

Cryptographic Module Validation Program

Where security starts

Randall J. Easter

Director, NIST CMVP

March 03, 2006

Agenda

- FIPS 140-2: Security Requirements for Cryptographic Modules
- Testing Cryptographic Modules
- Maintaining Validation Status
- Additional Information and Links

Cryptographic Module Validation Program (CMVP)

- Purpose: to test and validate cryptographic modules to FIPS 140-1 and FIPS 140-2 and other cryptographic algorithm standards
- Established by NIST and the Communications Security Establishment (CSE) in 1995
- Original FIPS 140-1 requirements and updated FIPS 140-2 requirements developed with industry input
- FIPS 140-3 under development

Applicability of FIPS 140-2

- U.S. Federal organizations must use validated cryptographic modules
- GoC departments are recommended by CSE to use validated cryptographic modules
- International recognition
 - ISO/IEC 19790 Security Requirements for Cryptographic Modules
- With the passage of the <u>Federal Information Security</u> <u>Management Act of 2002</u>, there is no longer a statutory provision to allow for agencies to waive mandatory Federal Information Processing Standards.
 - Also includes enforcement mechanisms

The Importance of Testing: Buyer Beware!

- Does the product do what is claimed?
- Does it conform to standards?
- Was it independently tested?
- Is the product secure?

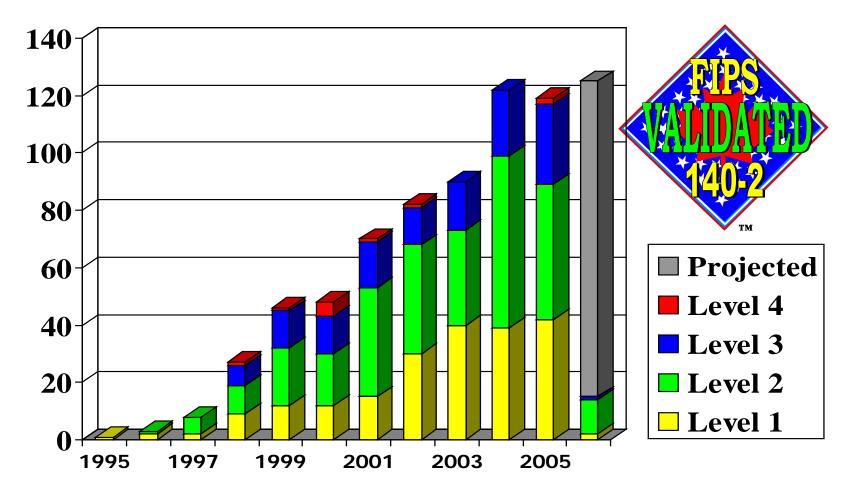
Benefits! ... Making a Difference

Cryptographic Modules Surveyed (during testing)

- 48.8% Security Flaws discovered
- 96.3% FIPS Interpretation and Documentation Errors
- Algorithm Validations (during testing) (DES, Triple-DES, DSA and SHA-1)
 - 26.5% Security Flaws
 - 65.1% FIPS Interpretation and Documentation Errors
- Areas of Greatest Difficulty
 - Physical Security
 - Self Tests
 - Random Number Generation
 - Key Management

Using FIPS Validated Cryptographic Modules

- Cryptographic modules *may* be embedded in other products
 - Applicable to hardware, software, and firmware cryptographic modules
 - Must use the validated version and configuration
 - e.g. software applications, cryptographic toolkits, postage metering devices, radio encryption modules
- Does <u>not</u> require the validation of the larger product
 - Larger product is <u>deemed compliant to requirements</u> of FIPS 140-2


CMVP Status

- Continued record growth in the number of cryptographic modules validated
 - Over >630 Validations representing over 1000 modules
- All four security levels of FIPS 140-2 represented on the Validated Modules List
- Over 150 participating vendors
- New NVLAP accredited Cryptographic Module Testing Laboratories

