DME: a multivariate KEM scheme

.

Ignacio Luengo (U. Complutense de Madrid)

Implemented by Martín Avendaño, (CUD Zaragoza) Miguel A. Marco, (U. Zaragoza)

NIST First PQC Standarization Conference April 11-13, 2018 Fort Lauderdale, FL

Exponential maps

Exponential maps (called monomial in algebraic geometry) A matrix

$$\mathsf{A} = (\mathsf{a}_{ij}) \in \mathsf{M}_{\mathsf{n} imes \mathsf{n}}(\mathbb{Z}_{q-1})$$

defines an exponential map

$$G_A: \mathbb{F}_q^n \to \mathbb{F}_q^n$$

given by

$$G_{\mathcal{A}}(x_1,\ldots,x_n)=(x_1,\ldots,x_n)^{\mathcal{A}}=(x_1^{a_{11}}\cdot\ldots\cdot x_n^{a_{n1}},\ldots,x_1^{a_{1n}}\cdot\ldots\cdot x_n^{a_{nn}})$$

and satisfying

$$((x_1,\ldots,x_n)^A)^B = (x_1,\ldots,x_n)^{A\cdot B}$$

Theorem : If gcd(det(A), q - 1) = 1, then G_A is invertible on $(\mathbb{F}_q \setminus \{0\})^n$ and the inverse of G_A is given by $G_{A^{-1}}$

DME stands for double matrix exponentiation

The public key $F : \mathbb{F}_q^{nm} \to \mathbb{F}_q^{nm}$ is a map obtained as composition of five maps, $F = L_3 \circ G_2 \circ L_2 \circ G_1 \circ L_1$, and $q = 2^e$.

The map F is designed to verify,

- *F* is injective on $(\mathbb{F}_a^n \setminus \{0\})^m$
- $\blacktriangleright \quad \forall x \in (\mathbb{F}_q^n \setminus \{0\})^m, \ F(x) \in (\mathbb{F}_q^m \setminus \{0\})^n.$

DME parameters

- ► The maps G₁ and G₂ are exponential maps given by (public) matrices with two non-zero entries (powers of 2).
- ▶ The maps L_1, L_2 and L_3 are \mathbb{F}_q -linear (secret) isomorphisms
- ▶ NIST proposal: $n = 2, m = 3, q = 2^{48}, (288 bits)$
- Each component of F has 64 monomials
- F^{-1} is polynomial and has at least 2^{100} monomials.
- A typical monomial of F looks like

$$x_{i_1}^{2^{\alpha_1}} \cdots x_{i_4}^{2^{\alpha_4}} = x_1^{8388608} x_3^{131072} x_4^{8589934592} x_6^{1048576}$$

DME features

DME features

	Key Gen.	Encr.	Decr.	SK	PK	СТ	bytes
DME	445 M	2.11 M	1.08 M	288 B	2304 B	36 B	33 B

Pros:

- Very simple design
- Flexibility
- Constant time evaluation (timing side-channel attacks)
- Randomness: similar behavior as a block cypher : PRNG, Graph
- Immune to Grobner basis attack over $\mathbb{F}_{2^{48}}$

DME features

Cons:

- Very new system (2017)
- Proof of security: reduction to a hard problem
- ► Estructural attacks to find the secret linear maps L_i

Cryptoanalisys: Weil descent over \mathbb{F}_2

- ► Over F₂, F can be written as a system F̃ of quartic polynomials in 288 variables.
- Attack(Ward Buellens): use Fauguere-Perret decomposition algorithm (does not work for small fields)
- Degree of regularity of \tilde{F}

New parameters

New proposed parameters for the second round:

- n = 2, m = 4, N = 6 variables, $q = 2^{48}$
- ► $h(x_1,...,x_6) = (x_1, x_2, x_3, x_4, x_5, x_6, x_2x_4x_6, 0)$ $F : (\mathbb{F}_q)^6 \to (\mathbb{F}_q)^8$
- ▶ ct= 48 bytes, 32 monomials
- Typical monomials

$$x_1^{2^{\alpha_1}}x_2^{b_1}x_3^{2^{\alpha_3}}x_4^{b_4}x_5^{2^{\alpha_5}}x_6^{b_6}$$

On 𝔽₂ the PK, 𝓕 can have degree > 100 and more than 2²⁵⁶ monomials

Thank you for your attention!

Questions?

Back