
Combinatorial Testing

Rick Kuhn

National Institute of
Standards and Technology

Gaithersburg, MD

Carnegie-Mellon University, 26 January 2010

Tutorial Overview

1. Why are we doing this?
2. What is combinatorial testing?
3. How is it used and how long does it take?
4. What tools are available?
5. What's next?

 What is NIST and why are we doing this?
• A US Government agency

• The nation’s measurement and testing
 laboratory – 3,000 scientists, engineers,
 and support staff including
 3 Nobel laureates

Analysis of engineering failures,
including buildings, materials, and ...

Research in physics, chemistry,
materials, manufacturing, computer
science

Software Failure Analysis
• We studied software failures in a variety of
 fields including 15 years of FDA medical
 device recall data

• What causes software failures?

• logic errors?

• calculation errors?

• interaction faults?

• inadequate input checking? Etc.

• What testing and analysis would have prevented failures?

• Would statement coverage, branch coverage, all-values, all-pairs etc.
 testing find the errors?

Interaction faults: e.g., failure occurs if
 pressure < 10 (1-way interaction <= all-values testing catches)
 pressure < 10 & volume > 300 (2-way interaction <= all-pairs testing catches)

Software Failure Internals
• How does an interaction fault manifest itself in code?

Example: pressure < 10 & volume > 300 (2-way interaction)

if (pressure < 10) {

 // do something

 if (volume > 300) { faulty code! BOOM! }

 else { good code, no problem}

}

else {

 // do something else

}

• Pairwise testing commonly applied to software
• Intuition: some problems only occur as the result of

an interaction between parameters/components
• Pairwise testing finds about 50% to 90% of flaws

• Cohen, Dalal, Parelius, Patton, 1995 – 90% coverage with pairwise, all errors in small modules
found

• Dalal, et al. 1999 – effectiveness of pairwise testing, no higher degree interactions
• Smith, Feather, Muscetolla, 2000 – 88% and 50% of flaws for 2 subsystems

Pairwise testing is popular,
but is it enough?

90% of flaws.
Sounds pretty good!

 Finding 90% of flaws is pretty good,right?

“Relax, our engineers found
 90 percent of the flaws.”

I don't think I
want to get on
that plane.

How about hard-to-find flaws?
•Interactions e.g., failure occurs if

• pressure < 10 (1-way interaction)

• pressure < 10 & volume > 300 (2-way interaction)

• pressure < 10 & volume > 300 & velocity = 5
 (3-way interaction)

• The most complex failure reported required
 4-way interaction to trigger

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4

Interaction

%
 d

et
ec

te
d

Interesting, but
that's just one kind
of application.

How about other applications?
 Browser (green)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6
Interactions

%
 d

et
ec

te
d

These faults more
complex than
medical device
software!!

Why?

And other applications?

 Server (magenta)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6
Interactions

%
 d

et
ec

te
d

Still more?
 NASA distributed database
 (light blue)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6
Interactions

%
 d

et
ec

te
d

Even more?
Traffic Collision Avoidance System module

(seeded errors) (purple)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6
Interactions

%
 d

et
ec

te
d

Finally
 Network security (Bell, 2006)
 (orange)

 Curves appear
to be similar
across a variety
of application
domains.

Why this
distribution?

What causes this distribution?

One clue: branches in avionics software.
7,685 expressions from if and while statements

Comparing with Failure Data
Branch
statements

• Maximum interactions for fault triggering
for these applications was 6

• Much more empirical work needed
• Reasonable evidence that maximum interaction

strength for fault triggering is relatively small

So, how many parameters are
involved in really tricky faults?

How does it help
me to know this?

How does this knowledge help?

Still no silver
bullet. Rats!

Biologists have a “central dogma”, and so do we:

If all faults are triggered by the interaction of t or fewer variables,
then testing all t-way combinations can provide strong assurance

(taking into account: value propagation issues, equivalence
partitioning, timing issues, more complex interactions, . . .)

Tutorial Overview

1. Why are we doing this?

2.What is combinatorial
testing?

