
Combinatorial Methods for
Discrete Event Simulation of a

Grid Computer Network

Rick Kuhn
Computer Security Division

National Institute of Standards and Technology
Gaithersburg, MD

kuhn@nist.gov

ModSim World, 14 Oct 09

Overview
• NIST is a US Government agency

• The nation’s measurement and testing
 laboratory – 3,000 scientists, engineers,
 and support staff including 3 Nobel laureates
• Research in physics, chemistry, materials,
 manufacturing, computer science, including

• network security
• combinatorial methods and testing

Question: can combinatorial methods help
us find attacks on networks?

Experiment: find deadlock configurations with grid
computer network simulator. Compare:

• random simulation inputs
• covering arrays of 2-way, 3-way, 4-way combinations

Automated Combinatorial Testing
 Goals – reduce testing cost, improve cost-benefit ratio

 Accomplishments – huge increase in performance,
 scalability, 200+ users, most major IT firms and others

 Also non-testing applications – modelling and simulation,
 genome

Software Failure Analysis
• NIST studied software failures in a variety of
 fields including 15 years of FDA medical
 device recall data

• What triggers software failures?

• logic errors?

• calculation errors?

• inadequate input checking?

• Interactions? e.g., failure occurs if

• pressure < 10 (1-way interaction)

• pressure < 10 & volume > 300 (2-way interaction)

• pressure < 10 & volume > 300 & velocity = 5 (3-way interaction)

• The most complex failure reported required 4-way interaction to trigger

Failure-triggering Interactions
• Additional
studies
consistent

• > 4,000
failure reports
analyzed

• Conclusion:
failures
triggered by
few variables

How About Network Failure?

Can we use these ideas to induce network failure?

What we need: a Covering Array

Each row
is a test:

Each column is
a parameter:

All triples in only 13 tests

0 = effect off
1 = effect on

13 tests for all 3-way combinations

210 = 1,024 tests for all combinations

New algorithms to make it practical
• Tradeoffs to minimize calendar/staff time:

• FireEye (extended IPO) – Lei – roughly optimal, can be used for
most cases under 40 or 50 parameters

• Produces minimal number of tests at cost of run time

• Currently integrating algebraic methods

• Adaptive distance-based strategies – Bryce – dispensing one test
at a time w/ metrics to increase probability of finding flaws

• Highly optimized covering array algorithm

• Variety of distance metrics for selecting next test

• PRMI – Kuhn –for more variables or larger domains
• Randomized algorithm, generates tests w/ a few tunable parameters;
computation can be distributed

• Better results than other algorithms for larger problems

 10 15 20

 tests sec tests sec tests sec

1 proc. 46086 390 84325 16216 114050 155964

10 proc. 46109 57 84333 11224 114102 85423

20 proc. 46248 54 84350 2986 114616 20317

FireEye 51490 168 86010 9419 ** **

Jenny 48077 18953 ** ** ** **

• Smaller test sets faster, with a more advanced user interface
• First parallelized covering array algorithm
• More information per test

12600 1070048 >1 day NA 470 11625 >1 day NA 65.03 10941 6

1549 313056 >1 day NA 43.54 4580 >1 day NA 18.41 4226 5

127 64696 >21 hour 1476 3.54 1536 5400 1484 3.05 1363 4

3.07 9158 >12 hour 472 0.71 413 1020 2388 0.36 400 3

2.75 101 >1 hour 108 0.001 108 0.73 120 0.8 100 2

Time Size Time Size Time Size Time Size Time Size

TVG (Open Source) TConfig (U. of Ottawa) Jenny (Open Source) ITCH (IBM) IPOG
T-Way

New algorithms

Traffic Collision Avoidance System (TCAS): 273241102

Tab le 6 . 6 w ay, 5 k con f ig u ra t ion resu lt s com p ar ison
* * insu f f ic ient m em ory

PRMI

(Kuhn, 06)

IPOG

(Lei, 06)

Modeling & Simulation Application
• “Simured” network simulator

• Kernel of ~ 5,000 lines of C++ (not including GUI)

• Objective: detect configurations that can produce
deadlock:

• Prevent connectivity loss when changing network
• Attacks that could lock up network

• Compare effectiveness of random vs.
combinatorial inputs

• Deadlock combinations discovered
• Crashes in >6% of tests w/ valid values (Win32

version only)

Simulation Input Parameters
Parameter Values

1 DIMENSIONS 1,2,4,6,8
2 NODOSDIM 2,4,6
3 NUMVIRT 1,2,3,8
4 NUMVIRTINJ 1,2,3,8
5 NUMVIRTEJE 1,2,3,8
6 LONBUFFER 1,2,4,6
7 NUMDIR 1,2
8 FORWARDING 0,1
9 PHYSICAL true, false
10 ROUTING 0,1,2,3
11 DELFIFO 1,2,4,6
12 DELCROSS 1,2,4,6
13 DELCHANNEL 1,2,4,6
14 DELSWITCH 1,2,4,6

5x3x4x4x4x4x2x2
x2x4x4x4x4x4
= 31,457,280
configurations

Are any of them
dangerous?