FIPS 140-1 and FIPS 140-2 Validation Certificates by Year and Level

(January 31, 2006)

Participating Vendors

(December 31, 2005 – 157 Total)

3Com Corporation 3e Technologies International, Inc. **3S Group Incorporated** ActivCard ActivCard Inc., Atmel, Inc. and MartSoft, Inc. Admiral Secure Products, Ltd. **AEP Systems** Airespace, Inc. AirMagnet, Inc. AKCode, LLC Aladdin Knowledge Systems, Ltd. Alcatel Algorithmic Research, Ltd. **Altarus Corporation** Aruba Wireless Networks, Inc. Atalla Security Products of Hewlett Packard Corporation Attachmate Corp. Axalto Avaya, Inc. Backbone Security.com, Inc. **Blue Ridge Networks Bluefire Security Technologies** Bluesocket. Inc. **Bodacion Technolgies** C4 Technology, Inc. **Carrier Access Corporation and TeamF1** Caymas Systems, Inc. Certicom Corp. Check Point Software Technologies Ltd. Chunghwa Telecom Co., Ltd **Telecommunications** Labs

CipherOptics, Inc. Cisco Systems, Inc. Colubris Networks, Inc. **Communications Devices**, Inc. **Control Break International Corp.** Corsec Security, Inc. Cranite Systems, Inc. **Credant Technologies Corporation** Cryptek Inc. CTAM. Inc. **CyberGuard Corporation** D'Crypt Pte Ltd. Dallas Semiconductor, Inc. Decru, Inc. Dreifus Associates Limited Inc. **ECI Systems & Engineering** E.F. Johnson Co. Encotone Ltd. **Entrasys Networks Entrust Inc.** Entrust CygnaCom Eracom Technologies Group, Eracom Technologies Australia, Pty. Ltd. **F-Secure Corporation** Fortinet, Inc. Fortress Technologies, Inc. Forum Systems, Inc. Francotyp-Postalia Funk Software, Inc. Gemplus Corp. Gemplus Corp. and ActiveCard Inc.

General Dynamics Decision Systems Giesecke & Devrient Good Technology **GTE Internetworking** Hasler, Inc. **High Density Devices AS IBM®** Corporation iDirect Technologies IMAG Technologies, Inc. **Information Security Corporation** Intel Network Systems, Inc. **IP Dynamics**, Inc. ITServ Inc. ITT JP Mobile, Inc. Juniper Networks, Inc. Kasten Chase Applied Research **L-3 Communication Systems** Lipman Electronic Engineering Ltd. Litronic, Inc. Lucent Technologies M/A-Com, Inc. **Meganet** Corporation **Microsoft Corporation Mitsubishi Electric Corporation** Motorola, Inc. Mykotronx. Inc National Semiconductor Corp. nCipher Corporation Ltd. Neopost **Neopost Industrie**

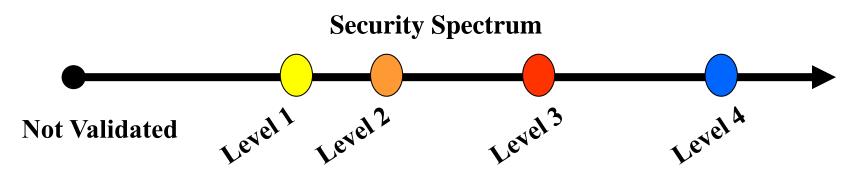
Participating Vendors

(December 31, 2005 – 157 Total)

Neopost Ltd.