3. How is it used and how long does it take?
4. What tools are available?
5. What's next?

What is combinatorial testing?
A simple example

How Many Tests Would It Take?

 There are 10 effects, each can be on or off
 All combinations is 210 = 1,024 tests
 What if our budget is too limited for these tests?
 Instead, let’s look at all 3-way interactions …

 There are = 120 3-way interactions.

 Naively 120 x 23 = 960 tests.
 Since we can pack 3 triples into each test, we

need no more than 320 tests.
 Each test exercises many triples:

Now How Many Would It Take?

We can pack a lot into one test, so what’s the
smallest number of tests we need?

10
3

0 1 1 0 0 0 0 1 1 0

A covering array

Each row is a test:
Each column is
a parameter:

Each test covers = 120 3-way combinations

Finding covering arrays is NP hard

All triples in only 13 tests, covering 23 = 960 combinations

10
3

10
3

0 = effect off
1 = effect on

13 tests for all 3-way combinations

210 = 1,024 tests for all combinations

Another familiar example

Plan: flt, flt+hotel, flt+hotel+car
From: CONUS, HI, Europe, Asia …
To: CONUS, HI, Europe, Asia …
Compare: yes, no
Date-type: exact, 1to3, flex
Depart: today, tomorrow, 1yr, Sun, Mon …
Return: today, tomorrow, 1yr, Sun, Mon …
Adults: 1, 2, 3, 4, 5, 6
Minors: 0, 1, 2, 3, 4, 5
Seniors: 0, 1, 2, 3, 4, 5

• No silver bullet because:
 Many values per variable
 Need to abstract values
 But we can still increase information per test

• Suppose we have a system with on-off switches:

A larger example

• 34 switches = 234 = 1.7 x 1010 possible inputs = 1.7 x 1010 tests

How do we test this?

• 34 switches = 234 = 1.7 x 1010 possible inputs = 1.7 x 1010 tests
• If only 3-way interactions, need only 33 tests
• For 4-way interactions, need only 85 tests

What if we knew no failure involves more
than 3 switch settings interacting?

Tutorial Overview

1. Why are we doing this?
2. What is combinatorial testing?

3. How is it used and how long does it
take?

4. What tools are available?
5. What's next?

Two ways of using combinatorial
testing

Use combinations here or here

System
under test

Test
data
inputs

Test case OS CPU Protocol

1 Windows Intel IPv4

2 Windows AMD IPv6

3 Linux Intel IPv6

4 Linux AMD IPv4

Configuration

Testing Configurations
• Example: app must run on any configuration of OS, browser,
 protocol, CPU, and DBMS

• Very effective for interoperability testing

Combinatorial testing with existing test set

Test case OS CPU Protocol

1 Windows Intel IPv4

2 Windows AMD IPv6

3 Linux Intel IPv6

4 Linux AMD IPv4

1. Use t-way coverage
for system
configuration values

2. Apply existing tests

• Common practice in telecom industry

Modeling & Simulation Application

• “Simured” network simulator
• Kernel of ~ 5,000 lines of C++ (not including GUI)

• Objective: detect configurations that can
produce deadlock:

• Prevent connectivity loss when changing network
• Attacks that could lock up network

• Compare effectiveness of random vs.
combinatorial inputs

• Deadlock combinations discovered
• Crashes in >6% of tests w/ valid values (Win32

version only)

Simulation Input Parameters
Parameter Values

1 DIMENSIONS 1,2,4,6,8
2 NODOSDIM 2,4,6
3 NUMVIRT 1,2,3,8
4 NUMVIRTINJ 1,2,3,8
5 NUMVIRTEJE 1,2,3,8
6 LONBUFFER 1,2,4,6
7 NUMDIR 1,2
8 FORWARDING 0,1
9 PHYSICAL true, false
10 ROUTING 0,1,2,3
11 DELFIFO 1,2,4,6
12 DELCROSS 1,2,4,6
13 DELCHANNEL 1,2,4,6
14 DELSWITCH 1,2,4,6

5x3x4x4x4x4x2x2
x2x4x4x4x4x4
= 31,457,280
configurations

Are any of them
dangerous?