If so, how many?

Which ones?

Combinatorial vs. Random
 Deadlocks Detected -

combinatorial

t Tests 500 pkts
1000
pkts

2000
pkts

4000
pkts

8000
pkts

2 28 0 0 0 0 0
3 161 2 3 2 3 3
4 752 14 14 14 14 14

Average Deadlocks Detected –
 random

t Tests 500 pkts
1000
pkts

2000
pkts

4000
pkts

8000
pkts

2 28 0.63 0.25 0.75 0. 50 0. 75
3 161 3 3 3 3 3
4 752 10.13 11.75 10.38 13 13.25

Network Deadlock Detection
Detected 14 configurations that can cause deadlock:
 14/ 31,457,280 = 4.4 x 10-7

Combinatorial testing found one that very few random
tests could find:
 1/ 31,457,280 = 3.2 x 10-8

Combinatorial testing found more deadlocks than
random, including some that might never have been
found with random testing

Risks:
• accidental deadlock configuration: low
• deadlock configuration discovered by attacker: high

How many random tests do we need
to equal combinatorial results?

2-way Tests 3-way Tests 4-way Tests

Var
Vals/
var

IPOG
Tests Ratio

IPOG
Tests Ratio

IPOG
Tests Ratio

10 2 10 1.80 20 3.05 42 3.57
10 4 30 4.83 151 6.05 657 3.43
10 6 66 5.80 532 3.73 3843 3.48
10 8 117 4.26 1214 4.46 12010 4.39
10 10 172 4.70 2367 4.94 29231 4.71
15 2 10 2.00 24 2.17 58 2.24
15 4 33 3.67 179 3.75 940 2.73
15 6 77 3.82 663 3.79 5243 3.26
15 8 125 4.41 1551 4.36 16554 3.66
15 10 199 4.72 3000 5.08 40233 3.97
20 2 12 1.92 27 2.59 66 2.12
20 4 37 3.78 209 2.98 1126 3.35
20 6 86 3.35 757 3.39 6291 2.99
20 8 142 4.44 1785 4.73 19882 3.00
20 10 215 4.78 3463 4.04 48374 3.25
25 2 12 2.83 30 2.33 74 2.35
25 4 39 3.08 233 3.39 1320 2.67
25 6 89 3.67 839 3.44 7126 2.75
25 8 148 5.71 1971 3.76 22529 2.72
25 10 229 4.50 3823 4.32 54856 3.50

Ratio Avg. 3.90 3.82 3.21

Answer: 3x to 4x as many
and still would not guarantee detection

Tools
 Covering array generator

 Coverage analysis - what is the combinatorial coverage of
existing test set?

 .Net configuration file generator

 Fault location -
currently underway Current

users

Defining a new system

Variable interaction strength

Constraints

Covering array output

Summary
 Empirical research suggests that all or nearly all software failures

caused by interaction of few parameters

 Combinatorial testing can exercise all t-way combinations of
parameter values in a very tiny fraction of the time needed for
exhaustive testing

 New algorithms and faster processors make large-scale
combinatorial testing possible

 Beta release of tools available, to be open source

 Rick Kuhn Raghu Kacker
 kuhn@nist.gov raghu.kacker@nist.gov

 http://csrc.nist.gov/acts (Or just search “combinatorial testing” !)

Please contact us if you are interested!

	Slide Number 1
	Overview
	Automated Combinatorial Testing
	Software Failure Analysis
	Failure-triggering Interactions
	How About Network Failure?
	What we need: a Covering Array
	
	New algorithms to make it practical
	Slide Number 10
	Modeling & Simulation Application
	Simulation Input Parameters
	Combinatorial vs. Random
	Network Deadlock Detection
	How many random tests do we need �to equal combinatorial results?
	Tools
	Defining a new system
	Variable interaction strength
	Constraints
	Covering array output
	Summary

