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Abstract 

Combination strategies are test-case selection methods where test cases are identified by combining values 
of the different test ob ject input parameters based on some combinatorial strategy. This survey presents 
15 different combination strategies, and covers more than 30 papers that focus on one or several combina
tion strategies. We believe this collection represents most of the existing work performed on combination 
strategies. This survey describes the basic algorithms used by the combination strategies. Some properties 
of combination strategies, including coverage criteria and theoretical bounds on the size of test suites, are 
also included in this description. 

This survey paper also includes a subsumption hierarchy that attempts to relate the various coverage 
criteria associated with the identified combination strategies. Finally, this survey contains short summaries 
of all the papers that cover combination strategies. 

1 Introduction 

Combination strategies define ways to select values for individual input parameters and combine them to 
form complete test cases. A literature search has revealed 15 different combination strategies described 
through more than 30 papers published between 1985 and 2003. This survey is an attempt to collect all this 
knowledge in one single place and form a basis for comparisons among the combination strategies. 

∗ This research is funded in part by KK-stiftelsen and Enea Systems AB 
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Year Authors Ref. Method 
1985 Mandl [1] OA, Rand, AC 
1988 Ostrand, Balcer [2] CP 
1990 Toczki, Kocsis, Gyimóthy, 

Dányi, Kókai 
[3] CP 

1992 Brownlie, Prowse, Phadke [4] OA 
1993 Piwowarski, Ohba, Caruso [5] Rand 
1994 Ammann, Offutt [6] BC, EC, AC 
1994 Burroughs, Jain, Erickson [7] AETG, PPW, AC, BC 
1995 Heller [8] DoE 
1996 Cohen, Dalal, Parelius, Patton [9] AETG , Rand 
1996 Williams, Probert [10] OA 
1997 Cohen, Dalal 

Fredman, Patton 
[11] AETG, BC 

Rand, AC 
1997 Dunietz, Ehrlich, Szablak, 

Mallows, Iannino 
[12] Rand, AC, OA 

1997 Yin, Lebne-Dengel, Malayia [13] AntiRand 

Table 1: A chronological overview of which combination strategies are mentioned in different papers. Bold 
indicates what we determined to be seminal work, where a combination strategy was introduced. 

Table 1 lists the primary papers covered in this survey, in order of publication, and shows which com
bination strategies discussed in each paper. Combination strategies shown in bold face are thought to 
have originated in the associated paper. We were not able to determine where Rand, AC, and DoE were 
introduced. 

Section 2 gives a brief background on testing in general and on the Category Partition method [2] in 
particular. The Category Partition method is a convenient place to start because it yields independent values 
for parameters and spawned much of the work in combination strategies. Section 3 start by explaining the 
coverage criteria usually associated with combination strategies then gives an overview of each combination 
strategy identified in this survey. To aid the reader we have structured the combination strategies into 
different groups based on different properties of the combination strategy algorithms. The overview of each 
algorithm includes an explanation of the algorithm. Whenever applicable, associated coverage criteria and 
theoretical bounds on the number of test cases are also included in the description. Section 4 compares the 
different combination strategies with respect to size of generated test suite. A new contribution of this paper 
is a subsumption hierarchy for the identified coverage criteria. It can be used to compare the combination 
strategies with respect to their associated coverage criteria. 

Section 5 summarizes each combination strategy paper. Special attention has been given to comparative 
studies among combination strategies. This section also includes publications of experience and lessons 
learned from applying combination strategies. Finally, section 6 summarizes the main contributions of this 
paper. 
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Year Authors Ref. Method 
1998 Burr, Young [14] AETG, BC 
1998 Kropp, Koopman, Siewiorek [15] ACoRand 
1998 Dalal, Mallows [16] OA, AETG, AC, CATS 
1998 Dalal, Jain, Karunanithi, 

Leaton, Lott 
[17] AETG 

1998 Lei, Tai [18] IPO 
1999 Dalal, Jain, Patton, 

Rathi, Seymour 
[19] AETG 

1999 Dalal, Jain, Karunanithi, 
Leaton, Lott, Patton, Horowitz 

[20] AETG 

1999 Hoffman, Strooper, White [21] k-bound, k-perim 
2000 Williams [22] CA, OA, IPO 
2000 Huller [23] IPO 
2001 Lei, Tai [24] IPO, AETG 
2001 Williams, Probert [25] -
2002 Williams, Probert [26] -

Table 1: (continued) A chronological overview of which combination strategies are mentioned in different
 
papers. Bold indicates what we determined to be seminal work, where a combination strategy was introduced.
 

Year Authors Ref. Method 
2002 Tai, Lei [27] IPO, AETG 
2002 Daley, Hoffman, Strooper [28] k-bound, k-perim 
2002 Kuhn, Reilly [29] -
2003 Berling, Runesson [30] DoE 
2003 Grindal, Lindstrom, 

Offutt, Andler 
[31] BCAETG, EC, BC, AC, AETG, OA 

Table 1: (continued) A chronological overview of which combination strategies are mentioned in different 
papers. Bold indicates what we determined to be seminal work, where a combination strategy was introduced. 
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2 Background 

Testing, loosely considered to be the dynamic execution of test cases, consumes a significant amount of the 
resources in development projects [32, 33]. Thus, it is of great importance to investigate ways of increasing 
the efficiency and effectiveness in testing [34, 35, 36, 37, 38]. 

Several existing test methods (e.g. Equivalence Partitioning [32], Category Partition [2], and Domain 
Testing [33]) are based on the model that the input space of the test ob ject may be divided into subsets 
based on the assumption that all points in the same subset result in a similar behavior from the test object. 
This is called partition testing. Even if the partition test assumption is an idealization it has two important 
properties. First, it lets the tester identify test suites of manageable size by selecting one or a few test cases 
from each subset. Second, it allows test effectiveness to be measured in terms of coverage with respect to 
the partition model used. 

One alternative to partition testing is random testing, in which test cases are chosen randomly from some 
input distribution (such as a uniform distribution) without exploiting information from the specification 
or previously chosen test cases. Duran and Ntafos [39] gave results that under certain very restrictive 
conditions, random testing can be as effective as partition testing. They showed consistent small differences 
in effectiveness between partition testing methods and random testing. These results were interpreted in 
favor of random testing since it is generally less work to construct test cases in random testing since partitions 
do not have to be constructed. 

Hamlet and Taylor [40] later investigated the same question and concluded that the Duran/Ntafos model 
was unrealistic. One main reason was that the overall failure probability was too high. Hamlet and Taylor 
theoretically strengthened the case for partition testing but made an important point that partition testing 
can be no better that the information that defines the subdomains. Gutjahr [41] followed up on Hamlet and 
Taylor’s results and showed theoretically that partition testing is consistently more effective than random 
testing under realistic assumptions. 

More recent results have been produced that favor partition testing over random testing in practical cases. 
Reid [36] and Yin, Lebne-Dengel, and Malayia [13] both performed experiments with different partition 
testing strategies and compared them with random testing. In all cases random testing was found to be less 
effective than the investigated partition testing methods. 

A key issue in any partition testing approach is how partitions should be identified and how values should 
be selected from them. In early partition test methods like Equivalence Partitioning (EP) [32] and Boundary 
Value Analysis (BVA) [32], parameters of the test problem are identified. Each parameter is then analyzed 
in isolation to determine suitable partitions of that parameter. Support for identifying parameters and their 
partitions from arbitrary specifications is rather limited in EP and BVA. Ostrand and Balcer proposed the 
Category Partition (CP) method partially to address this problem [2]. 

2.1 Category Partition 

The category partition method [2] consists of a number of manual steps by which a natural language speci
fication is systematically transformed into an equivalence class model for the parameters of the test object. 
Figure 1 shows the steps of the category partition method. 

Constraints allow the tester to decrease the size of the test suite. Even with constraints, the number of 
test frames generated by all combinations can be combinatorial (

fN 
i=1 vi, where vi is the number of values 
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1.	 Identify functional units that may be tested separately.
 
For each functional unit, identify parameters and environment variables
 
that affect the behavior of the functional unit.
 

2.	 Identify choices for each parameter and environment individually. 
3.	 Determine constraints among the choices. 
4.	 Generate all combinations, so called test frames, of parameter choices
 

that satisfy the constraints.
 
