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Summary

Summary

Ding Key Exchange
An ephemeral Diffie-Hellman-like key exchange from RLWE problem

m Post-quantum key exchange protocol

Ephemeral-only Diffie-Hellman-like (forward secure), not KEM
Only one RLWE sample

Reduced communication cost

Parameter sets targeting AES-128/192/256 security

Drop-in replacement

Simple and elegant design
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LWE & Ring-LWE-based Key Exchange Protocols

LWE & Ring-LWE-based Key Exchange Protocols

Key Exchange
m Pre-2012: Various LWE & RLWE encryption (KEM) schemes with large ciphertext
size. Framework of DH-like key exchange construction appeared. No concrete

error reconciliation mechanism

m 2012: Ding et al. invented the first complete LWE & RLWE-based
Diffie-Hellman-like key exchange protocols (DING12)

2014: Peikert tweaked DING12 reconciliation slightly
2015: Bos et al. implemented PKT14 (BCNS)
2016: Alkim et al. improved BCNS (NewHope)
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LWE & Ring-LWE-based Key Exchange Protocols

LWE & Ring-LWE-based Key Exchange Protocols

Attacks (Key Reuse)

m 2015: NSA revealed key reuse issues for post-quantum encryption and key
agreement

m 2016: Fluhrer proposed attack framework on Diffie-Hellman-like
reconciliation-based key exchange

m 2016-2018: Ding et al. extended Fluhrer's attack in multiple works and proposed
countermeasure
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Diffie-Hellman Key Exchange

Generalizing DH

b commute

m DH works because maps f(z) = 2% and h(z) =z
foh=hof,

o — composition
Nonlinearity

Many attempts — Braid group etc.

J. Ritt (1923) — Power polynomials,
Chebychev polynomials and elliptic curve

No direct post-quantum variant
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Diffie-Hellman Key Exch

Figure 1: J. Ritt

PERMUTABLE RATIONAL FUNCTIONS*

BY

J.F. RITT

INTRODUCTION

We investigate, in this paper, the circumstances under which two rational
funetions, @(z) and W(z), each of degree greater than unity, are such that

D[#(z)] = ¥[0(2)).

A pair of functions of this type will be called permutable.

A memoir devoted 1o this problem has recently been published by Julia}
When @ (z) and #(¢) are polynomials, and are such that no iterate of one is
identical with any iterate of the ather, Julia shows how ®(2) and ¥¥(z) ean
be obtained from the formulas for the multiplication of the argument in the
functions ¢ and cose. His other results are mainly of a qualitative nature,
and deal with the manner in which @(z) and #(2) behave when iterated.

Certain of Julia's results have been announced independently by Fatou§
Fatou's method is identical with that of Julia.

The method used in the present paper differs radically from that of Julia
and Fatou, and leads to results of much greater precision. Its chief yield is the

THEOREM. Jf the rational functions @ (2) and W (z), each of dsgree greater
thaw unity, are permutable, and if no iterale of ®(2) is identival with any
iterate of W (z))| there exist a periodic meromorphic function f(2), and fuer
wwmbers a, b, ¢ and d, such that

flartb) = O[f()],  flez+d) = #[f(2)].

The possibilities for /(z) are: any linear function of ¢, cosz, pz; in the
lemniscatic case (g = 0), ¢'z; in the equianharmonic case (g = 0), 'z

Figure 2: 1923
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Diffie-Hellman Key Exchange

Basic ldeas

m A.B.C. three matrices:

(AxB)xC=Ax(BxCQC)

m The idea of LWE:

Adding errors in the process.
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Approximate Diffie-Hellman from RLWE

pA = asa+ 2ex

PB =asSB + 2637
| |

ko= sApB = asasp+2saep =~ kp =pasp = asasp + 2spey

m Public a € R4 uniformly random. Error e is small
m k4 only approximately equals to kg
m Difference is even — same low bits — mod 2 simultaneously, but not that simple
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Approximate Diffie-Hellman Key Exchange from RLWE

Approximate Diffie-Hellman from RLWE

pA = asa + 2ex

pp = asp + 2@37
| |

ka = sapp = asasp +2saep =~ kp =pasp = asasp+ 2spes

m Need to send additional small information — We call it “Signal”
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Error
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Figure 3: Mismatch
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Protocol Construction

