
CRYSTALS–Kyber

Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, Damien Stehlé

authors@pq-crystals.org
https://pq-crystals.org/kyber

April 12, 2018

mailto:authors@pq-crystals.org
https://pq-crystals.org/kyber


The big picture

Kyber.CPAPKE: LPR encryption or “Noisy ElGamal”

s, e← χ

sk = s, pk = t = As+ e
r, e1, e2 ← χ

u← AT r + e1

v ← tT r + e2 + Enc(m)

c = (u, v)
m = Dec(v − sTu)

Kyber.CCAKEM: CCA-secure KEM via tweaked FO transform

• Enforce “honest” encapsulation

• Generate all randomnes in encryption via PRG, encrypt seed

• Recover seed during decapsulation

• Reencrypt and compare ciphertexts

1



The big picture

Kyber.CPAPKE: LPR encryption or “Noisy ElGamal”

s, e← χ

sk = s, pk = t = As+ e
r, e1, e2 ← χ

u← AT r + e1

v ← tT r + e2 + Enc(m)

c = (u, v)
m = Dec(v − sTu)

Kyber.CCAKEM: CCA-secure KEM via tweaked FO transform

• Enforce “honest” encapsulation

• Generate all randomnes in encryption via PRG, encrypt seed

• Recover seed during decapsulation

• Reencrypt and compare ciphertexts

1



Kyber.CPAPKE – design decisions I

• Use MLWE instead of LWE or RLWE
• Performance similar to RLWE
• Very easy to scale security and performance
• Remove some of the cyclic structure of RLWE

• Use R = Zq[X ]/(X 256 + 1) with q = 7681
• Fast, simple, in-place negacyclic NTT for multiplication
• Most widely studied and best understood structure

• Use centered binomial noise
• Efficient to sample without timing leakage

• Generate A via XOF(ρ) (“NewHope style”)
• Avoid “nothing-up-my-sleeves” discussions
• Avoid all-for-the-price-of-one attacks
• Sample A in NTT domain: save k2 NTTs

2



Kyber.CPAPKE – design decisions I

• Use MLWE instead of LWE or RLWE
• Performance similar to RLWE
• Very easy to scale security and performance
• Remove some of the cyclic structure of RLWE

• Use R = Zq[X ]/(X 256 + 1) with q = 7681
• Fast, simple, in-place negacyclic NTT for multiplication
• Most widely studied and best understood structure

• Use centered binomial noise
• Efficient to sample without timing leakage

• Generate A via XOF(ρ) (“NewHope style”)
• Avoid “nothing-up-my-sleeves” discussions
• Avoid all-for-the-price-of-one attacks
• Sample A in NTT domain: save k2 NTTs

2



Kyber.CPAPKE – design decisions I

• Use MLWE instead of LWE or RLWE
• Performance similar to RLWE
• Very easy to scale security and performance
• Remove some of the cyclic structure of RLWE

• Use R = Zq[X ]/(X 256 + 1) with q = 7681
• Fast, simple, in-place negacyclic NTT for multiplication
• Most widely studied and best understood structure

• Use centered binomial noise
• Efficient to sample without timing leakage

• Generate A via XOF(ρ) (“NewHope style”)
• Avoid “nothing-up-my-sleeves” discussions
• Avoid all-for-the-price-of-one attacks
• Sample A in NTT domain: save k2 NTTs

2



Kyber.CPAPKE – design decisions II

• Compress ciphertexts (round off least-significant bits)
• Reduce bandwidth requirements
• Introduce extra “LWR” noise

• Compress public keys
• Reduce bandwidth requirements
• Adds MLWR-style assumption instead of pure reduction from MLWE

(thanks to D’Anvers for pointing this out)
• No actual attacks or security problems
• Could fix proof by re-randomizing after decompression

• Allow decapsulation failures
• Failure probability < 2−140

• Avoiding failures would cost security (or performance)

3



Kyber.CPAPKE – design decisions II

• Compress ciphertexts (round off least-significant bits)
• Reduce bandwidth requirements
• Introduce extra “LWR” noise

• Compress public keys
• Reduce bandwidth requirements
• Adds MLWR-style assumption instead of pure reduction from MLWE

(thanks to D’Anvers for pointing this out)
• No actual attacks or security problems
• Could fix proof by re-randomizing after decompression

• Allow decapsulation failures
• Failure probability < 2−140

• Avoiding failures would cost security (or performance)

3



Kyber.CPAPKE – design decisions II

• Compress ciphertexts (round off least-significant bits)
• Reduce bandwidth requirements
• Introduce extra “LWR” noise

• Compress public keys
• Reduce bandwidth requirements
• Adds MLWR-style assumption instead of pure reduction from MLWE

(thanks to D’Anvers for pointing this out)
• No actual attacks or security problems
• Could fix proof by re-randomizing after decompression

• Allow decapsulation failures
• Failure probability < 2−140

• Avoiding failures would cost security (or performance)

3



FO transform – tweaks

• Hash public key into seed and shared key
• Multitarget protection against precomputation attacks
• Obtain contributory KEM

• Hash ciphertext into shared key
• Shared key depends on full KEM transcript
• More robust when building, e.g., AKE from Kyber

• Use Keccak-based functions for all hashes and XOF

4



FO transform – tweaks

• Hash public key into seed and shared key
• Multitarget protection against precomputation attacks
• Obtain contributory KEM

• Hash ciphertext into shared key
• Shared key depends on full KEM transcript
• More robust when building, e.g., AKE from Kyber

• Use Keccak-based functions for all hashes and XOF

4



FO transform – tweaks

• Hash public key into seed and shared key
• Multitarget protection against precomputation attacks
• Obtain contributory KEM

• Hash ciphertext into shared key
• Shared key depends on full KEM transcript
• More robust when building, e.g., AKE from Kyber

• Use Keccak-based functions for all hashes and XOF

4



Parameter sets and performance

Kyber512 (k = 2, level 1)

Sizes (in Bytes) Haswell Cycles (AVX2)
sk: 1632 gen: 55 160
pk: 736 enc: 75 680
ct: 800 dec: 74 428

Kyber768 (k = 3, level 3)

Sizes (in Bytes) Haswell Cycles (AVX2)
sk: 2400 gen: 85 472
pk: 1088 enc: 112 660
ct: 1152 dec: 108 904

Kyber1024 (k = 4, level 5)

Sizes (in Bytes) Haswell Cycles (AVX2)
sk: 3168 gen: 121 056
pk: 1440 enc: 157 964
ct: 1504 dec: 154 952

5



Kyber online

https://pq-crystals.org/kyber

6

https://pq-crystals.org/kyber