5.	 Transform the test frames into test cases by instantiating the choices. 

Figure 1: Overview of the steps of the category partition method 

for each one of the N parameters). Combination strategies can be used to decrease the number of test cases 
in the test suite. 

3	 Combination Strategies - Methods 

Combination strategies is a class of test-case selection methods where test cases are identified by choosing “in
teresting” values1, and then combining those values of test ob ject parameters. The values are selected based 
on some combinatorial strategy. Some combination strategies are based on techniques from experimental 
design. 

This section first explains the different coverage criteria, normally associated with combination strategies 
and then briefly describes the combination strategies that were identified in the literature. The combination 
strategies have been organized into different classes based on the amount of randomness of the algorithm 
and according to how the test suites are created. Figure 2 shows an overview of the classification scheme. 
The combination strategies labeled non-deterministic all depend to some degree on randomness. A property 
of these combination strategies is that the same input parameter model may lead to different test suites. 
The simplest non-deterministic combination strategy is pure random selection of test cases. The group of 
non-deterministic combination strategies also include two heuristic methods, CATS and AETG. 

The deterministic combination strategies group is further divided into three subgroups, instant, iterative, 
and parameter-based. All of these combination strategies will always produce the same result from a specific 
input parameter model. The two instant combination strategies, Orthogonal Arrays (OA) and Covering 
Arrays (CA), produce the complete test suite directly. The largest group of combination strategies is 
iterative. They share the property that the algorithms generate one test case at a time and adds it to the 
test suite. Each Choice (EC), Partly Pair-Wise (PPW), Base Choice (BC), All Combinations (AC), and 
Anti-random (AR) all belong to the iterative combination strategies. The parameter-based combination 
strategy, In Parameter Order (IPO), starts by creating a test suite for a subset of the parameters in the 
input parameter model. Then one parameter at a time is added and the test cases in the test suite are 
modified to cover the new parameter. Completely new test cases may also need to be added. 

1The term “interesting” may seem insufficiently precise and also a little judgmental. However, it appears frequently in the 
literature, so is also used in this paper. There are many ways to decide which values are “interesting” and some of the combination 
strategies discuss criteria for making those choices. In this paper, “interesting values” are whatever values the tester decides to 
use. 
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Figure 2: Classification Scheme for Combination Strategies 

The third main group of combination strategies, compound, include all strategies in which two or more 
combination strategies are used together. Two such strategies from the literature are used to illustrate the 
concept. 

3.1 Coverage Criteria for Combination Strategies 

Like many test-case selection methods, combination strategies are based on coverage. In the case of combi
nation strategies, coverage is determined with respect to the values of the parameters of the test object that 
the tester decides are interesting. The simplest coverage criterion, i.e., each-used coverage, does not take 
into account how interesting values of different parameters are combined, while the more complex coverage 
criteria, such as pair-wise coverage, is concerned with (sub-)combinations of interesting values of different pa
rameters. The following subsections define the coverage criteria satisfied by combination strategies included 
in this paper. 

Each-used (also known as 1-wise) coverage is the simplest coverage criterion. 100% each-used coverage 
requires that every interesting value of every parameter is included in at least one test case in the test suite. 

100% Pair-wise (also known as 2-wise) coverage requires that every possible pair of interesting values of 
any two parameters are included in some test case. Note that the same test case may cover more than one 
unique pair of values. 

A natural extension of pair-wise (2-wise) coverage is t-wise coverage, which requires every possible com
bination of interesting values of t parameters be included in some test case in the test suite. t-wise coverage 
is formally defined by Williams and Probert [25]. 

A special case of t-wise coverage is N -wise coverage, where N is the number of parameters of the test 
object. N -wise coverage requires all possible combinations of all interesting values of the N parameters be 
included in the test suite. 
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The each-used, pair-wise, t-wise, and N -wise coverage criteria are purely combinatorial and do not use 
any semantic information. More coverage criteria can be defined by using semantic information. Cohen et 
al. [11] indicate that valid and error parameter values should be treated differently with respect to coverage. 
Normal values lie within the bounds of normal operation of the test object, and error values lie outside of the 
normal operating range. Often, an error value will result in some kind of error message and the termination 
of the execution. To avoid one error value masking another Cohen et al. suggest that only one error value 
of any parameter should be included in each test case. This observation was also made and explained in an 
experiment by Grindal et al. [31]. 

By considering only the valid values, a family of coverage criteria corresponding to the general t-wise 
coverage criteria can be obtained. For instance, 100% each valid used coverage requires every valid value of 
every parameter be included in at least one test case in which the rest of the values also being valid. Cor
respondingly, 100% t-wise valid coverage requires every possible combination of valid values of t parameters 
be included in some test case, and the rest of the values are valid. 

Error values may also be considered when defining coverage criteria. A test suite satisfies single error 
coverage if each error value of every parameter is included in some test case in which the rest of the values 
being valid. 

A special case of normal values was used by Ammann and Offutt [6] to define base choice coverage. First, 
a base test case is identified by choosing the most frequently used value of each parameter. We assume here 
that the most frequently used value of each parameter is a normal value. 100% base choice coverage requires 
every interesting value of each parameter be included in a test case in which the rest of the values being 
base values. Further, the test suite must also contain the base test case. 

3.2 Non-Deterministic Combination Strategies 

Non-deterministic combination strategies all share the property that chance will play a certain role in de
termining which tests are generated. This means two executions of the same algorithm with the same 
preconditions may produce different results. 

3.2.1 Heuristic Combination Strategies 

Heuristic t-wise (CATS) 
The CATS tool for generating test cases is based on a heuristic algorithm that can be custom designed to 
satisfy t-wise coverage. The algorithm was described by Sherwood [42] and a version of the algorithm that 
generates a test suite to satisfy pair-wise coverage is shown in figure 3. 

The heuristic nature of the algorithm makes it impossible to exactly calculate the number of test cases 
in a test suite generated by the algorithm. 

Heuristic t-wise (AETG) 
Burroughs, Jain, and Erickson [7] and Cohen, Dalal, Kajla, and Patton [43] report on the use of a tool 
called Automatic Efficient Test Generator (AETG), which contains an algorithm for generating all pair-wise 
combinations. Cohen et al. [9, 11] later described a heuristic greedy algorithm for achieving t-wise coverage, 
where t is an arbitrary number. This algorithm was implemented in the AETG tool. Figure 4 shows an 
instance of the algorithm that will generate a test suite to satisfy pair-wise coverage. 
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Assume test cases t1 − ti−1 already selected 
Let Q be the set of all possible combinations not yet selected 
Let U C be a set of all pairs of values of any two parameters that are 
not yet covered by the test cases t1 − ti−1 

A) Select ti by finding the combination that covers most pairs in U C . 
If more than one combinations covers the same amount select the 
first one encountered. 

Remove the selected combination from Q. 
Remove the covered pairs from U C . 

B) Repeat until U C is empty. 

Figure 3: CATS heuristic algorithm for achieving pair-wise coverage 

The number of test cases generated by the algorithm for a specific test problem is related to the number 
of candidates (k in the algorithm in Figure 4) for each test case. In general, larger values of k yield smaller 
numbers of test cases. However, Cohen et al. report that using values larger than 50 will not give any 
dramatic decrease in the number of test cases. 

The heuristic nature of the algorithm makes it impossible to theoretically calculate the number of test 
cases in a test suite generated by the algorithm. However, empirical results show similar behavior as OA, 

2i.e., O(v [31].max 

3.2.2 Random Combination Strategies 

Random (Rand) 
Creating a test suite by randomly sampling test cases from the complete set of test cases based on some 
input distribution (often uniform distribution) is an old idea with unclear origin. Duran and Ntafos [39] 
made an evaluation of random testing in 1984. In the scope of combination strategies, Mandl [1] may have 
been the first to mention the idea. Mandl states (without motivation) that a reasonable random selection 
would probably be about the same size as a test suite that simply takes the N variables in turn, and includes 
for each of them v test cases to cover the v interesting values of the variable. In 1997, Dunietz et al. [12] 
applied the random combination strategy with varying number of test cases. 