Party 4 Party j
$ 128
seed < '{07 1} a = Derive_a() € Ry
a = Derlve,a() € R, Public key: p; = a-s; +2e; € Ry

Public key: pi = a - si + 2¢; € Rq i, seed Private key: s; € Rq

Private key: s; € Rq where s e & Dy
Sj5 €5 o

$
where s;,€; < Dzn o p} = Round(p;, p, q)

p; = Round(p;, p, q)
pi = Recover(p},p,q) € Ry
P} w; kj =pi - s;j € Ry
w; = Sig(k;) € {0,1}"
sk;j = Moda(k;,w;) € {0, 1}"

b} = Recover(s}, p,q) € R,
ki =pj -si € Ry
sk; = Moda(ksi, w;) € {0, l}n

Figure 4: Ding Key Exchange
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Protocol Construction

. ) outer values moved to inner region
inner region g

+(g-1)/2

-a/4 a4 -a/4 aa T -al4 o
swaps the
} regions i

inner region values moved to outer region

4

outer region

Signal function Sig(.)

Figure 5: Rounding




Ding Key Exchange
00e0

Protocol Construction

Protocol Construction

Hint Function og(z),01(2)

Hint functions og(x), o1(x) from Z, to {0,1} are defined as:
0 g 0,z €[4 +1,[%]+1
oy < J0EEFULLEL o foae -4+ 1 14+ 1]
1, otherwise 1, otherwise

Signal Function  Sig()

For any y € Zg, Sig(y) = op(y), where b & {0,1}. If Sig(y) = 1, we say y is in the
outer region, otherwise y is in the inner region.

Reconciliation Function Moda()

Mods() is a deterministic function with error tolerance § = { — 2. For any x in Z, and

w = Sig(x), Mody(z,w) = (z +w - % mod ¢) mod 2.

N
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Protocol Construction

Rounding Function  Round()

m Reduce communication cost using rounding technique.

m Round public key as + 2e to drop least significant bits.

Recovering Function  Recover()
m Recover rounded public key to R,.

m Error term 2¢’ now contains random and deterministic “errors”.

4

Correctness

m (ki — kjlloo < § — 2.

m Generate n-bit final shared key.
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Parameter Choices

Table 1: Parameter Choices

Claimed SL\ICIS;:; Failure
" g 4 Security Level y Probability
Category
512 4.19 120833 7551 AES-128 I 2-60
1024 2.6 120833 7551 AES-192 i 260

AES-256 \Y,




Ding Key Exchange
°

Communication Cost

Communication Cost

Table 2: Communication Cost

Party i —j Party j — ¢ Total Claimed NIST
(Byte) (Byte) (Byte) Security Level Security
Category
512 848 896 1744 AES-128 [
1024 1680 1792 3472 AES-192 i

AES-256 \
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Passive Security

Passive Security

m Notion: Adversary cannot distinguish transcripts of the protocol from uniform
random

m Submitted as KEM — IND-CPA claimed

m No key reuse
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Advantages

Advantages

Ephemeral key exchange — One RLWE sample and forward secure
Reduced communication cost

DH-like key exchange vs KEM

Longer final shared key

Flexible parameter choices

Simple and elegant design
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Limitations

Limitations

m Larger communication cost compared with current public key cryptosystems
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Applications

Applications

Drop-in replacement for protocols/applications that use DH(E)/ECDH(E) etc.
TLS, SSH, IPsec, VPN
End-to-end applications (secure messaging, audio/video calling etc.)

Client-server applications
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Two Estimators Used in Our Cryptic Analysis

1. Progressive BKZ (pBKZ) Simulator
[Aono et al., 2016]: Four relevant parameters:
m blocksize
m GSA constant r
m ENUM search radius coefficient «
m ENUM search success probability p
Input: basis B, the target 3 (or target r).

Output: optimal runtime ¢,px 7z of pBKZ while
the reduced basis achieves target r.

2. BKZ with Sieve

[Albrecht et al., 2017]:

Input: dimension of a basis B, the
blocksize 3.

Output: asymptotic runtime
tBKZ—Sieve 10 get BKZ-f reduced
basis.