If so, how many?

Which ones?

Network Deadlock Detection
 Deadlocks
Detected:

combinatorial

t Tests 500 pkts
1000
pkts

2000
pkts

4000
pkts

8000
pkts

2 28 0 0 0 0 0
3 161 2 3 2 3 3
4 752 14 14 14 14 14

Average Deadlocks Detected:
 random

t Tests 500 pkts
1000
pkts

2000
pkts

4000
pkts

8000
pkts

2 28 0.63 0.25 0.75 0. 50 0. 75
3 161 3 3 3 3 3
4 752 10.13 11.75 10.38 13 13.25

Network Deadlock Detection
Detected 14 configurations that can cause deadlock:
 14/ 31,457,280 = 4.4 x 10-7

Combinatorial testing found more deadlocks than
random, including some that might never have been
found with random testing

Why do this testing? Risks:
• accidental deadlock configuration: low
• deadlock config discovered by attacker: much higher
 (because they are looking for it)

Testing inputs
 Traffic Collision Avoidance

System (TCAS) module
• Used in previous testing research
• 41 versions seeded with errors
• 12 variables: 7 boolean, two 3-value, one 4-

value, two 10-value
• All flaws found with 5-way coverage
• Thousands of tests - generated by model

checker in a few minutes

Tests generated
 t
2-way:
3-way:
4-way:
5-way:
6-way:

0

2000

4000

6000

8000

10000

12000

2-way 3-way 4-way 5-way 6-way

T
e

s
ts

Test cases
156
461

1,450
4,309

11,094

Results

Detection Rate for TCAS Seeded
Errors

0%

20%

40%

60%

80%

100%

2 way 3 way 4 way 5 way 6 way

Fault Interaction level

Detection
rate

• Roughly consistent with data on large systems

• But errors harder to detect than real-world examples

Tests per error

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

2 w ay 3 w ay 4 w ay 5 w ay 6 w ay

Fault Interaction level
T

es
ts Tests per error

Bottom line for model checking based combinatorial testing:
Expensive but can be highly effective

• Number of tests: proportional to vt log n

for v values, n variables, t-way interactions
• Thus:

•Tests increase exponentially with interaction strength t : BAD,
but unavoidable
•But only logarithmically with the number of parameters :
GOOD!

• Example: suppose we want all 4-way combinations of n
parameters, 5 values each:

Cost and Volume of Tests

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

10 20 30 40 50

Variables

Tests

Buffer Overflows
• Empirical data from the National Vulnerability Database

• Investigated > 3,000 denial-of-service vulnerabilities reported in
the NIST NVD for period of 10/06 – 3/07

• Vulnerabilities triggered by:
• Single variable – 94.7%

example: Heap-based buffer overflow in the SFTP protocol
handler for Panic Transmit … allows remote attackers to execute
arbitrary code via a long ftps:// URL.

• 2-way interaction – 4.9%
example: single character search string in conjunction with a single
character replacement string, which causes an "off by one
overflow"

• 3-way interaction – 0.4%
example: Directory traversal vulnerability when register_globals is
enabled and magic_quotes is disabled
and .. (dot dot) in the page parameter

Finding Buffer Overflows
1. if (strcmp(conn[sid].dat->in_RequestMethod, "POST")==0) {

2. if (conn[sid].dat->in_ContentLength<MAX_POSTSIZE) {

 ……

3. conn[sid].PostData=calloc(conn[sid].dat->in_ContentLength+1024,
sizeof(char));

 ……

4. pPostData=conn[sid].PostData;

5. do {

6. rc=recv(conn[sid].socket, pPostData, 1024, 0);

 ……

7. pPostData+=rc;

8. x+=rc;

9. } while ((rc==1024)||(x<conn[sid].dat->in_ContentLength));

10. conn[sid].PostData[conn[sid].dat->in_ContentLength]='\0';

11. }

Interaction: request-method=”POST”, content-
length = -1000, data= a string > 24 bytes
1. if (strcmp(conn[sid].dat->in_RequestMethod, "POST")==0) {