Neopost Online NeoScale Systems, Inc. Netscape Communications Corp. NetScreen Technologies, Inc. Network Security Technology (NST) Co. Nokia Enterprise Mobility Systems Nortel Networks Novell. Inc. **Oberthur Card Systems** Oceana Sensor Technologies, Inc. **Oracle Corporation** Palm Solutions Group PalmSource, Inc. PC Guardian Technologies, Inc. **PGP** Corporation Phaos Technology Corporation Pitney Bowes, Inc. **Pointsec Mobile Technologies** Prism Payment Technologies (Pty) Ltd Priva Technologies, Inc. PrivyLink Pte Ltd PSI Systems, Inc. Real Time Logic, Inc. Realia Technolgies S.L. **RedCannon Security RedCreek Communications** ReefEdge, Inc. **RELM Wireless Corporation Research In Motion** Rockwell Collins, Inc. **RSA Security**, Inc. SafeNet. Inc. SafeNet. Inc. and Cavium Networks SchlumbergerSema

Schweitzer Engineering Laboratories, Inc. Secure Systems Limited Security-e-Doc, Inc. Sigaba Corporation Simple Access Inc. SkyTel Corp. Snapshield, Ltd. SonicWall. Inc. SPYRUS, Inc. SSH Communications Security Corp. Stamps.com Standard Networks, Inc. StoneSoft Corporation Sun Microsystems, Inc. Symantec Corporation Symbol (Columbitech) **Technical Communications Corp. Telkonet Communications Inc. Thales e-Security** TimeStep Corporation Transcrypt International Tricipher, Inc. Trust Digital, LLC **Tumbleweed Communications Corp.** Utimaco Safeware AG Voltage Security, Inc. V-ONE Corporation, Inc. Vormetric, Inc. Wei Dai WinMagic Incorporated WRQ, Inc.


FIPS 140-2: Security Areas

- 1. Cryptographic Module Specification
- 2. Cryptographic Module Ports and Interfaces
- 3. Roles, Services, and Authentication
- 4. Finite State Model
- 5. Physical Security
- 6. Operational Environment
- 7. Cryptographic Key Management
- 8. EMI/EMC requirements
- 9. Self Tests
- 10. Design Assurance
- 11. Mitigation of Other Attacks

FIPS 140-2: Security Levels

- Level 1 is the lowest, Level 4 most stringent
- Requirements are primarily cumulative by level
- Overall rating is lowest rating in all sections
- Validation is applicable when a module is configured and operated in accordance with the level to which it was tested and validated

Physical Security

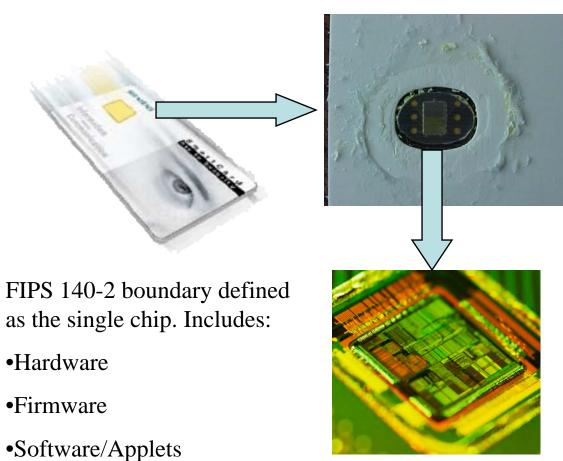
- Single-Chip Cryptographic Module
- Testing
 - Level 1: Production Grade
 - Level 2: Evidence of Tampering
 - Level 3: Hard Opaque Tamper-Evident Coating
 - Level 4: Hard Opaque Removal Resistant Coating

CMVP Testing and Validation Flow

Vendor	CMT Lab	CMVP NIST and CSE	User
Designs and Produces Hardware • Software • Firmware	Tests for Conformance Derived Test Requirements	Validates	Specifies and Purchases
Define Boundary Define Approved Mode of Operation Security Policy	Algorithm Testing Documentation Review Source Code Review Operational and Physical Testing	Review Test Results Ongoing NVLAP Assessment Issue Certificates NIST Cost Recovery Fee	Security and Assurance Applications or products with embedded modules

Communications Security Centre de la sécurité Establishment des télécommunications Canada

Cryptographic Module Specification


- Define the Cryptographic Module Boundary
 - Integrated Circuit
 - Integrated Circuit Plus Plastic Housing
- Define Approved Mode of Operation
- Provide Description of the Module
 - Hardware
 - Software
 - Firmware

Any modification, addition and/or deletion of a component or part invalidates the validated module.