IBKZ—Sieve = 8T+ 20'2925+16'4(F10p8)
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Two Properties of Ding Key Exchange

Rescaling

Let z = Recover(Round(a - s +2e,p, q),p,q) = as+ 2e +d = as+ 2f € R,, where
s, e i Dzn 5 and 2f = 2e + d.
The attack on the protocol is given z and a, output private key s.
This problem is equivalent to:
z=a-s+2f modgq
s 27 =927l s+ f modyg
s Z'=d" s+ f modyq

Standard deviation of term f is denoted as oy. Note that f no longer follows discrete
Gaussian distribution.
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Two Properties of Ding Key Exchange

Number of Samples

Our security analysis is based on the fact:

ONLY ONE RLWE sample (a,b =a-s+ e mod q) € (Rq, Ry) is given.

Some other security analysis are actually based on more samples.
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Attack Choice

RLWE with one given instance

N

ISIS Direct

SIS
Reduced ‘
problems uSVP BDD \

Lattice BaS|s Reduc’non

) <« Amplifying Basis Exhaustive
algorithms BKW Reduction ENUM search
Relevant
reforences — [HKM15] [AGVWA7]  [ABPW13] [BG14]

Possible attacks on search RLWE problem with only one given instance.
Relevant references [HKM15], [AGVW17], [ABPW13] and [BG14] are
[Herold et al., 2015], [Albrecht et al., 2017], [Aono et al., 2013] and

[Bai and Galbraith, 2014] in reference respectively.
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Our Simulator

“2016 estimation”

The "2016 estimation” in [Albrecht et al., 2017] states that if the Gaussian Heuristic
and GSA hold for BKZ-5 reduced basis and

VB/d-||(e[L)l|2 ~ /Bo < 627 Vol(La 4)"/. (1)

then error e can be found by BKZ-3 with root Hermite Factor 6.
Equation (1) originates from NewHope [Alkim et al., 2016] and was corrected in
[Albrecht et al., 2017].
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Our Simulator for Parameter Choice

Input: dimension n and modulus ¢ in RLWE(n, ¢, 0¢) case from Ding Key Exchange.
Output: lower bound of o required in Ding Key Exchange.

Step 1. A short vector ||by|| = 67 - det(B)'/? is assumed to be inside of the BKZ-£
reduced basis B of dimension d [Chen, 2013], where the rHF is

6 = (((B)"/PB)/(2me)) /1), (2)
We pre-compute the expected § for § = 10,--- ,n and rewrite equation (1) as
,B . (0_62 + O’fQ) < 52572n71 . qn/(2n+1)' (3)

In our case, d =2n + 1 and Vol(L(A7q)) = q".
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Our Simulator

Our Simulator for Parameter Choice

Input: dimension n and modulus ¢ in RLWE(n, ¢, 0¢) case from Ding Key Exchange.
Output: lower bound of o required in Ding Key Exchange.

Step 2. for 3 from 10 to n, input (n, 3), compute Tpxz (tpprz and tBKk z—Sicve)
from two BKZ runtime estimators respectively.

practical) bit operations of RLWE(n,q,0¢) =  logy(t,prz X 2.7 x 10° x 64).
f 2\tp
and (4)

(lower bound) bit operations of RLWE(n, q,0f) = logy (tBK Z—sieve X 64)

~{0.003924 - 82 — 0.568 - 3 +41.93  (n = 512)
logy(tppKcz(secs)) = { 0.004212 - 82 — 0.6886 - 3 + 55.49 (n = 1024) (5)

Combine with Step 1, we can get the lower bound of oy in RLWE(n, ¢, 0) which
covers security of AES-128/192/256 using equations (4), (2) and (3).
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Parameter Choice for Ding Key Exchange Protocol

Table 3: Our simulation data and parameter settings covering security of AES-128/192/256

Security level AES-128 AES-192 and AES-256
(n,q,0) (512,120833,4.19) (1024,120833,2.6)
Method pBKZ 2016 estimation pBKZ 2016 estimation

Logarithmic

computational 319.14 142.27 1473.09 279.05

complexity
Blocksize 330 366 660 831
GSA Const. 0.983 0.991
o (for s and e) of 419 26
our parameter choice
oy 4.92 4.72

bits security \ 145.59 282.37
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Conclusion

m Ding Key Exchange — An ephemeral-only Diffie-Hellman-like RLWE
+ Rounding key exchange

m Reduced communication cost, flexible parameter choices covering security of
AES-128/192/256 and forward secure

m Drop-in replacement of Diffie-Hellman key exchange and variants



Thanks for your attention!

Q&A
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