2. if (conn[sid].dat->in_ContentLength<MAX_POSTSIZE) {

 ……

3. conn[sid].PostData=calloc(conn[sid].dat->in_ContentLength+1024,
sizeof(char));

 ……

4. pPostData=conn[sid].PostData;

5. do {

6. rc=recv(conn[sid].socket, pPostData, 1024, 0);

 ……

7. pPostData+=rc;

8. x+=rc;

9. } while ((rc==1024)||(x<conn[sid].dat->in_ContentLength));

10. conn[sid].PostData[conn[sid].dat->in_ContentLength]='\0';

11. }

Interaction: request-method=”POST”, content-
length = -1000, data= a string > 24 bytes
1. if (strcmp(conn[sid].dat->in_RequestMethod, "POST")==0) {

2. if (conn[sid].dat->in_ContentLength<MAX_POSTSIZE) {

 ……

3. conn[sid].PostData=calloc(conn[sid].dat->in_ContentLength+1024,
sizeof(char));

 ……

4. pPostData=conn[sid].PostData;

5. do {

6. rc=recv(conn[sid].socket, pPostData, 1024, 0);

 ……

7. pPostData+=rc;

8. x+=rc;

9. } while ((rc==1024)||(x<conn[sid].dat->in_ContentLength));

10. conn[sid].PostData[conn[sid].dat->in_ContentLength]='\0';

11. }

true branch

Interaction: request-method=”POST”, content-
length = -1000, data= a string > 24 bytes
1. if (strcmp(conn[sid].dat->in_RequestMethod, "POST")==0) {

2. if (conn[sid].dat->in_ContentLength<MAX_POSTSIZE) {

 ……

3. conn[sid].PostData=calloc(conn[sid].dat->in_ContentLength+1024,
sizeof(char));

 ……

4. pPostData=conn[sid].PostData;

5. do {

6. rc=recv(conn[sid].socket, pPostData, 1024, 0);

 ……

7. pPostData+=rc;

8. x+=rc;

9. } while ((rc==1024)||(x<conn[sid].dat->in_ContentLength));

10. conn[sid].PostData[conn[sid].dat->in_ContentLength]='\0';

11. }

true branch

Interaction: request-method=”POST”, content-
length = -1000, data= a string > 24 bytes
1. if (strcmp(conn[sid].dat->in_RequestMethod, "POST")==0) {

2. if (conn[sid].dat->in_ContentLength<MAX_POSTSIZE) {

 ……

3. conn[sid].PostData=calloc(conn[sid].dat->in_ContentLength+1024,
sizeof(char));

 ……

4. pPostData=conn[sid].PostData;

5. do {

6. rc=recv(conn[sid].socket, pPostData, 1024, 0);

 ……

7. pPostData+=rc;

8. x+=rc;

9. } while ((rc==1024)||(x<conn[sid].dat->in_ContentLength));

10. conn[sid].PostData[conn[sid].dat->in_ContentLength]='\0';

11. }

true branch

Allocate -1000 + 1024 bytes = 24 bytes

Interaction: request-method=”POST”, content-
length = -1000, data= a string > 24 bytes
1. if (strcmp(conn[sid].dat->in_RequestMethod, "POST")==0) {

2. if (conn[sid].dat->in_ContentLength<MAX_POSTSIZE) {

 ……

3. conn[sid].PostData=calloc(conn[sid].dat->in_ContentLength+1024,
sizeof(char));

 ……

4. pPostData=conn[sid].PostData;

5. do {

6. rc=recv(conn[sid].socket, pPostData, 1024, 0);

 ……

7. pPostData+=rc;

8. x+=rc;

9. } while ((rc==1024)||(x<conn[sid].dat->in_ContentLength));

10. conn[sid].PostData[conn[sid].dat->in_ContentLength]='\0';

11. }

true branch

Allocate -1000 + 1024 bytes = 24 bytes

Boom!

