
Combinatorial Testing Of ACTS: A Case Study

Mehra N.Borazjany, Linbin Yu, Yu Lei - UTA

Raghu Kacker, Rick Kuhn - NIST

4/17/12

Outline

 Introduction

 Major Features of ACTS

 Input Parameter Modeling

 Experiments

 Conclusion

Motivation

 ACTS is a combinatorial testing tool developed by
NIST and UTA

 An ACTS user asked: Have you tested ACTS using
ACTS?

 Two objectives
 Gain experience and insights about how to apply CT in

practice.
 Evaluate the effectiveness of CT applied to a real-life

system.

Major Challenges

 How to model the input space of ACTS, in terms of
parameters, values, relations and constraints?

 In particular, how to model a system configuration and
the GUI interface?

 How to avoid potential bias as we are the
developers of ACTS?

 What information we know about ACTS can be used in
the modeling process?

Major Results

 Achieved about 80% code coverage, and detected
15 faults

 Modeling is not an easy task, especially when the
input space has a more complex structure

 Abstract parameters/values often need to be
identified

 Hierarchical modeling helps to reduce complexity

 Relations are particularly difficult to identify
 May depend on implementation, and a finer degree of

relation may be needed

 T-Way Test Set Generation
 Allows a test set to be created from scratch or from an

existing test set

 Mixed Strength (or Relation Support)
 Multiple relations may overlap or subsume each other

 Constraint Support
 Used to exclude invalid combinations based on domain

semantics
 Integrated with a 3rd-party constraint solver called

Choco

 Three Interfaces: Command Line, GUI, and API

Major Features of ACTS

Modeling SUT: An Example Configuration

Parameters:
num1:[-1000, -100, 1000, 10000]
num2:[-2, -1, 0, 1, 2]
bool1:[true, false]
bool2:[true, false]
Enum1:[v1, v2, v3, v4, v5, v6, v7, v8, v9]
Enum2:[1, 2]

Relations:
[4,(bool1, bool2, Enum1, Enum2, num1, num2)]
[5,(bool1, bool2, Enum1, Enum2, num1, num2)]
[2,(bool1, bool2, Enum1)]
[2,(Enum1, Enum2, num1)]
[3,(bool1, bool2, Enum1, Enum2, num1)]

Constraints :
enum2="1" && num2+ num1=9999
(num1*num2= 1000) => bool1
num2/num1 <=500 => bool2
enum1="v1"|| num2-num1=9998
num1%num2<900 => num2<0

Modeling SUT: Individual Parameters

Type Value per parameter
Boolean Invalid
Integer [true,false] (default)
Range One or more (valid values)
Enum

applicable only for
robustness testing of the
command line

Type-Value combinations
Boolean type with Invalid value
Boolean type with Default value
Boolean type with one or more value
Integer type with Invalid value
Integer type with one or more value
Enum type with Invalid value
Enum type with one or more value

Modeling SUT: Multiple Parameters

of Parameters Parameter Type
Invalid (0 or 1) A single type
Two Mixed types
Three or more

num1:[-1000, 10000]
num2:[-2, -1, 0, 1, 2]
bool1:[true,false]
bool2:[true, false]
Enum1:[v1, v2, v3, v4, v5]
Enum2:[1, 2]
Enum3:[#]

Example:
of Parameters: Three or more
Parameter Type: Mixed types (at least
one parameter of each type)

When we derive concrete test cases, we want to cover
individual parameters identified earlier at least once.

Modeling SUT: Relations

Individual Relations

Multiple Relations

Type Strength
Default 2
User-defined (valid) 3-5
User-defined (invalid) 6

of user-defined
relations

Relation between user-
defined and default relations

0 Overlap
1 Subsume

Two or more Subsume default

Modeling SUT: Relation Examples

relation values Example

default [4,(bool1, bool2, Enum1, Enum2, num1, num2)]

Subsume-default [4,(bool1, bool2, Enum1, Enum2, num1, num2)] (default)
[5,(bool1, bool2, Enum1, Enum2, num1, num2)]

Overlap [2,(bool1, bool2, Enum1)]
[2,(Enum1, Enum2, num1)]

Subsume [3,(bool1, bool2, Enum1, Enum2, num1)]
[2,(bool1, bool2, Enum1, Enum2, num1)]

When we derive concrete test cases, we want to cover
individual relations identified earlier at least once.

Modeling SUT: Individual Constraints

Boolean Arithmetic Relational
or + =
and * >
=> / <
! - ≥

% ≤

Try to test every 2-way combination of the three types of operators

Modeling SUT: Multiple Constraints

of Constraints Related Parameters Satisfiability

0 Some parameters in a relation Solvable

1
No parameters are not related Unsolvable

Multiple

When we derive concrete test cases, we want to cover
individual constraints identified earlier at least once.

