 New point defense solutions will have independent failure
modes from traditional solutions, thereby minimizing

probabilities of successful attack via greater defense in
depth



A Set of Techniques Utilized in System-Aware Security

Cyber Security Fault-Tolerance Automatic Control
*Data Provenance *Diverse Redundancy *Physical Control for
*Moving Target (DoS, Automated Restoral) Configuration Hopping

(Virtual Control for Hopping) *Redundant Component Voting (Moving Target, Restoral)
*Forensics (Data Integrity, Restoral) *State Estimation
(Data Integrity)
*System Identification
(Tactical Forensics, Restoral)
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A Set of Techniques Utilized in System-Aware Security

Cyber Security Fault-Tolerance Automatic Control
*Data Provenance *Diverse Redundancy *Physical Control for
*Moving Target (DoS, Automated Restoral) Configuration Hopping

(Virtual Control for Hopping) *Redundant Component Voting (Moving Target, Restoral)
*Forensics (Data Integrity, Restoral) *State Estimation

(Data Integrity)
*System Identification
(Tactical Forensics, Restoral)

If implemented properly, this combination of solutions requires

adversaries to:
 Understand the details of how the targeted systems

actually work

e Develop synchronized, distributed exploits consistent
with how the attacked system actually works

e Corrupt multiple supply chains



Example Design Patterns Under
Development

Diverse Redundancy for post-attack restoration

Diverse Redundancy + Verifiable Voting for
trans-attack defense

Physical Configuration Hopping for moving target
defense

Virtual Configuration Hopping for moving target
defense

Physical Confirmations of Digital Data
Data Consistency Checking




ATTACK 1: OPERATOR DISPLAY ATTACK

ATTACK 2: CONTROL SYSTEM &
OPERATOR DISPLAY ATTACK

ATTACK 3: SENSOR SYSTEM ATTACK



ATTACKS 1 & 2
OPERATOR DISPLAY ATTACK/
COORDINATED CONTROL SYSTEM &
OPERATOR DISPLAY ATTACK



The Problem Being Addressed

Highly automated physical system

Operator monitoring function, including criteria
for human over-ride of the automation

Critical system states for both operator
observation and feedback control — consider as
least trusted from cyber security viewpoint

Other measured system states — consider as more
trusted from cyber security viewpoint

CYBER ATTACK: Create a problematic outcome by
disrupting human display data and/or critical
feedback control data.



Cyber Attack: Damaging Turbine and Hiding its Effects
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Simplified Block Diagram for Inference-Based

Data Integrity Detection System
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EXAMPLE



Regulating a Linear Physical System (1)

Linear physical system represented by
difference equation

X (k+1)=Ax (k)+Buz (k)+w (k) where

x (k) is an n vector representing the system state
during discrete time interval k

A is the n x n system state transition matrix

B is the n x g system control matrix

u (k) is the g vector control signal

w (k) is system input noise



Regulating a Linear Physical System (2)

e System measurements are represented by:
* y (k) =Cx (k) +V (k)

e Where y(k) is a m vector of measurements at
time interval k

e Cis a mxn measurement matrix

e v (k) is an m vector representing
measurement noise



A Simulation Model for Regulating the
States of the System

e To facilitate evaluating the data consistency cyber
security design pattern:

— Simulate a linear system controller to sustain the states of
a system at designated levels

— Optimal Regulator Solution (LQG) utilized for simulation
e White Gaussian noise
e Separation Theorem
e Kalman Filter for state estimation
e Ricatti Equation-based controller for feedback control

— Controller feed back law based upon variances of input
noise, measurement noise and the A,B and C matrices of
the system dynamics model



Example State Equations and Noise
Assumptions

A=[1, 1.-.02, -.01

01, 1, -01, O

2, .01, 1, 1

-.01,.02,-.01, 1];

B=[0,1,0,0];
Operator Observed (less
trusted):
C=[1,0,0,0];
Related States (unobserved by
operator, more trusted):

C2=[(0100;0010;0001]

K1=0.25; process noise
variances for each of the states

K2 =0.25; sensor noise
variances for each of the
measurements



Simulated System Operation for Regulation of a

Measurement
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REPLAY ATTACK TO CAUSE
ERRONEOUS OPERATOR ACTION
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ATTACK TO ADJUST REGULATOR
OBJECTIVES AND MASK THE PHYSICAL
CHANGE THROUGH REPLAY ATTACK ON
OPERATOR DISPLAYS
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Metrics

As a practical matter, cyber attack detection/response for mission critical
physical systems will need to be tuned to have virtually no model-
predicable false alarms for initiating significant responses, such as shut
down (for emphasis referred to as “zero” model-based false alarms), while
also promising “zero” missed detections.