CMVP Testing: Process

- CMVP
 - Conformance testing of cryptographic modules using the Derived Test Requirements (DTR)
 - Not <u>evaluation</u> of cryptographic modules. Not required are:
 - Vulnerability assessment
 - Design analysis, etc.
- Laboratories
 - Test submitted cryptographic modules
- NIST/CSE
 - Validate tested cryptographic modules

FIPS140-2 Testing: Primary Activities

Documentation Review

– (e.g., Security Policy, Finite State Model, Key Management Document)

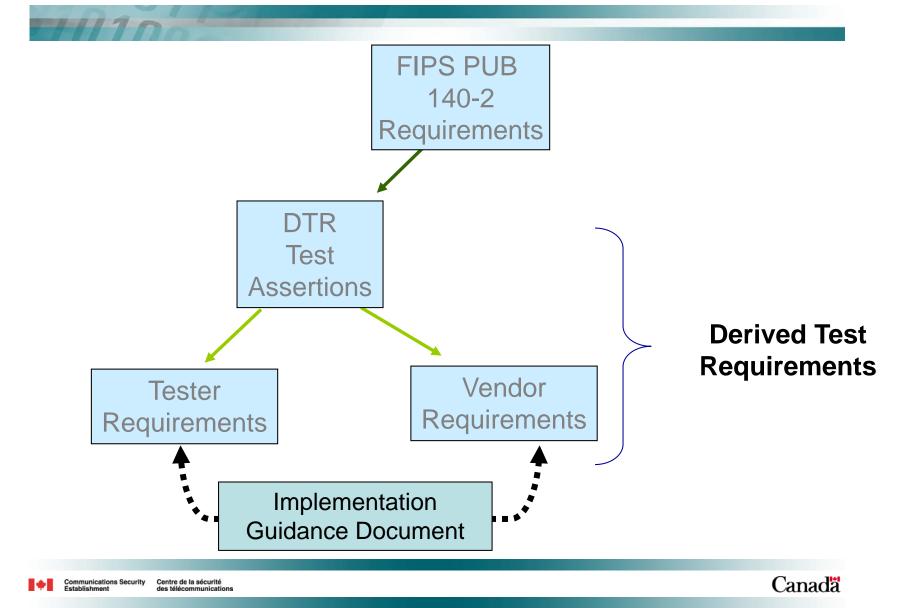
• Source code Analysis

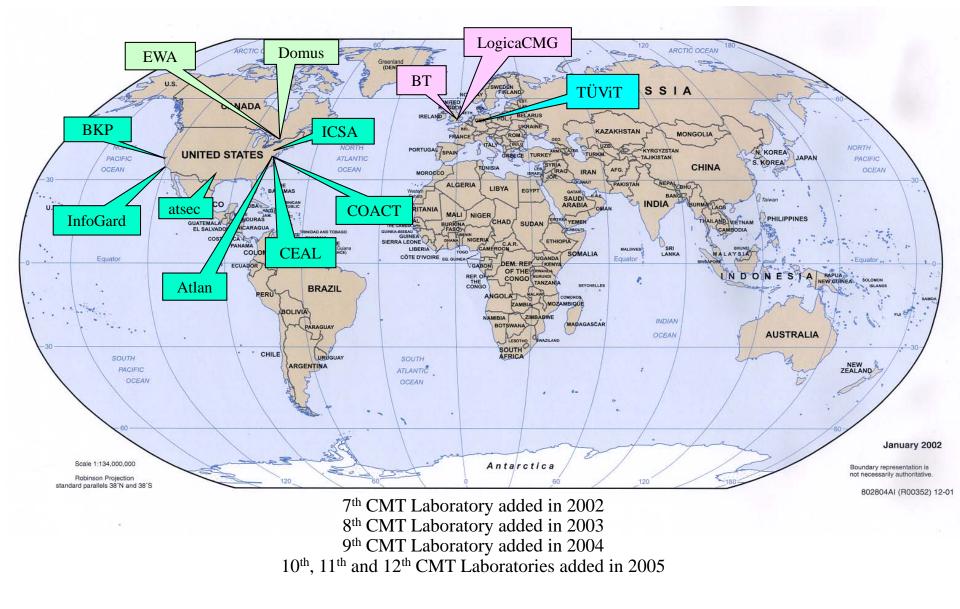
- Annotated Source Code
- Link with Finite State Model