3.3 Deterministic Combination Strategies 

Deterministic combination strategies share the property that they produce the same test suite every time 
they are used. These strategies are divided into three subcategories: instant, iterative and parameter-based 
combination strategies. Instant combination strategies create the complete test suite all at once. Iterative 
combination strategies build up the test suite by adding one test case at a time based on what has already 
or not yet been covered. Parameter-based combination strategies build up the test suite by adding values 
to the test cases for one parameter at a time. 
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Assume test cases t1 − ti−1 already selected 
Let UC be a set of all pairs of values of any two parameters that are 
not yet covered by the test cases t1 − ti−1 

A) Select candidates for ti by 
1) Selecting the variable and the value included in most 

pairs in UC. 
2) Making a random order of the rest of the variables. 
3) For each variable, in the sequence determined by step two, 

select the value included in most pairs in UC. 
B) Repeat steps 1-3 k times and let ti be the test 

case that covers the most pairs in UC. Remove those pairs from UC. 

Repeat until UC is empty. 

Figure 4: AETG heuristic algorithm for achieving pair-wise coverage 

1 2 3 
3 1 2 
2 3 1 

Figure 5: A 3 × 3 Latin Square 

3.3.1 Instant Combination Strategies 

Sometimes a tester wants to include her favorite test cases in the test suite. With instant combination 
strategies this will not affect the final result. The same test suite will be selected by the combination 
strategy regardless if other some [other] test cases have already been preselected. 

Orthogonal Arrays (OA) 
Orthogonal Arrays is a mathematical concept that has been known for quite some time. The application 
of orthogonal arrays to testing was first introduced by Mandl [1] and later more thoroughly described by 
Williams and Probert [10]. 

The foundation of OA is Latin Squares. A Latin Square is an V ×V matrix completely filled with symbols 
from a set that has cardinality V . The matrix has the property that the same symbol occurs exactly once 
in each row and column. Figure 5 contains an example of a 3 × 3 Latin Square with the symbols {1, 2, 3}. 

Two Latin Squares are orthogonal if, when they are combined entry by entry, each pair of elements occurs 
precisely once in the combined square. Figure 6 shows an example of two orthogonal 3 × 3 Latin Squares 
and the resulting combined square. 

If indexes are added to the rows and the columns of the matrix, each position in the matrix can be 
described as a tuple < x, y, zi >, where zi represents the values of the < x, y > position. Figure 7 contains 
the indexed Latin Square from Figure 5 and Figure 8 contains the resulting set of tuples. The set of all 
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1 2 3 
3 1 2 
2 3 1 

1 2 3 
2 3 1 
3 1 2 

1, 1 2, 2 3, 3 
3, 2 1, 3 2, 1 
2, 3 3, 1 1, 2 

Figure 6: Two orthogonal 3 × 3 Latin Squares and the resulting combined square 

tuples constructed by a Latin Square satisfies pair-wise coverage. 

Coordinates 1 2 3 

1 1 2 3 
2 3 1 2 
3 2 3 1 

Figure 7: A 3 × 3 Latin Square augmented with coordinates
 

tuple Tuple < xyz > 

1 111 
2 123 
3 132 
4 212 
5 221 
6 233 
7 313 
8 322 
9 331 

Figure 8: Tuples from the 3 × 3 Latin Square that satisfies pair-wise coverage 

To illustrate how orthogonal arrays are used to create test cases, consider a test problem with three 
parameters a, b, and c, where three values have been chosen as interesting for a, two for b, and two for c. 
To create test cases from the orthogonal array tuples a mapping between the coordinates of the tuples and 
the parameters of the test problem must be established. Let each coordinate represent one parameter and 
the different interesting values of the parameter map to the different values of that coordinate. In the case 
of the example, map a onto x, b onto y, and c onto z. This mapping presents no problem for parameter a, 
but for parameters b and c there are more coordinate values than there are values. To resolve this situation, 
each test case that has a coordinate value without a corresponding interesting value needs to be changed. 
Consider tuple 7 in Figure 8. The value of coordinate z is 3 and only values 1 and 2 are defined in the 
mapping to parameter c. To create a test case from tuple 7, the undefined value should be replaced by an 
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arbitrarily defined value, which in this case is 1 or 2. Sometimes it is possible to replace undefined values in 
such a way that a test case can be removed. As an example of this consider tuple 6. The values for both y 
and z are undefined and so should be changed to valid values. Set y to 1 and z to 2 and the changed tuple 
is identical to tuple 4 and thus is not needed to include in the test suite. 

A test suite based on orthogonal arrays satisfies pair-wise coverage, even after undefined values have been 
replaced and possibly some duplicate tuples have been removed. This means that the approximate number 
of test cases generated by the orthogonal arrays combination strategy is v2 , where vmax = M axN 

max i=1vi, N 
is the number of parameters, and vi is the number of values of parameter i. Williams and Probert [10] give 
further details on how test cases are created from orthogonal arrays. 

Sloane has collected a large number of precalculated orthogonal arrays of various sizes and made them 
available on the Web2 . 

Covering Arrays (CA) 
Covering Arrays [22] is a refinement of orthogonal arrays. A property of orthogonal arrays is that they are 
balanced, which means that each parameter value occurs the same number of times in the test suite. If only 
t-wise (for instance pair-wise) coverage is desired the balance property is unnecessary and will make the 
algorithm less efficient. In a covering array that satisfies t-wise coverage, each t-tuple occurs at least once 
but not necessarily the same number of times. Another problem with orthogonal arrays is that for some 
problem sizes there does not exist enough orthogonal arrays to represent the entire problem. This problem 
is also avoided by using covering arrays. 

A covering array is constructed for a test problem from a set of building blocks: 

•	 O(k2, k + 1, k) is an orthogonal array with k2 rows and k + 1 parameters, which have at most k values 
each. 

•	 B(k2 − 1, k + 1, k, d) = O(k2 , k + 1, k) with the first row removed and with the columns used d 
times each consecutively. 

•	 R(k2 − k, k, k, d) = O(k2 , k + 1, k) with the k first rows and the first column removed and with the 
remaining columns used d times each consecutively. 

•	 I(c, d) is a matrix with c rows and d columns completely filled with “ones.” 

•	 N(k2 − k, k, d) is a matrix with k2 − k rows and k × d columns, which of which consists of k × d 
submatrices filled with “twos”, “threes”, etc. up to k. 

Depending on the size of the problem, these five building blocks are combined in different ways to create 
a test suite with pair-wise coverage over all parameters and parameter values. The number of test cases 
required to reach pair-wise coverage has a complexity of N2 + vmaxlog2vmax where N is the number of 
parameters and vmax is the maximum number of values of any one parameter. 

Both the algorithms for finding suitable building blocks and for combining these to fit a specific test 
problem have been automated. 

3.3.2 Iterative Combination Strategies 

Iterative combination strategies are those in which one test case at a time is generated added to the test 
suite. Thus, a tester may start the algorithm with an already preselected set of test cases. 

2URL: http://www.research.att.com/∼njas/oadir, page visited March 2004. 
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Each Choice (EC) 
The basic idea behind the Each Choice combination strategy is to include each value of each parameter in 
at least one test case. This is achieved by generating test cases by successively selecting unused values for 
each parameter. This strategy was invented by Ammann and Offutt [6], who also suggested that EC can 
result in an undesirable test suite since the test cases are constructed mechanically without considering any 
semantic information. 

It is clear from the definition of EC that it satisfies each-used coverage. Further, the number of test cases 
in an EC test suite is at least M axN 

i=1vi, where N is the number of parameters of the test problem and vi 

is the number of values of parameter i. 

Partly Pair-Wise (PPW) 
Burroughs, Jain, and Erickson [7] sketch a “traditional” combination strategy in which all pair-wise com
binations of the values of the two most significant parameters should be included, while at the same time 
including each value of the other parameters at least once. No details of the actual algorithm are given. 
Thus, it is impossible to assess the size of the generated test suite. However, it is clear that PPW satisfies 
each-used coverage. 

Base Choice (BC) 
The Base Choice (BC) combination strategy was proposed by Ammann and Offutt [6]. The essence of the 
idea behind BC was later described by Cohen et al. [43], and called “default testing.” The first step of BC 
is to identify a base test case. The base test case combines the most “important” value for each parameter. 
Importance may be based on any predefined criterion such as most common, simplest, smallest, or first. 
Ammann and Offutt suggest “most likely used.” Similarly, Cohen et al. call these values “default values.” 
From the base test case, new test cases are created by varying the values of one parameter at a time while 
keeping the values of the other parameters fixed on the values in the base test case. 