Ordering Pizza

Simplified pizza ordering:

6x4x4x4x4x3x2x2x5x2
 = 184,320 possibilities

6x217x217x217x4x3x2x2x5x2
= WAY TOO MUCH TO TEST

Ordering Pizza Combinatorially
Simplified pizza ordering:

6x4x4x4x4x3x2x2x5x2
 = 184,320 possibilities

2-way tests: 32

3-way tests: 150

4-way tests: 570

5-way tests: 2,413

6-way tests: 8,330

 If all failures involve 5 or fewer
parameters, then we can have
confidence after running all 5-way
tests.

So what? Who has time
to check 2,413 test

results?

How to automate checking
correctness of output

• Creating test data is the easy part!
• How do we check that the code worked correctly
 on the test input?

• Crash testing server or other code to ensure it does not crash
for any test input (like ‘fuzz testing’)
 - Easy but limited value

• Embedded assertions – incorporate assertions in code to check
critical states at different points in the code, or print out important
values during execution

• Full scale model-checking using mathematical model of system
and model checker to generate expected results for each input
 - expensive but tractable

Crash Testing
• Like “fuzz testing” - send packets or other input
 to application, watch for crashes
• Unlike fuzz testing, input is non-random;
 cover all t-way combinations
• May be more efficient - random input generation
 requires several times as many tests to cover the
 t-way combinations in a covering array
 Limited utility, but can detect
 high-risk problems such as:
 - buffer overflows
 - server crashes

Ratio of Random/Combinatorial Test Set
Required to Provide t-way Coverage

2w ay 3w ay 4w ay
nval=2

nval=6

nval=10

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50

5.00

Ratio

Interactions

V alues per
variable

4.50-5.00

4.00-4.50

3.50-4.00

3.00-3.50

2.50-3.00

2.00-2.50

1.50-2.00

1.00-1.50

0.50-1.00

0.00-0.50

Embedded Assertions
Simple example:
assert(x != 0); // ensure divisor is not zero

Or pre and post-conditions:
/requires amount >= 0;

/ensures balance == \old(balance) - amount &&
\result == balance;

Embedded Assertions
Assertions check properties of expected result:
 ensures balance == \old(balance) - amount
 && \result == balance;

•Reasonable assurance that code works correctly across
the range of expected inputs

•May identify problems with handling unanticipated inputs

•Example: Smart card testing

• Used Java Modeling Language (JML) assertions
• Detected 80% to 90% of flaws

Using model checking to produce tests

The system can never
get in this state!

Yes it can, and
here’s how …

 Model-checker test
production:
if assertion is not true,
then a counterexample
is generated.

 This can be
converted to a test
case.

 Black & Ammann, 1999

Model checking example
-- specification for a portion of tcas - altitude separation.
-- The corresponding C code is originally from Siemens Corp. Research
-- Vadim Okun 02/2002
MODULE main
VAR
 Cur_Vertical_Sep : { 299, 300, 601 };
 High_Confidence : boolean;
...
init(alt_sep) := START_;
 next(alt_sep) := case
 enabled & (intent_not_known | !tcas_equipped) : case
 need_upward_RA & need_downward_RA : UNRESOLVED;
 need_upward_RA : UPWARD_RA;
 need_downward_RA : DOWNWARD_RA;
 1 : UNRESOLVED;
 esac;
 1 : UNRESOLVED;
 esac;
...
SPEC AG ((enabled & (intent_not_known | !tcas_equipped) &
!need_downward_RA & need_upward_RA) -> AX (alt_sep = UPWARD_RA))
-- “FOR ALL executions,
-- IF enabled & (intent_not_known
-- THEN in the next state alt_sep = UPWARD_RA”

Computation Tree Logic
The usual logic operators,plus temporal:

 A φ - All: φ holds on all paths starting from the
current state.
 E φ - Exists: φ holds on some paths starting from
the current state.
 G φ - Globally: φ has to hold on the entire
subsequent path.
 F φ - Finally: φ eventually has to hold
 X φ - Next: φ has to hold at the next state

 [others not listed]

 execution paths
 states on the execution paths

SPEC AG ((enabled & (intent_not_known |
!tcas_equipped) & !need_downward_RA & need_upward_RA)
-> AX (alt_sep = UPWARD_RA))

“FOR ALL executions,

IF enabled & (intent_not_known
THEN in the next state alt_sep = UPWARD_RA”

What is the most effective way to integrate
combinatorial testing with model checking?