Testing

- Physical Testing
- FCC EMI/EMC conformance
- Operational Testing
- Algorithms and RNG Testing

Derived Test Requirements


- Cryptographic module testing is performed using the Derived Test Requirements (DTR)
- Assertions in the DTR are directly traceable to requirements in FIPS 140-2
- All FIPS 140-2 requirements are included in the DTR as assertions
 - Provides for one-to-one correspondence between the FIPS and the DTR
- Each assertion includes requirements levied on the
 - Cryptographic module vendor
 - Tester of the cryptographic module



Cryptographic Module Testing (CMT) Laboratories

- Twelve National Voluntary Laboratory Accreditation Program (NVLAP) accredited testing laboratories
 - True independent 3rd party accredited testing laboratories
 - <u>Cannot</u> test and provide design assistance

CMT Accredited Laboratories

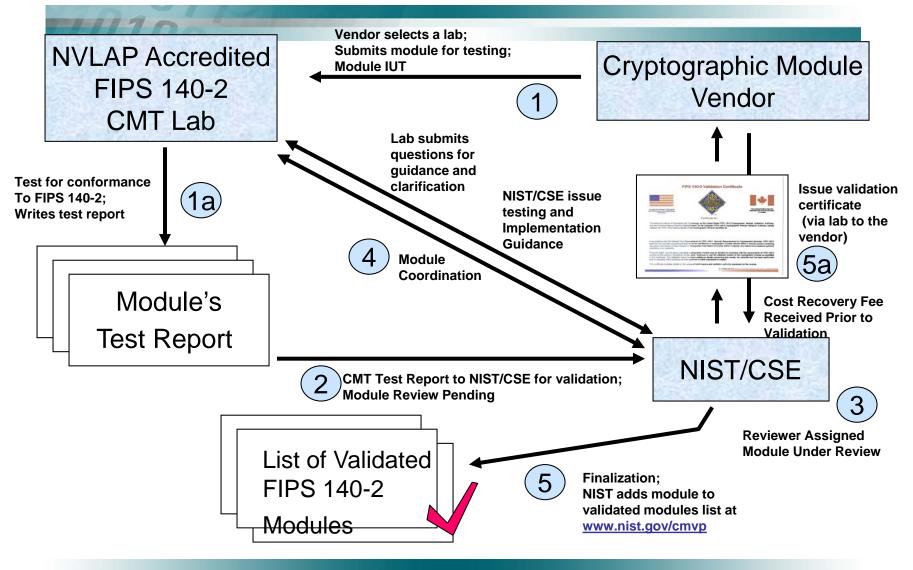
Revalidation: No Security Relevant Changes

- FIPS 140-2: An *updated* version of a previously validated cryptographic module
 - Change to module does not affect FIPS 140-2 security relevant items
 - Cryptographic Module Testing (CMT) laboratory verifies vendor claims and submits letter to validation authorities (NIST and CSE)
 - CMVP updates website and no certificate is issued
- Assumes same CMT laboratory performed the original full testing.