A test suite generated by BC satisfies each-used coverage since each value of every parameter is included 
in the test suite. If “most likely used” is used to identify the base test case, BC also satisfies the single 
error coverage criterion. The reason is that the base test case only consists of normal values and only one 
parameter at a time differs from the base test case. 

Ammann and Offutt state that satisfying base-choice coverage does not guarantee the adequacy of the 
test suite for a particular application. However, a strong argument can be made that a test suite that does 
not satisfy base-choice coverage is inadequate. 

A BC test suite has 1 + 
�N (vi − 1) test cases where N denotes the number of parameters of the test i=1 

problem and vi is the number of values of parameter i. 
A variant of BC was proposed by Burr and Young [14], which they called default testing. In their version 

all parameters except one contains the default value, and the remaining parameters contain a maximum or 
a minimum. This variant does not necessarily satisfy each-used coverage. 

All Combinations (AC) 
The All Combinations (AC) combination strategy algorithm generates every combination of values of the 
different parameters. The origin of this method is impossible to trace back to a specific person due to its 
simplicity. It is often used as a benchmark with respect to the number of test cases [1, 6, 11]. 

An AC test suite satisfies N -wise coverage and contains 
fN 

i=1 vi test cases, where N denotes the number 
of parameters of the test problem and vi is the number of values of parameter i. 
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Antirandom (AR) 
Antirandom testing was proposed by Malayia [44], and is based on the idea that test cases should be 
selected to have maximum “distance” from each other. Parameters and interesting values of the test object 
are encoded using a binary vector such that each interesting value of every parameter is represented by one 
or more binary values. Test cases are then selected such that a new test case resides on maximum Hamming 
or Cartesian distance from the already selected test cases. In the original description, the antirandom testing 
scheme is used to create a total order among all the possible test cases rather than attempting to limit the 
number of test cases. However, just like it is possible in random testing to set a limit to how many test 
cases that should be generated, the same applies to antirandom test cases. Antirandom testing can be used 
to select a subset of all possible test cases, while ensuring that they are as far apart as possible. 

k-boundary (k-bound) and k-perimeter (k-perim) 
With a single parameter restricted to values [L, .., U ], generating boundary values is easy. The tester can 
select the set {L, U } or {L, L + 1, U − 1, U}. With multiple domains two problems arise: (1) the number 
of points grows rapidly and (2) there are several possible interpretations. Hoffman, Strooper and White [21] 
defined the k-boundary and k-perimeter combination strategies to handle these problems. 

The 1-boundary of an individual domain is the smallest and largest values of that domain (L and U). 
The 2-boundary of an individual domain is the next to the smallest and the next to the largest values of that 
domain and so on (L + 1 and U − 1). 

The k-boundary of a set of domains is the Cartesian product of the k-boundaries of the individual domains. 
Thus, the number of test cases of the k-boundary is 2N , where N is the number of domains. In the general 
case, k-boundary does not satisfy any of the normal coverage criteria associated with combination strategies. 

The k-perimeter test suite can be constructed by (1) including the k-boundary test suite, (2) forming all 
possible pairs of test cases from the k-boundary test suite such that the two test cases in a pair only differ 
in one dimension, e.g., (L, L, L, L) and (U, L, L, L), (3) For each identified pair of test cases, adding to 
the k-perimeter test suite all points in between the two test cases of the pair i.e., {(L + 1, L, L, L), (L + 
2, L, L, L), ..., (U − 2, L, L, L), (U − 1, L, L, L)}. 

k-perimeter does not satisfy any coverage criterion in the general case, however, 1-perimeter satisfies 
each-used coverage. 

3.3.3 Parameter-Based Combination Strategies 

There is only one parameter-based combination strategy, In Parameter Order (IPO). 

In Parameter Order (IPO) 
For a system with two or more parameters, the in-parameter-order (IPO) combination strategy [18, 24, 27] 
generates a test suite that satisfies pair-wise coverage for the values of the first two parameters. The test 
suite is then extended to satisfy pair-wise coverage for the values of the first three parameters, and continues 
to do so for the values of each additional parameter until all parameters are included in the test suite. 

To extend the test suite with the values of the next parameter, the IPO strategy uses two algorithms. 
The first algorithm, horizontal growth, as shown in figure 9, extends the existing test cases in the test suite 
with values of the next parameter The second algorithm, vertical growth, as shown in figure 10, creates 
additional test cases such that the test suite satisfies pair-wise coverage for the values of the new parameter. 
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Algorithm I P O H (τ , Pi) 
{ 
Let τ be a test suite that satisfies pair-wise coverage for the values of
 
parameters p1 to pi−1.
 
Assume that parameter pi contains the values v1, v2, ..., vq
 

π = { pairs between values of pi and values of p1 to pi−1}

if (| τ |≤ q)
 
{
 

for 1 ≤ j ≤| τ |, extend the jth test in τ by adding value vj and
 
remove from π pairs covered by the extended test.
 

}
else 
{ 

for 1 ≤ j ≤ q, extend the jth test in τ by adding value vj and 
remove from π pairs covered by the extended test 
for q < j ≤| τ |, extend the jth test in τ by adding one value of pi 

such that the resulting test covers the most number of pairs in π, 
and remove from π pairs covered by the extended test 

}

}
 

Figure 9: IPO H – An algorithm for horizontal growth of a test suite by adding values for new parameters 
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Algorithm I P O V (τ , π) 
{
 
Let τ l be an empty set
 
for each pair in π
 
{ assume that the pair contains value w of pk, 1 ≤ k < i, and value u of pi
 

{
 
if (τ l contains a test case with ‘‘-’’ as the value of pk
 

and u and the value of pi)
 
modify this test case by replacing the ‘‘-’’ with w
 

else 
add a new test case to τ l that has w as the value of pk, u as 
the value of pi, and ‘‘-’’ as the value of every other parameter; 

}

τ = τ ∪ τ l
 

}
 

Figure 10: IPO V – An algorithm for vertical growth of a test suite by adding values for new parameters 

The nature of the IPO algorithms makes it difficult to theoretically calculate the number of test cases 
in a test suite generated by the algorithm. An algorithm that closely resembles the IPO algorithm was 
informally described by Huller [23]. 

3.4 Compound Combination Strategies 

When two or more combination strategies are used together they form a compound combination strategy. 
From the literature we have taken two examples to illustrate this. 

All or Random (ACoRand) 
One problem with the AC strategy is that it may generate infeasibly large test suites. For test problems with 
less that Y possible test cases the All or Random compound combination strategy generates all combinations 
of parameter values. If the number of possible test cases exceed Y , exactly Y test cases are (deterministically) 
pseudo-randomly selected. Kropp, Koopman, and Siewiorek [15] suggest 5000 as a suitable value for Y . 

An ACoRand test suite contains t = 
fN 

i=1 vi tests if t ≤ Y else Y test cases, where N denotes the number 
of parameters of the test problem, vi is the number of values of parameter i, and Y is a predefined maximum 
number of test cases. 

Base Choice and AETG (BCAETG) 
In a comparative study, Grindal, Lindström, Offutt, and Andler [31] show that the union of the test suites 
generated by BC and AETG is more effective in finding faults than each one individually. A more efficient 
alternative than taking the union may be to use the BC test suite as input to the generation of the AETG 
test suite. 
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4 Comparing Combination Strategies 

This section contains comparisons of combination strategies with respect to coverage criteria and size of 
generated test suite 

4.1 Subsumption 

A subsumption hierarchy for the combination coverage criteria reported in the literature is shown in Fig
ure 11. The definition of subsumption is from Rapps and Weyuker [45]: coverage criterion X subsumes 
coverage criterion Y iff 100% X coverage implies 100% Y coverage (Rapps and Weyukers’ original paper 
used the term inclusion instead of subsumption). We have included all known coverage criteria and in the 
light of subsumption tried to generalize them. 

N-wise 
(AC) 

;

 

t-wise 

; 

pair-wise 
(OA, AETG) 
(CA, IPO) 

; 

each-used 
(EC, PPW) 

   ' 

; 
base choice 
(bc valid) 
(BC) 

; 

single 
error 

N-wise 
valid 

; 

t-wise 
valid 

; 

pair-wise 
valid 

; 

each valid 
used(AR, k-bound ,k-perim)
 

Figure 11: Subsumption hierarchy for the coverage criteria related to combination strategies. Italics indicate 
combination strategies. 

