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CLASSIC CODE-BASED CRYPTOGRAPHY

Based on the hardness of decoding random linear codes (syndrome decoding problem).

Follows McEliece/Niederreiter framework.

Very efficient computation.

Natural implementation features thanks to binary vectors arithmetic.

Drawback: large keys (around 1 MByte).
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WHY STRUCTURED CODES

Try to tackle the large key issue.

Idea: public matrix with compact description.

Quasi-Cyclic Codes (as seen before).

Quasi-Dyadic Codes (Misoczki, Barreto ’09).

Several code families have QD description:

If dyadic signature and code support verify certain conditions...

...then Dyadic ∩ Cauchy ∩ Goppa.
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GENERALIZED SRIVASTAVA CODES

Alternant codes with non-trivial intersection with Goppa codes.

Admit parity-check which is superposition of s blocks of size t × n.

Each block H` has ij-th element
zj

(vj − u`)i , (distinct) nonzero elements of Fqm .

If t = 1 this is a Goppa code.

Can generate QD-GS codes using (modified) algorithm for QD Goppa (P. ’12).

Efficient decoder, similar performance, more flexibility.
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DAGS: A QD-GS BASED KEM

Select hash functions G,H,K.

KEY GENERATION

Generate a QD-GS code.
SK: parity-check matrix H in alternant form over Fqm .
PK: generator matrix G in systematic form over Fq .

ENCAPSULATION

Choose random word m ∈ Fk ′

q .
Compute (ρ ‖ σ) = G(m) and d = H(m).
Generate error vector e ∈ Fn

q of weight w from seed σ.
Output (c,d) where c = (ρ ‖ m)G + e and set k = K(m).

DECAPSULATION

Recover codeword ((ρ′ ‖ m′) and error e′) from Decode(c).
Recompute G(m′), H(m′) and e′′, then compare.
Return ⊥ if decoding fails or any check fails, else return k = K(m′).
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ABOUT DAGS

Uses McEliece framework and IND-CCA KEM transform (Hofheinz, Hövelmanns, Kiltz ’17).

Leverages “randomized” IND-CPA McEliece variant for tighter security proof.

Length k ′ of input m is kept short, but long enough for 256 bits of entropy.

This helps keeping d small and making hashing more practical.

Private key (matrix H) can be efficiently represented by “support” (v ,y).

Alternant matrix is reconstructed on the fly together with syndrome computation.

This results in a small private key without computational overhead.
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Leverages “randomized” IND-CPA McEliece variant for tighter security proof.

Length k ′ of input m is kept short, but long enough for 256 bits of entropy.

This helps keeping d small and making hashing more practical.

Private key (matrix H) can be efficiently represented by “support” (v ,y).

Alternant matrix is reconstructed on the fly together with syndrome computation.

This results in a small private key without computational overhead.

EDOARDO PERSICHETTI FLORIDA ATLANTIC UNIVERSITY 13 APRIL 2018 6 / 11



SECURITY

There exist structural attacks targeting structured alternant codes: FOPT and variants
(Faugère, Otmani, Perret, Tillich ’10).

QC/QD structure crucial to reduce number of unknowns of system.

No definitive complexity analysis available.

Experimental evidence + (loose) theoretical bound
= hardness scales with dimension of solution space (number of free variables).

This is given by m − 1 for QD Goppa, but it is mt − 1 for QD-GS codes.

All QD Goppa parameters broken except for largest instances (m = 16).

No broken QD-GS parameters to date.
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PERFORMANCE

We choose:
Small m
Large s (power of 2)
t > 1 odd
Non-binary base field

Fqm = F2N large enough to define code, without being huge (N ≤ 12).

Stay clear of algebraic attacks (mt > 21).

High error-correction capacity (st/2)→ smaller codes.

Parameters (sizes in bytes):
q m n k k ′ s t w PK SK Ciphertext Sec. Level
25 2 832 416 26 24 13 104 6,760 2,496 552 1
26 2 1216 512 43 25 11 176 8,448 3,648 944 3
26 2 2112 704 43 26 11 352 11,616 6,336 1,616 5
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ONGOING AND FUTURE WORK

Simple reference implementation, designed for clarity.

Implementation is isochronous, to resist timing attacks and the like.

Much more efficient implementations are being developed:
Vectorized/Assembly/C++
Hardware (FPGA)
...

Several optimizations from practice/theory are being investigated.

Work in progress to make implementation side-channel resistant.

Accurate complexity analysis of algebraic attacks is ongoing/future project.
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CONCLUSIONS

DAGS has many good features:

Small sizes for all data (pk, sk, ciphertext): few Kb or less
Many intertwined parameters→ high flexibility and scalability

Option for “binary DAGS” is being developed
Alternant decoding presents no decryption failures→ allows use of static keys
Efficient in practice

Preliminary results in hardware show a speedup of up to 46x
e.g. timing of 78,318 ns for DAGS 3 Encapsulation

Entirely patent-free

Some delicate points:
Caution required with structural attacks

Easy to avoid with appropriate choice of parameters
Folding attacks don’t perform well on large (non-binary) base field

Non-binary arithmetic→ more complex implementation
Price to pay is actually fairly small
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www.dags-project.org
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