Revalidation: Security Relevant Changes (<30%)

- Modifications to hardware, software, firmware affect *less than* 30% of the *operational* security relevant requirements
- The laboratory tests:
 - The changed assertions (requirements)
 - All assertions listed in the regression test suite
 - New and updated assertions
- Revised documentation (e.g., security policy) also submitted
- Assumes same CMT laboratory performed the original full testing.

Revalidation: Security Relevant Changes (>30%)


- Modifications to hardware, software, firmware affect *greater than 30%* of the security relevant assertions
 - The CMT laboratory performs full validation testing
- Full validation required for...
 - Overall security level change
 - Physical embodiment change

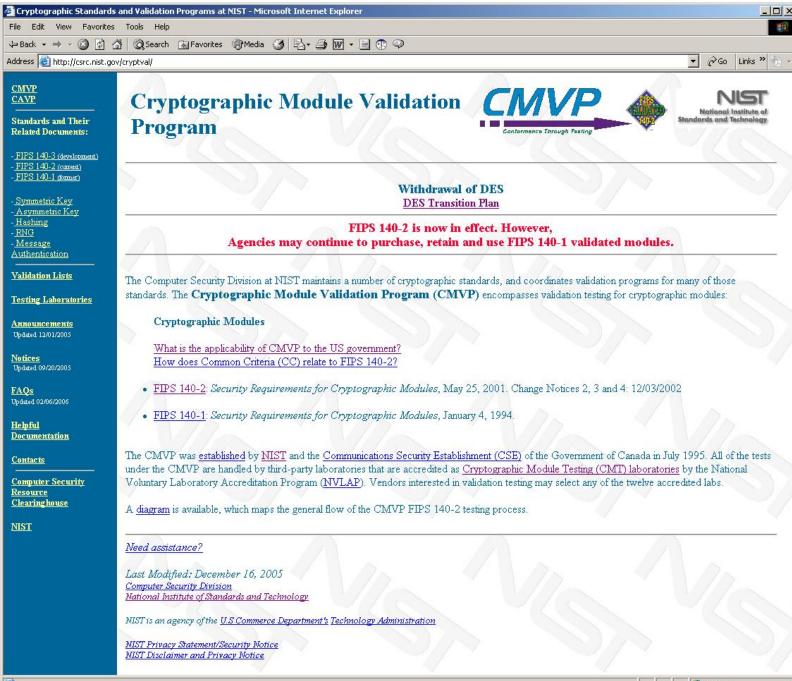
The Cryptographic Algorithm Validation System

- Designed and developed by NIST
- Supplied to NVLAP accredited testing laboratories
- Provides uniform validation testing for *Approved* cryptographic algorithms
- Provides thorough testing of the implementation
- Types of errors found by CAVS range from pointer problems to incorrect behavior of the algorithm implementation.

CAVS Testing

Currently provides validation testing for

- Data Encryption Standard (DES)
- Triple Data Encryption Standard (TDES)
- Advanced Encryption Standard (AES)
- Digital Signature Standard (DSS)
- SHA1, SHA224, SHA256, SHA384, SHA512
- Random Number Generator (RNG)
- RSA Signature Algorithm
- Keyed Hash Message Authentication Code (HMAC)
- Counter with Cipher Block Chaining (CBC) MAC (CCM)
- Elliptic Curve Digital Signature Algorithm (ECDSA)



http://www.nist.gov/cmvp

- FIPS 140-1 and FIPS 140-2
- Derived Test Requirements (DTR)
- Annexes to FIPS 140-2
- Implementation Guidance
- Points of Contact
- Laboratory Information
- Validated Modules List
- Special Publication 800-23

reaster@nist.gov

• Sharon Keller – Director, CAVP, NIST skeller@nist.gov

<u>CSE</u>

• Jean Campbell – Technical Authority, CMVP, CSE jean.campbell@CSE-CST.GC.CA