• Given AG(P -> AX(R))
“for all paths, in every state,
 if P then in the next state, R holds”

• For k-way variable combinations, v1 & v2 & ... &
vk

• vi abbreviates “var1 = val1”

• Now combine this constraint with assertion to produce
counterexamples. Some possibilities:

1. AG(v1 & v2 & ... & vk & P -> AX !(R))
2. AG(v1 & v2 & ... & vk -> AX !(1))
3. AG(v1 & v2 & ... & vk -> AX !(R))

What happens with these assertions?
1. AG(v1 & v2 & ... & vk & P -> AX !(R))

 P may have a negation of one of the vi, so we get
 0 -> AX !(R))
always true, so no counterexample, no test.
This is too restrictive!

1. AG(v1 & v2 & ... & vk -> AX !(1))
The model checker makes non-deterministic choices for
variables not in v1..vk, so all R values may not be covered
by a counterexample.
This is too loose!

2. AG(v1 & v2 & ... & vk -> AX !(R))
Forces production of a counterexample for each R.
This is just right!

Tradeoffs
 Advantages

− Tests rare conditions
− Produces high code coverage
− Finds faults faster
− May be lower overall testing cost

 Disadvantages
− Very expensive at higher strength interactions (>4-

way)
− May require high skill level in some cases (if formal

models are being used)

Tutorial Overview

1. Why are we doing this?
2. What is combinatorial testing?
3. What is it good for?
4. How much does it cost?

5.What tools are available?
6. What's next?

New algorithms to make it practical
• Tradeoffs to minimize calendar/staff time:

• FireEye (extended IPO) – Lei – roughly optimal, can be used for
most cases under 40 or 50 parameters

• Produces minimal number of tests at cost of run time

• Currently integrating algebraic methods

• Adaptive distance-based strategies – Bryce – dispensing one test
at a time w/ metrics to increase probability of finding flaws

• Highly optimized covering array algorithm

• Variety of distance metrics for selecting next test

• PRMI – Kuhn –for more variables or larger domains
• Parallel, randomized algorithm, generates tests w/ a few tunable parameters;
computation can be distributed

• Better results than other algorithms for larger problems

• Smaller test sets faster, with a more advanced user interface
• First parallelized covering array algorithm
• More information per test

12600 1070048 >1 day NA 470 11625 >1 day NA 65.03 10941 6

1549 313056 >1 day NA 43.54 4580 >1
day NA 18s 4226 5

127 64696 >21 hour 1476 3.54 1536 5400 1484 3.05 1363 4

3.07 9158 >12 hour 472 0.71 413 1020 2388 0.36 400 3

2.75 101 >1 hour 108 0.001 108 0.73 120 0.8 100 2

Time Size Time Size Time Size Time Size Time Size

TVG (Open Source) TConfig (U. of Ottawa) Jenny (Open Source) ITCH (IBM) IPOG
T-Way

New algorithms

Traffic Collision Avoidance System (TCAS): 273241102

Times in seconds
That's fast!

Unlike diet plans,
results ARE typical!

ACTS Tool

Defining a new system

Variable interaction strength

Constraints

Covering array output

Output
 Variety of output formats:

 XML
 Numeric
 CSV
 Excel

 Separate tool to generate .NET configuration
 files from ACTS output

 Post-process output using Perl scripts, etc.

Output options
Mappable values

Degree of interaction
coverage: 2
Number of parameters: 12
Number of tests: 100

0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 0 1 1 1 1
2 0 1 0 1 0 2 0 2 2 1 0
0 1 0 1 0 1 3 0 3 1 0 1
1 1 0 0 0 1 0 0 4 2 1 0
2 1 0 1 1 0 1 0 5 0 0 1
0 1 1 1 0 1 2 0 6 0 0 0
1 0 1 0 1 0 3 0 7 0 1 1
2 0 1 1 0 1 0 0 8 1 0 0
0 0 0 0 1 0 1 0 9 2 1 1
1 1 0 0 1 0 2 1 0 1 0 1
Etc.