The left, boxed-in, column of coverage criteria in Figure 11 represent criteria that do not use semantic 
information. N -wise coverage requires that every combination of all parameter values are included in the 
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test suite. “t-wise coverage” is used as a short form for every level of coverage from N − 1 down to 2. It is 
straightforward to see that j-wise coverage subsumes j − 1-wise coverage, for any j such that 2 ≤ j ≤ N . 

The right column contains the coverage criteria based only on valid values. For the same reason that 
j-wise coverage subsumes j − 1-wise coverage, it is easy to see that the j-wise valid coverage criterion 
subsumes the j − 1-wise valid coverage criterion. 

Note that i-wise coverage where 1 ≤ i ≤ N − 1 does not subsume i-wise valid coverage. This is easily 
demonstrated for the case where i = 2. Consider a three parameter problem, each with one valid value v 
and one erroneous value e. The following four combinations satisfy pair-wise coverage since each possible 
pair of values are included [(v, v, e), (v, e, v), (e, v, v), (e, e, e)]. However, pair-wise valid coverage is not 
satisfied since a pair of two valid parameters only count if the remaining parameters also are valid. Since 
every combination in the example contains at least one erroneous value, the achieved pair-wise valid coverage 
is 0%. N -wise coverage contains every possible combination so by definition it subsumes all other coverage 
criteria, including N -wise valid coverage. 

The single error coverage criterion represents a different class of coverage criteria. Although it is possible 
to generalize this idea into multiple error coverage this would introduce the possibility of masking, so it is 
omitted. At first it may seem that the single error coverage criterion would subsume the each-used coverage 
criterion. However, a counter example can be constructed. Consider a two-parameter problem where the 
first parameter has two valid values (v11 and v12) and one erroneous value (e11). The second parameter 
has one valid value (v21) and one erroneous value (e21). The two test cases [(e11, v21), (v11, e21)] satisfy 
the single error coverage criterion but not the each-used coverage criterion. 

An interesting property of base choice coverage, when assuming that all base choices are valid, is that it 
subsumes the each-used, each valid used, and single error coverage criteria. By definition, the base test case 
contains only valid values. From the definition of the base choice algorithm we get that all test cases differs 
from the base test case by the value of only one parameter. Further, we know that each interesting value 
of every parameter is included in some test case. Thus, the each-used criterion is subsumed. Further, every 
valid value of every parameter must appear in at least one test case in which the rest of the values are also 
valid, since the base test case contains only valid values. Thus, the each valid used criterion is subsumed. 
Finally, for the same reason, every invalid value of every parameter must occur in exactly one test case in 
which the rest of the values are valid. Thus, the single error criterion is subsumed. 

4.2 Size of Generated Test Suite 

Table 2 gives an overview of the sizes of the generated test suites. In some cases only approximate values 
are possible to give. The main reason for this is that those algorithms contain some degree of randomness 
why using the strategy on a test problem may yield different solutions. Also, only a subset of the described 
combination strategies is included in the table. There are several reasons. Some strategies, i.e., Rand and 
AntiRand, have no natural limit. Other strategies, i.e., k-bound and k-perim, differ greatly in the size of 
the generated test suite depending on the value of k. The algorithm of PPW is not described and finally 
CATS, having an element of randomness, is not investigated well enough to be described in terms of size of 
generated test suite. 

In addition to the formulas relating the size of the test problem to the size of the generated test suite, 
table 2 contains two example test problems one with few parameters and many values and one with many 
parameters with few values. 
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Combination 
Strategy 

Test Suite 
Size 

Example 1 
N = 8, Vi = 4 

Example 2 
N = 4, Vi = 8 

AETG ∼ V 2 
max ∼ 16 ∼ 64 

OA ∼ V 2 
max ∼ 16 ∼ 64 

CA ∼ N2 + Vmaxlog2Vmax ∼ 65 ∼ 23 
EC Vmax 4 8 
BC 1 + (Vi − 1) 25 29 
AC 

f 
Vi 65536 4096 

IPO ∼ V 2 
max ∼ 16 ∼ 64 

Table 2: Definite or approximate (∼) test suite sizes for a problem with N parameters and Vi values of the 
i:th parameter. Vmax is the largest Vi. 

5 Combination Strategies – Experience and Evaluations 

This section contains brief descriptions of the reported results relating to combination strategies. The papers 
described in this section are organized into eight groups according to their main focus (the combination 
strategy) in each paper. Within each group the papers are presented in chronological order. While we 
considered organizing all of the papers in chronological order, the number of papers (over 30!) convinced us 
that some sort of categorization was needed. 

5.1 General Focus 

The five papers in this group considered aspects that are general to all combination strategies. 

5.1.1 Piwowarski, Ohba and Caruso 

Piwowarski, Ohba, and Caruso [5] described how to successfully apply code coverage as a stopping criterion 
during functional testing. The authors formulated functional testing as a problem of selecting test cases 
from a set of possible test cases made up of all combinations of values of the input parameters. No algorithm 
was given to choose from this sample, but the authors discuss several methods informally. One method is to 
fix some parameter values based on some equivalence partition assumption. Another method is by random 
selection. 

5.1.2 Dunietz, Ehrlich, Szablak, Mallows and Iannino 

Dunietz, Ehrlich, Szablak, Mallows, and Iannino [12] examined the correlation between t-wise coverage and 
achieved code coverage. The investigation was based on a case study in which a maintenance system for an 
AT&T network was tested. For the purpose of comparison, two different models, both of which contained 
parameters and parameter partitions, were developed from the same specification. The models contained 
72 and 162 combinations, C. For each i, 1 ≤ i ≤ C, 10 abstract test suites were generated for each of the 
two models by random sampling without replacement. For every test suite, whether t-wise coverage with 
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Assume a test problem with three parameters a, b, and c, each 
with 2 possible values. 

Let tc1 = (a1, b1, c1), tc2 = (a2, b2, c1), and tc3 = (a1, b1, c2) 

The following nine pairs are covered by the three test cases: 
(a1, b1), (a1, c1), (b1, c1), (a2, b2), (a2, c1), (b2, c1), (a1, b1), (a1, c2), (b1, c2) 
Note that the pair (a1, b1) occurs twice. 

The following four pairs are not covered by the three test cases: 
(a1, b2), (a2, b1), (a2, c2), (b2, c2) 

2 − coverage = 8/12 = 75% 
2 − diversity = 8/9 = 89% 

Figure 12: An example of 2-coverage and 2-diversity of a test suite 

t = 1, 2, .., n was calculated. Further, ten real test suite instances of each abstract test suite were created 
by randomly selecting a value for each parameter partition in each test case. The resulting test cases were 
then executed and the code coverage achieved by the complete test suite was monitored. Two code coverage 
measures were used, block (statement) coverage and path coverage. 

The conclusion of this study was that a test suite that satisfies t-wise coverage, where t ≥ 2, obtains 
comparable results in terms of block (statement) coverage. Thus, pair-wise coverage has comparable ef
fectiveness as all-combination coverage with respect to block (statement) coverage. Larger values of t are 
required to achieve path coverage comparable to all-combination coverage. 

5.1.3 Dalal and Mallows 

Dalal and Mallows [16] provide a theoretical view of combination strategies. They provide a model for 
software faults in which faults are classified according to how many parameters (factors) need distinct values 
to cause the fault to result in a failure. A t-factor fault is triggered whenever the values of some t parameters 
are involved in triggering a failure. Each possible fault can be specified by giving the combination(s) of 
values relevant for triggering that fault. Further they provide two measures of efficiency of a combination 
strategy test suite. The t-wise coverage (in Dalal’s and Mallow’s words t-coverage) is the ratio of distinct 
t-parameter combinations covered to the total number of possible t-parameter combinations. 

The t-diversity is the ratio of distinct t-parameter combinations covered to the total number of t-parameter 
combinations in the test suite. Thus, this metric summarizes to what degree the test suite avoids replication. 
Figure 12 shows an example of these two metrics. 
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5.1.4 Kuhn and Reilly 

Kuhn and Reilly [29] have investigated 365 error reports from two large open source software projects, 194 
from the Mozilla web browser and 174 from the Apache web server. Their aim was to find answers to the 
following three questions: (1) Is there a point in which a test suite that satisfies t-wise coverage is nearly as 
effective as a test suite that satisfies t + 1 coverage? (2) What is the appropriate value for t for particular 
classes of software? (3) Does this value differ for different types of software and by how much? Their 
findings indicate that a test suite that satisfies 4-wise coverage would have found more than 95% of the 
errors. Further their results show that test suites that satisfies 2 − 6 -wise coverage have similar effectiveness 
for both studied applications. 