Equivalently, sensor accuracy and corresponding detection algorithms
must permit use of attack detection thresholds that are greatly distanced
from both normal system operation and system operation regions that
result in unacceptable consequences

In order to determine detection thresholds and the corresponding false
alarm and missed detection rates, operational data collections would need
to be used to build upon model-based analysis, serving to account for
shortfalls in system models.

Detection algorithms and criteria that cause delays in initiating responses
must account for how long a system can operate in a region of the state
space before an important response is too late



Sliding Window Detection

For our example, a sliding window detection algorithm is used for integrating over the time series
of the “N” most recent individual point detections, each based on a threshold test

— Acyber attack is declared upon detecting m threshold violations over N detection opportunities

— Increasing m and N serve to reduce over-reaction to individual estimates resulting in threshold violations,
thereby reducing false alarm rate at the expense of potentially increasing the missed detection rate and
delaying detections

More specifically, given a time series of individual point detections, determined by comparinga
time series of the most recent state estimates, x;, X,, X5....Xy to an alarm threshold, th

If x> th, increment g by 1, where:

N
g= E ;xi> th)

i=1

For the example, within a time series consisting of N state estimates each compared to threshold
criterionth, if g > N/2 acyber attack is declared.
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Design Sensitivity Analysis

Decision Thresholds vs sensor accuracy — ~20-30% change in
threshold value over sensor accuracies (variances) ranging from
0.25-1

Decision Thresholds vs selection of states used for inferring critical
state(s) values — ~200-300% change in threshold value over state
measurement range of [0,1,1,1] to [0,1,0,0]

Decision Thresholds vs delays in detection (length of sliding
window)-10-20% change in threshold value over a 10 — 30 second
sliding window detector

Design range of threshold values comparing the worst case (lowest
thresholds) and best case designs (highest thresholds) for achieving
“zero” model-based false alarm/missed detection rates — ~400%
change from worst accuracy, least states measured, longest sliding
window detector to best accuracy, most states measured, shortest
sliding window detector



Real World Example: Gas Turbine

RPM - 3600

Measurement Error — 1-2 rpm ¢/

Data Interval - 40msec ¢/

Trip Threshold — ~10% rpm deviation ¢/

First estimate of augmenting sensor-based Trip Threshold -
~1% rpm deviation ¢/

Suitable spacing between attack detection thresholds and
operating in regions with significant adverse consequences,
permitting “zero” model-based false alarms/missed
detections ¢/

Multiple triplex sensors — A/D converters and processor
interfaces on a single board ¥



Relating Detection Thresholds, System
Responses, and Acceptable False Alarm Rates

_ T(i) — Detection FA(i) — Acceptable False
A Threshold Values Alarm Rates
REGION 4 - System Shut Down FA(4)
T(3)
REGION 3 — Automatic Restorals FA(3)

T (2) s
REGION 2 — Operator Engaged for Conducting Manual Checks  FA(2)

T(1)|
REGION 1 — System Normal




ATTACK ON CRITICAL SENSORS’
OUTPUTS

Design Pattern Based Upon Cyber Security
Extension of:

T. Kobayashi, D. L. Simon, Application of a Bank
of Kalman Filters for Aircraft Engine Fault
Diagnostics, Turbo Expo 2003, American
Society of Mechanical Engineers and the
International Gas Turbine Institute, June, 2003



Simplified Block Diagram for Sensor Attack Detection
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Simplified Block Diagram for Sensor Attack Detection
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Rapid Post-Attack Sensor Noise Analysis to
Confirm Faulty Sensor Assessment
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Conclusions

Data consistency checking design patterns can potentially make an
important contribution to cyber security of physical systems

Past work in fault-tolerant and automatic control systems provides
a starting point regarding solutions and knowledge to draw upon,
although specific solution designs will need to be implemented in a
manner that is sensitive to the issues surrounding cyber attacks

Development of actual solutions will require system activities in:
e System dynamics modeling
e State estimation

e Security-focused analysis regarding attack scenarios, protection needs, more
trusted and less trusted components, and sensors and measurement
characterization

e Distributed security solution designs that serve to complicate, and hopefully
deter, attacks

e In-field data collections regarding selection of detection thresholds and
responses to achieve acceptably low false alarm/missed detection rates
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