DME: a multivariate KEM scheme

Ignacio Luengo
 (U. Complutense de Madrid)

Implemented by
Martín Avendaño, (CUD Zaragoza)
Miguel A. Marco, (U. Zaragoza)

NIST First PQC Standarization Conference
April 11-13, 2018
Fort Lauderdale, FL

Exponential maps (called monomial in algebraic geometry)
A matrix

$$
A=\left(a_{i j}\right) \in M_{n \times n}\left(\mathbb{Z}_{q-1}\right)
$$

defines an exponential map

$$
G_{A}: \mathbb{F}_{q}{ }^{n} \rightarrow \mathbb{F}_{q}{ }^{n}
$$

given by

$$
G_{A}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{n}\right)^{A}=\left(x_{1}^{a_{11}} \cdot \ldots \cdot x_{n}^{a_{n 1}}, \ldots, x_{1}^{a_{1 n}} \cdot \ldots \cdot x_{n}^{a_{n n}}\right)
$$

and satisfying

$$
\left(\left(x_{1}, \ldots, x_{n}\right)^{A}\right)^{B}=\left(x_{1}, \ldots, x_{n}\right)^{A \cdot B}
$$

Theorem : If $\operatorname{gcd}(\operatorname{det}(A), q-1)=1$, then G_{A} is invertible on $\left(\mathbb{F}_{q} \backslash\{0\}\right)^{n}$ and the inverse of G_{A} is given by $G_{A^{-1}}$

DME

DME stands for double matrix exponentiation

The public key $F: \mathbb{F}_{q}^{n m} \rightarrow \mathbb{F}_{q}^{n m}$ is a map obtained as composition of five maps, $F=L_{3} \circ G_{2} \circ L_{2} \circ G_{1} \circ L_{1}$, and $q=2^{e}$.

The map F is designed to verify,

- F is injective on $\left(\mathbb{F}_{q}^{n} \backslash\{0\}\right)^{m}$
- $\forall x \in\left(\mathbb{F}_{q}^{n} \backslash\{0\}\right)^{m}, F(x) \in\left(\mathbb{F}_{q}^{m} \backslash\{0\}\right)^{n}$.

DME parameters

- The maps G_{1} and G_{2} are exponential maps given by (public) matrices with two non-zero entries (powers of 2).
- The maps L_{1}, L_{2} and L_{3} are $\mathbb{F}_{q^{-}}$linear (secret) isomorphisms
- NIST proposal: $n=2, m=3, q=2^{48},(288$ bits $)$
- Each component of F has 64 monomials
- F^{-1} is polynomial and has at least 2^{100} monomials.
- A typical monomial of F looks like

$$
x_{i_{1}}^{2^{\alpha_{1}}} \cdots x_{i_{4}}^{2^{\alpha_{4}}}=x_{1}^{8388608} x_{3}^{131072} x_{4}^{8589934592} x_{6}^{1048576}
$$

DME features

DME features

	Key Gen.	Encr.	Decr.	SK	PK	CT	bytes
DME	445 M	2.11 M	1.08 M	288 B	2304 B	36 B	33 B

Pros:

- Very simple design
- Flexibility
- Constant time evaluation (timing side-channel attacks)
- Randomness: similar behavior as a block cypher: PRNG,
- Immune to Grobner basis attack over $\mathbb{F}_{2^{48}}$

DME features

Cons:

- Very new system (2017)
- Proof of security: reduction to a hard problem
- Estructural attacks to find the secret linear maps L_{i}

Cryptoanalisys: Weil descent over \mathbb{F}_{2}

- Over \mathbb{F}_{2}, F can be written as a system \tilde{F} of quartic polynomials in 288 variables.
- Attack(Ward Buellens): use Fauguere-Perret decomposition algorithm (does not work for small fields)
- Degree of regularity of \tilde{F}

New parameters

New proposed parameters for the second round:

- $n=2, m=4, N=6$ variables, $q=2^{48}$
- $h\left(x_{1}, \ldots, x_{6}\right)=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{2} x_{4} x_{6}, 0\right)$ $F:\left(\mathbb{F}_{q}\right)^{6} \rightarrow\left(\mathbb{F}_{q}\right)^{8}$
- $\mathrm{ct}=48$ bytes, 32 monomials
- Typical monomials

$$
x_{1}^{2^{\alpha_{1}}} x_{2}^{b_{1}} x_{3}^{\alpha_{3}} x_{4}^{b_{4}} x_{5}^{\alpha_{5}} x_{6}^{b_{6}}
$$

- On \mathbb{F}_{2} the PK, \tilde{F} can have degree >100 and more than 2^{256} monomials

Thank you for your attention!

Questions?