5.1.5 Grindal, Lindström, Offutt and Andler 

Grindal, Lindström, Offutt, Andler [31] present the results of a comparative evaluation of five combination 
strategies. One of the combination strategies investigated, Each Choice, satisfies the each-used criterion. 
Two of the investigated combination strategies, Orthogonal Arrays and Heuristic Pair-Wise (AETG), satisfy 
the pair-wise criterion. The fourth, All Values, generates all possible combinations of the values of the input 
parameters. The fifth, Base Choice, satisfies the each-used criterion but also uses some semantic information 
to construct the test cases. 

Except for All Values, which is only used as a reference point with respect to the number of test cases, 
the combination strategies were evaluated and compared with respect to the number of test cases, number of 
faults found, test suite failure density, and decision coverage achieved in an experiment that used five Unix 
command-like programs seeded with 131 faults. 

As expected, Each Choice finds the smallest amount of faults among the evaluated combination strategies. 
Base Choice performs as well, in terms of detecting faults, as the pair-wise combination strategies despite 
fewer test cases. Their analysis of the results showed that the performance of Each Choice is unpredictable 
in terms of which faults will be detected. Moreover, Base Choice and the pair-wise strategies target different 
types of faults to some extent. The conclusion of the experiment was that Base Choice should be used alone 
for less important software and together with Heuristic Pair-Wise in a compound combination strategy for 
more critical software. 

5.2 EP, BVA, CP and All Combinations 

The three papers in this group considered aspects of choosing “interesting values” by techniques such as 
equivalence partitioning (EP), boundary value analysis (BVA), category partitioning (CP), and choosing all 
combinations of values. 

5.2.1 Toczki, Kocsis, Gyimóthy, Dányi and Kókai 

Toczki, Kocsis, Gyimóthy, Dányi, and Kókai [3] described the state of SYS/3, a software development tool. 
SYS/3 contains work processes and tools for several activities during systems development, including project 
management and control, document handling, and testing. A test case generator called T-GEN has been 
implemented for the Category Partition method (CP) [2]. In addition to handling the input space, T-GEN 
may also be used to generate test cases based on the output space in a similar manner as the input space is 
handled in CP. Also, T-GEN can generate complete or partial test scripts under certain conditions. 

20 



5.2.2 Kropp, Koopman and Siewiorek 

Kropp, Koopman, and Siewiorek [15] describe the Ballista testing methodology, which supports automated 
robustness testing of off-the-shelf software components. Robustness was defined as the degree to which a 
software component functions correctly in the presence of exceptional inputs or stressful conditions. The 
underlying testing strategy is an ob ject-oriented approach based on parameter types and values instead of 
component functionality. The application of the Ballista methodology is demonstrated on several implemen
tations of the POSIX operating system C language API, which consists of 233 calls. Together the POSIX 
calls use 190 test values across 20 data types. The expected results of the different tests are limited to “does 
not crash”, “halts”, and “returns a value”. The simplest Ballista operating mode generates a test suite 
that has all combinations of all parameter values. If the total number of combinations is too large to be 
feasible, a deterministic pseudo-random sample is used. In the experiment reported in the paper, the limit 
for generating all combinations was set to 5000 test cases. Only seven of the POSIX functions tested require 
more than 5000 test cases. 

5.2.3 Daley, Hoffman and Strooper 

Daley, Hoffman, and Strooper [28] showed how combination strategies can be used to test Java classes. A 
main focus of their work was on automation of test generation and execution. This is accomplished with the 
“Roast” framework, which consists of four steps. (1) Generate creates the combinations of parameter values 
to be tested, that is, the input portions of each test case. (2) Filter removes invalid combinations from the 
test suite. (3) Execute drives the execution of the test cases. (4) Check compares the expected with the 
actual output. Apart from a parameter model of the test problem, the expected output is the only manual 
intervention. 

The combination generation includes two general strategies, both based on boundary value analy
sis. The tester provides information about the parameters, and for each parameter the different do
mains, or equivalence classes. The first strategy, k-boundary, is the Cartesian product of the bound
aries of the different parameters. The second strategy, k-perimeter, is the boundary plus “the points in 
between.” To illustrate the two strategies, assume a two parameter problem p1 and p2, with the inte
ger domains [0, 1, 2, 3, 4] and [5, 6, 7, 8, 9]. The 1-boundary test suite contains the four test cases 
[(0, 5), (0, 9), (4, 5), (4, 9)]. The 2-boundary test suite uses the values closest to the extreme points resulting 
in the test suite [(1, 6), (1, 8), (3, 6), (3, 8)]. The 1-perimeter test suite contains the following 16 test cases: 
[(0, 5), (0, 6), (0, 7), (0, 8), (0, 9), (4, 5), (4, 6), (4, 7), (4, 8), (4, 9), (1, 5), (2, 5), (3, 5), (1, 9), (2, 9), (3, 9), ]. 
These 16 tests form the complete perimeter. 

k-perimeter significantly reduces the number of test cases for test problems with few parameters and 
many values per parameter, whereas k-boundary is more efficient when the opposite occurs, when there are 
many parameters with few values. In cases where parameter values depend on each other, Roast contains 
facilities to represent one large test problem with dependencies as several smaller test problems without 
dependencies. 

5.3 Orthogonal and Covering Arrays 

The six papers in this group considered aspects of choosing combinations by organizing the values into 
arrays. 
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5.3.1 Mandl 

Mandl [1] may have been the first researcher who attempted to solve a testing problem with combination 
2strategies. His focus was on orthogonal arrays. He states that the size of a test suite generated by OA is v . 

Underlying this statement is the assumption that all parameters contain exactly v interesting values. Mandl 
reports that OA was intended to design test cases used by the Ada Compiler Validation Capability (ACVC) 
test suite. No results from testing were reported. 

5.3.2 Brownlie, Prowse and Phadke 

Brownlie, Prowse, and Phadke [4] reported results from a case study. The Orthogonal Arrays Testing System 
(OATS) tool, which is based on the OA combination strategy, was used to test a PMX/StarMAIL release. 
OATS automatically identifies orthogonal arrays and generates test suites that are based on descriptions of 
the parameters and interesting values of the test object. 

In the case study OATS was applied both to the PMX/StarMAIL hardware and software configurations 
to the functionality of the system. 354 test cases were generated by OATS and an additional 68 test cases 
were created by hand to cover special conditions and to add tests that applied to specific configurations. 

A previous release of PMX/StarMAIL was tested “conventionally.” The results from this test were used 
as points of comparison when evaluating the results obtained by OATS and the manually created test cases. 
The authors estimated that 22 percent more faults would have been found if OATS had been used despite 
the fact that conventional testing have required twice as much time to perform. Further, they report that 
1.5 years after the tested system was put into production, an additional three faults have been found that 
were missed in the case study. All of these faults were outside the scope of the planned testing. 

The conclusion drawn by the authors is that OA should be used whenever there are many independent 
hardware, software, or functional parameters to test. 

5.3.3 Williams and Probert 

Williams and Probert [10] illustrated the applicability of OA to test network elements of a telephony system. 
The OA combination strategy was used to select system configurations for testing rather than individual 
test cases. The authors pointed out that the cost for setting up a certain configuration is often substantial. 
Further, each configuration requires complete test suites to be executed, which adds to the cost of testing 
the configuration. For this reason, it is important to find ways to identify a small number of configurations 
to test. One of the main aims of the paper was to present a self-contained guide to apply the theory of 
OA. Thus, most of the paper is spent on describing OA and the method to construct orthogonal Latin 
Squares of desired sizes and how to handle various practical situations that are not handled by the basic OA 
combination strategy. 