Modeling SUT: Putting It Together

Test Factors Test Values

Parameters

Invalid
Two (1 Integer,1 Enum)

Three or more (at least 1 Integer,1 Enum, 1
Boolean)

Relations

Invalid parameter (just in CMD interface)
Default relation

Two (default and subsume-default)
Multiple relations (default plus at least 2 subsume)
Multiple relations (default plus at least 2 overlap)

Constraints

None
Unsolvable

Invalid
One

Multiple not-related constraints
Multiple related constraints

Modeling CLI

Test
Factors

Test
Values

Description

M_mode scratch generate tests from scratch (default)
extend extend from an existing test set

M_algo ipog use algorithm IPO (default)

M_fastMode on enable fast mode
off disable fast mode (default)

M_doi specify the degree of interactions to be covered

M_output

numeric output test set in numeric format
nist output test set in NIST format (default)
csv output test set in Comma-separated values format

excel output test set in EXCEL format

M_check on verify coverage after test generation
off do not verify coverage (default)

M_progress on display progress information (default)
off do not display progress information

M_debug on display debug info
off do not display debug info (default)

M_randstar on randomize don’t care values
off do not randomize don’t care values

Modeling GUI: Individual Use Cases

 Identify basic use cases and then model each use
case separately:

 Create New System
 Building the Test Set
 Modify system (add/remove/edit parameters and

parameters values, add/remove relations, add/remove
constraints)

 Open/Save/Close System
 Import/Export test set
 Statistics
 Verify Coverage

Modeling GUI – Add Parameter

Test Factors Test Values

Parameter name
invalid (space, special_char, number, duplicate name)
String only
String plus numeric

Parameter type

Boolean
Enum
Number
Range

In-out input
Output

Value
Default
Valid
Invalid (Space, duplicate value, invalid range of numbers or characters)

Modeling GUI: Use Case Graph

t

t

Modeling GUI: Test Sequence Generation

 Test sequences are generated from the use case
graph to achieve 2-way sequence coverage

 If a use case U can be exercised before another
use case V, then there must exist a test sequence
in which U can be exercised before V

Experimental Design

 Two major metrics:
 How much code coverage can be achieved?
 How many faults can be detected?

 Used clover to collect code coverage

 Generated test cases with t=2 and extended them
to t=3

 420 test cases for t=2 and 1105 test cases for
t=3

ACTS version 1.2 statistics

LOC 24,637
Number of Branches 4,696
Number of Methods 1,693
Number of Classes 153
Number of Files 110
Number of Packages 12

Code Coverage

88.1
79.3
81.2

11.9
20.7
18.8

0% 20% 40% 60% 80% 100%

Statements
Branches
Methods

Covered Uncovered

Statement Coverage for ACTS packages

87
94.4

87.7
100

85.4
82.1

79.4
99.3

13
5.6

12.3
0

14.6
17.9

20.6
0.7

0% 20% 40% 60% 80% 100%

util
engin

constarints
service

model
gui

data
console

Covered Uncovered

Fault Detection

 Detected a total of 15 faults: 10 (positive testing)
+ 5 (negative testing)

 8 faults were detected by 2-way test sequences,
but not detected by individual use cases

 For example, a sequence of three use cases, “open,
import, build”, detected a fault that was not detected
by testing the use cases separately

 These faults, however, are not “interaction faults”
 In the example, “import” created an error state which

was not exposed until “build” is exercised.

 3-way testing did not detect any new faults than
2-way testing

Conclusion

 IPM is a significant challenge of CT
 The effectiveness of CT largely depends on the quality

of the input model

 Significant insights are obtained from this study,
but the result of fault detection is a bit puzzling

 No real interaction faults found, and 3-way testing did
not find more faults than 2-way testing

 More research is needed to develop practically
useful guidelines, with significant examples, for IPM.

 More case studies are planned as future work

Thank You

	Combinatorial Testing Of ACTS: A Case Study
	Outline
	Motivation
	Major Challenges
	Major Results
	Slide Number 6
	Modeling SUT: An Example Configuration
	Modeling SUT: Individual Parameters
	Modeling SUT: Multiple Parameters
	Modeling SUT: Relations
	Modeling SUT: Relation Examples
	Modeling SUT: Individual Constraints
	Modeling SUT: Multiple Constraints
	Modeling SUT: Putting It Together
	Modeling CLI
	Modeling GUI: Individual Use Cases
	Modeling GUI – Add Parameter
	Modeling GUI: Use Case Graph
	Modeling GUI: Test Sequence Generation
	Experimental Design
	ACTS version 1.2 statistics
	Code Coverage
	Statement Coverage for ACTS packages
	Fault Detection
	Conclusion
	Slide Number 26