Human readable

Degree of interaction coverage: 2
Number of parameters: 12
Maximum number of values per
parameter: 10
Number of configurations: 100

Configuration #1:

1 = Cur_Vertical_Sep=299
2 = High_Confidence=true
3 = Two_of_Three_Reports=true
4 = Own_Tracked_Alt=1
5 = Other_Tracked_Alt=1
6 = Own_Tracked_Alt_Rate=600
7 = Alt_Layer_Value=0
8 = Up_Separation=0
9 = Down_Separation=0
10 = Other_RAC=NO_INTENT
11 = Other_Capability=TCAS_CA
12 = Climb_Inhibit=true

Eclipse Plugin for ACTS

Work in
progress

Eclipse Plugin for ACTS

Defining
parameters
and values

ACTS Users

Information
Technology

Defense

Finance

Telecom

Tutorial Overview

1. Why are we doing this?
2. What is combinatorial testing?
3. How is it used and how long does it take?
4. What tools are available?

5.What's next?

Combinatorial Coverage Measurement

Test
s

Variables

a b c d

1 0 0 0 0

2 0 1 1 0

3 1 0 0 1

4 0 1 1 1

5 0 1 0 1

6 1 0 1 1

7 1 0 1 0

8 0 1 0 0

Variable pairs Variable-value
combinations
covered

Coverage

ab 00, 01, 10 .75

ac 00, 01, 10 .75

ad 00, 01, 11 .75

bc 00, 11 .50

bd 00, 01, 10, 11 1.0

cd 00, 01, 10, 11 1.0

Combinatorial Coverage Measurement

2-way

3-way

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.0

5 0.1 0.1
5 0.2 0.2

5 0.3 0.3
5 0.4 0.4

5 0.5 0.5
5 0.6 0.6

5 0.7 0.7
5 0.8 0.8

5 0.9 0.9
5 1

Percentage of t-way combinations

P
er

ce
nt

 c
ov

er
ag

e

4-way

 Configuration coverage for 27931416191 inputs.

What this means:
for 70% of 4-way
variable combinations,
tests cover at least 40%
of variable-value
configurations

•Measure coverage provided by existing test sets
•Compare across methodologies

Fault location
Given: a set of tests that the SUT fails, which
combinations of variables/values triggered the failure?

variable/value combinations
in passing tests

variable/value combinations
in failing tests

These are the ones we want

Fault location – what's the problem?
If they're in failing set but not in
passing set:
1. which ones triggered the failure?
2. which ones don't matter?

out of vt() combinations
n
t

Example:
30 variables, 5 values each
 = 445,331,250
 5-way combinations

142,506 combinations
in each test

Conclusions
 Empirical research suggests that all software failures

caused by interaction of few parameters
 Combinatorial testing can exercise all t-way

combinations of parameter values in a very tiny fraction
of the time needed for exhaustive testing

 New algorithms and faster processors make large-scale
combinatorial testing possible

 Project could produce better quality testing at lower cost
for US industry and government

 Beta release of tools available, to be open source
 New public catalog of covering arrays

Future directions
 Real-world examples will help answer these questions
 What kinds of software does it work best on?
 What kinds of errors does it miss?
• Other applications:

• Modelling and simulation
• Testing the simulation
• Finding interesting combinations:
 performance problems, denial of service attacks

• Maybe biotech applications. Others?

 Rick Kuhn Raghu Kacker
 kuhn@nist.gov raghu.kacker@nist.gov
 http://csrc.nist.gov/acts
(Or just search “combinatorial testing”. We’re #1!)

Please contact us if you are interested!

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Computation Tree Logic
	What is the most effective way to integrate combinatorial testing with model checking?
	What happens with these assertions?
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Eclipse Plugin for ACTS
	Eclipse Plugin for ACTS
	Slide Number 72
	Slide Number 73
	Combinatorial Coverage Measurement �
	Combinatorial Coverage Measurement �
	Fault location
	Fault location – what's the problem?
	Slide Number 78
	Slide Number 79