5.3.4 Williams 

Williams [22] continues to explore the applicability of pair-wise coverage to configuration testing. In this 
paper, Williams introduced Covering Arrays (CA) as an alternative to Orthogonal Arrays. A comparative 
analysis of the number of test cases generated by CA and IPO is reported. CA and IPO behaved similarly, 
often to the advantage of CA, with only minor differences in number of test cases for the 16 different test 
problem sizes. However, CA outperforms IPO by almost three orders of magnitude for the largest test 
problems in terms of time taken to generate the test suites. 
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5.3.5 Williams and Probert 

Williams and Probert [25] stated that the use of an interaction test coverage metric allows testers to both 
evaluate already existing test suites and to generate new test suites that satisfy a predetermined level of 
interaction. Based on this, Williams and Probert suggest the use of an interaction element, which may be 
used in the same way statements and decisions are used for code coverage. An interaction element is a 
specific (sub)combination of parameter values. By reasoning about types of interaction elements, Williams 
and Probert formally defined a set of coverage criteria, including t-wise coverage. 

Williams and Probert showed that the general problem of finding a minimal set of test cases that satisfies 
t-wise coverage can be NP-complete. 

5.3.6 Williams and Probert 

Williams and Probert [26] continue the work from Williams previous paper [22] in finding an algorithm that 
will generate a minimal test suite that satisfies pair-wise coverage. Previously, they provided a fast approx
imate algorithm by using different building blocks. This time they show how the interaction test coverage 
problem may be formulated as a [0, 1] integer programming problem. Using general solution mechanisms for 
such problems, it is possible to find a minimal solution. These problems have previously been shown to be 
NP-complete, which indicates that finding an optimal solution for the interaction test coverage problem may 
also be NP-complete. The uncertainty comes from the fact that not all [0, 1] integer programming problems 
can be converted to an interaction test coverage problem. 

5.4 AETG 

A test tool called Automatic Efficient Test Generator (AETG) was created at Bellcore (now Telcordia) and 
a number of papers were published that used it in practical industrial settings. 

5.4.1 Burroughs, Jain and Erickson 

Burroughs, Jain, and Erickson [7] presented the first use of the Telcordia (Formerly Bellcore) test tool called 
Automatic Efficient Test Generator (AETG). They illustrated the use of AETG with two examples in which 
the test suite generated by AETG is compared with corresponding test suites generated by AC and PPW 
on the basis of number of test cases and pair-wise coverage (breadth of coverage in their terms). AETG 
produced similar results in terms of test cases as PPW and an order of magnitude lower number of test cases 
than AC. By definition AETG and AC reach 100% pair-wise coverage while PPW only reaches 30 − 35%. 
The authors concluded that AETG is an effective and efficient way to create test cases. 

5.4.2 Cohen, Dalal, Ka jla and Patton 

Cohen, Dalal, Parelius and Patton [43] described how to use AETG in the context of screen testing, that is, 
testing the input fields for consistency and validity across a number of screens. From previous investigations 
they knew that most of the faults in the screens are caused by the value of one single parameter or the 
interaction of two parameters. Thus, although AETG can generate a test suite for t-wise coverage for an 
arbitrary t, the authors predicted that pair-wise coverage will be what testers will need. 

The authors theoretically compared the underlying algorithm of AETG, without revealing it, with OA. 
They showed that by removing the requirement of balance in OA, AETG is able to reduce the number of test 
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cases needed to for pair-wise coverage. Further, the authors pointed to several other advantages of AETG 
over OA, for example, that the algorithm is always able to find a solution to a test problem. 

The authors describe the general features of AETG and conclude by reporting the results of a small 
experiment in which AETG was used to test ten screens of an inventory database system. No comparative 
analysis of the results was given. 

5.4.3 Cohen, Dalal, Parelius, Fredman and Patton 

Cohen, Dalal, Parelius and Patton [9] presented the first publicly available descriptions of the algorithms 
implemented in the Automatic Efficient Test Generator (AETG). The same information with more details 
was later presented by Cohen, Dalal, Fredman, Patton [11]. 

Results of two experiments were described. In the first experiment, AETG was used to test ten Unix 
commands and the code coverage was measured. The authors report that pair-wise tests resulted in over 
90% block coverage. Specifically, Cohen et al. experimented with the Unix command “sort.” Different ways 
of modeling the parameters and values were tried and the results were compared with the results from a 
randomly generated test suite, and from “all” combinations. The AETG generated test suites consistently 
produced better coverage than the randomly produced test suites. 

Further, Cohen et al. used the AETG system to test two versions of a Telcordia product. A total of 
75 parameters were identified, and 28 test cases were created to satisfy pair-wise coverage. Even though 
the AETG tests were executed at the end of the normal product development, several new faults, both in 
the specification and in the implementation, were detected. The main conclusion drawn by the authors was 
that combination strategies in general and the AETG system in specific are both effective and efficient at 
functional testing. 

5.4.4 Burr and Young 

Burr and Young [14] report on using AETG to test Nortel software. They tested a third party email 
product that converts email messages from one format to another. The most important step according to 
the authors was the modeling of the input space, in their case the possible ways to compose email messages. 
An augmented BNF that describes the syntax and format of the e-mail messages was used. Thus the authors 
were faced with the challenge of converting these BNF rules into AETG constructs. The AETG model was 
iteratively constructed and the final version was used to create a suite of test vectors, i.e., test case inputs. 
The next step was to convert these abstract test vectors into real test cases. A Perl script was written that 
converted the AETG representation of the test case inputs to real email messages. 

The code coverage of the tests was monitored for two purposes. First, they wanted to verify how complete 
the specification was. Second, they wanted to measure the code coverage of AETG tests. Initial experiments 
showed that ad hoc testing resulted in about 50% block and decision coverage. By continually applying code 
coverage as the AETG models were refined, decision coverage was increased to 84%. The power of AETG 
combined with automatic translation into real test cases made it easy to find test cases that contributed 
to the coverage. Usually, the code needs to be analyzed to find test cases that will increase coverage. Due 
to the simplicity of generating test suites, many “what if ” scenarios could be tested without increasing the 
number of test cases. This turned the traditionally cumbersome analysis of the code into a trial-and-error 
type of process. 

To compare the AETG results with an alternate test generation technique, a restricted version of BC 
was used to create a test suite from the same input model. Of the reachable code, AETG reached 93% block 
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coverage with 47 test cases, compared to 85% block coverage for the restricted version of BC using 72 test 
cases. 

5.4.5 Dalal, Jain, Karunanithi, Leaton and Lott 

Dalal, Jain, Karunanithi, Leaton, and Lott [17] reported results from two experiments in which principles of 
model-based testing were used to automatically generate test cases for Bellcore’s Intelligent Service Control 
Point. The authors reported two significant advantages over manual testing. The first is coping with change. 
They found that changes to the product or the test criteria have less impact on the test organization if test 
cases can be regenerated. The second is that a systematic choice of test cases, in their research created by 
AETG, can increase the quality of the product by detecting more faults than with manual testing. 

In addition to selecting the test cases, the work also included the implementation of a test scaffolding to 
automatically execute the test cases and compare actual and expected results. The implementation of the 
scaffolding was the most labor intensive part of this work. 

In total, more than 5000 test cases were generated and executed, of which about 400 failed. The authors 
reported four lessons learned. First, the model of the test data is fundamental and requires considerable 
domain expertise. Second, model-based testing is in fact a development project since it consists of much 
testware that needs to be developed and maintained. Third, change must be handled and unnecessary manual 
intervention should be avoided. Fourth, technology transfer requires careful planning, that is, changing a 
work process or a state-of-practice is a pro ject in itself. 

5.4.6 Dalal, Jain, Karunanithi, Leaton, Lott, Patton and Horowitz 

Dalal, Jain, Karunanithi, Leaton, Lott, Patton, and Horowitz [20] presented the architecture of a generic 
test-generation system based on combination strategies. A test data model is derived from the requirements 
and then used to generate test input tuples. These are in turn refined into real test inputs and expected 
outputs. The test inputs are fed to the system under test, which generates actual output. Finally the actual 
and expected outputs are compared. 

The authors claim that the model-based testing depends on three key technologies: the notation used for 
the data model, the test generation algorithm, and the tools for generating the test execution infrastructure 
including expected output. The notation and algorithms can be used in multiple projects but not the tools. 

The authors also present the results from four case studies in which their model-based test architecture 
has been used. Two of these case studies were reported elsewhere [17]. The third case study concerned 
testing a rule-based system used to assign work requests to technicians. Five separate models were used to 
generate tests for the system. Two types of tests were generated and run. The first type concerned the initial 
assignment of jobs at the start of the day. The second type of tests focused on the dynamic assignment 
of tests during the course of the day. The latter was much harder, since these tests depend on the current 
state of the database, which dynamically changes. This, in turn, means that checking actual output is very 
difficult since all data is related. In this case study the checking of the data was performed manually to 
a large extent. Thirteen tests were run, resulting in block coverage of 84%. Although relatively good, the 
authors suggest that block coverage may not be significant for an object-oriented system that implements 
a rule processing mechanism. The tests revealed four failures. The authors claim that the relatively small 
amount of faults found was because checking the results was complicated. 

The fourth case study consisted of testing a single GUI window in a large application. Due to the 
complexity of the window the creation of the input model turned out to be the most difficult task. 159 test 
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cases were generated and executed automatically since the expected results were easy to describe and check. 
Six failures were revealed and reported, three of which were uniquely discovered by the automatic testing 
approach. 

The main lessons learned were that the model of the test data is fundamental and iteration is often 
required to find a suitable model. The authors also saw benefit in designing the test scaffolding with 
intermediate results stored in files, which can be manually changed. When executing thousands of tests 
automatically, the tester must be able to start the execution at an arbitrary point in the test suite without 
having to worry about the state of the test ob ject. Finally, the authors give advice on how to change a 
process and how to introduce new tools. 

5.4.7 Dalal, Jain, Patton, Rathi and Seymore 

Dalal, Jain, Patton, Rathi, and Seymour [19] described a publicly available web interface that allows testers 
to use AETG. The tester inputs the functional model of the test ob ject either through a set of web GUI 
widgets or through a text-based notation. AETG can produce up to three test suites. First is a valid test 
suite, which contains valid combinations of parameter values. Second is an invalid test suite, which contains 
test cases that violate constraints in parameter value combinations, as defined by the user. Third is an illegal 
test suite, which contains test cases with values explicitly declared to be illegal by the tester. 

5.5 Base Choice 

One paper was published that introduced the idea of base choice. 

5.5.1 Ammann and Offutt 

The seminal work on BC by Ammann and Offutt [6] theoretically compared the number of test cases needed 
to fulfill base-choice coverage with the number of test cases needed to fulfill each-used coverage and N -wise 
coverage. They concluded that BC is relatively inexpensive and yet effective. 

Ammann and Offutt also demonstrated the feasibility of BC with a small experiment. MiStix is a simple 
file handling system with ten operations for creating, deleting, copying, and moving files and directories. 
The implementation is about 900 lines of C code. A complete Z specification had been developed for MiStix 
for a previous study. A complete BC test suite was generated from the Z specification by hand. The 
paper reported extensive information about the identification of parameters and interesting values of each 
parameter. In particular, the paper illustrated how Z preconditions and postconditions can be used to 
identify parameters and interesting values more or less mechanically. 

The final BC test suite contained 72 test cases for the ten operations. Five of the 72 test cases were 
duplicates and some of the test cases were superseded by others in the sense that they were preconditions 
of other test cases. The test suite detected 7 out of 10 known faults. 

5.6 In Parameter Order 

Two papers appeared on the sub ject of choosing values based on the order of parameters. 
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5.6.1 Lei and Tai 

Lei and Tai describes an algorithm called In-Parameter-Order (IPO) for generating a test suite that satisfies 
pair-wise coverage [18]. An extended version of the same paper was presented later [24] and an extract was 
also published [27]. The papers describe the framework of the IPO strategy, an optimal algorithm for the 
vertical growth of the test suite, and two alternative algorithms for the horizontal growth of the test suite. 
The algorithms have been implemented in Java in a tool called PairTest, which provides a graphical user 
interface to make the tool easy to use. 

The IPO combination strategy is compared with the AETG combination strategy in the paper. The 
two combination strategies are shown to perform similarly with respect to number of test cases for six 
different test problem sizes. Tai and Lei also show that the time complexity of IPO is superior to the time 
complexity of AETG. IPO has a time complexity of O(v3N2log(N)) and AETG has a time complexity of 
O(v4N2log(N)), where N is the number of parameters, each of which has v values. 

5.6.2 Huller 

Based on a real example of testing ground systems for satellite communications, Huller [23] showed that 
pair-wise configuration testing may save more than 60% in both cost and time compared to quasi-exhaustive 
testing. The set of configurations that satisfied pair-wise coverage was developed by hand via an algorithm 
that resembles IPO, although no reference is given. 

5.7 Antirandom Testing 

An approach for choosing values based on the opposite of random selection has been discussed in two papers. 

5.7.1 Malaiya 

Malaiya [44] presented seminal work on antirandom testing. Tests are added in sequence and each value is 
represented as a sequence of bits. Antirandom means that each new test case added resides as far from all 
previous test cases in the sequence as possible, using Hamming or Cartesian distance measured on the bit 
representation. 

The paper presented two algorithms to create an antirandom sequence of test cases. The first is a naive 
method that requires an exhaustive search. The second exploits properties of an antirandom sequence of 
test cases to create the final result more quickly. Further, the paper illustrates how checkpoint encoding can 
be used to identify a mapping between the parameters of the test problem and the corresponding test cases. 
A number of considerations and observations for this mapping are listed. 

For the selected checkpoints, the intent of antirandom testing is to generate all possible combinations. 
By executing the test cases in the sequence they are generated, that is, as far apart from each other as 
possible, the hypothesis is that antirandom testing is likely to detect the presence of faults earlier than 
random testing. No data to support this hypothesis was presented in the paper. 

5.7.2 Yin, Lebne-Dengel and Malayia 

Yin, Lebne-Dengel, and Malayia [13] used three benchmark programs to compare antirandom testing with 
random testing. Test cases were generated one by one according to the different evaluated combination 
strategies. Each new test case was executed and the increase in branch, loop, relational, and total coverage 
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was monitored. The antirandom combination strategy consistently performed well by reaching high coverage 
with few test cases. The authors concluded that the results suggest that antirandom testing might be a 
worthwhile alternative to other black-box test methods. However, the investigated benchmarks are small 
and might not be representative. Also, the encoding used for the tests can have a strong affect on the results, 
so encoding rules need to be further investigated. 

5.8 Fractional Factorial Designs 

Selecting test values has a strong relationship to scientific experiments, and the experimental method of 
factorial design was suggested to help select values. 

5.8.1 Heller 

Heller [8] uses a realistic example to show that testing all combinations of the parameter values is infeasible 
in practice. The paper concluded that there we need to identify a subset of combinations of manageable 
size. Heller suggests using fractional factorial designs. These designs have traditionally been used in physical 
experiments to decrease the number of experiments. The underlying mathematics of the fractional factorial 
designs allows researchers to establish which factors cause which results. Heller does not describe specifically 
how is use fractional factorial designs in software testing. The paper explains how to translate a test problem 
into a representation for factorial designs. It is also shown that the number of test cases from fractional 
factorial designs is less than all combinations. 

5.8.2 Berling and Runesson 

Berling and Runesson [30] describe how to use fractional factorial designs used for performance testing. 
Specifically, they focus on how to determine the effect of different parameters on the performance of a 
system with a minimal or near minimal set of test cases. Berling and Runesson state that when the result 
variable has a nominal type, (for example, true or false) the property of fractional factorial designs cannot 
be exploited. 

5.9 Missing Papers 

The following two papers have proven hard to acquire. According to the papers referencing these papers, 
both of them contain information about attempts to automate the generation of test cases according to some 
combination strategy algorithm. The papers are included in this survey for completeness. 

5.9.1 Biyani and Santhanam 

This paper by Biyani and Santhanam [46] contains information about a tool called TOFU. It is referenced 
by Kropp et al. [15]. 

5.9.2 Sherwood 

This paper by Sherwood [42] contains among other things a description of a tool called CATS implementing 
an early heuristic algorithm for pair-wise coverage. The paper is referenced by Dunietz et al. [12] and by 
Cohen et al. [9, 11, 16]. 
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6 Conclusions 

This survey demonstrates the wide variety of existing combination strategies and reports on their usages. 
It also suggests a classification scheme for the existing combination strategies based on properties of their 
algorithms. The survey gives an overview of the coverage criteria normally associated with combination 
strategies and shows how these coverage criteria are interrelated in a subsumption hierarchy. Finally, this 
survey also relates the surveyed combination strategies based on the approximate sizes of the test suites 
generated by the combination strategies. 
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