Efficient Leakage-Resilient Secret Sharing

Peihan Miao Akshayaram Srinivasan Prashant Nalini Vasudevan

UC Berkeley

Secret Sharing [Shamir'79, Blakley'79]

Several applications: MPC, threshold crypto, leakage-resilient circuit compilers, ...

Efficient constructions, e.g., Shamir, which has rate
$$=\frac{|\sigma|}{|sh_i|}=1$$

Secret Sharing [Shamir'79, Blakley'79]

What if there are side-channels?

What if the adversary, in addition to (t - 1) full shares, has some information about the others?

Local Leakage Resilient Secret Sharing [GK'18, BDIR'18]

1. Adversary specifies:

- Set $S \subseteq [n]$ of size at most (t-1)
- For $i \notin S$, a *leakage function* f_i that outputs μ bits
- 2. Adversary is given shares sh_i for $i \in S$, and leakage $f(sh_i)$ for $i \notin S$

3. Its views for any two secrets should be statistically close

- Local each f_i depends on one share
- Bounded each f_i outputs few bits
- Otherwise arbitrary

$$leakage \ rate = \frac{\mu}{|sh_i|}$$

What was known

- Guruswami-Wootters '16: Shamir over $GF[2^k]$ not leakage-resilient
- Benhamouda et al '18: Shamir over large-characteristic fields *is* leakage-resilient with leakage rate $\Theta(1)$ for thresholds more than $n o(\log n)$
- Constructions:
 - Goyal-Kumar '18: 2-out-of-*n* with rate and leakage rate $\Theta\left(\frac{1}{n}\right)$
 - Badrinarayanan-Srinivasan '18: O(1)-out-of-*n* with rate $\Theta\left(\frac{1}{\log n}\right)$ and leakage rate $\Theta\left(\frac{1}{n\log n}\right)$
- Other models of leakage-resilience for secret sharing have been studied, e.g., Boyle et al '14, Dziembowski-Pietrzak '07, etc.

What we do

Leakage-resilient threshold secret sharing schemes

- for all thresholds,
- with constant rate,
- supporting any constant leakage rate

In this talk: simpler construction with slightly worse rate, supporting leakage rate up to 1/2

Our construction

Threshold *t*, secret $\sigma \in \mathbb{F}$, leakage bound of μ bits

Sample
$$s, w_1, ..., w_n \leftarrow \mathbb{F}^m$$
, and $r \leftarrow \mathbb{F}$
 $\sigma \xrightarrow{t \text{-out-of-}n} sh_1, ..., sh_n$
 $(s, r) \xrightarrow{t \text{-out-of-}n} sr_1, ..., sr_n$
 i^{th} share: $(w_i, sh_i + \langle w_i, s \rangle + r, sr_i)$

(*m* specified later)

Reconstruction

$$i^{th}$$
 share: $(w_i, sh_i + \langle w_i, s \rangle + r, sr_i)$

Given shares of t different i's:

- 1. Reconstruct *s* and *r* from $\{sr_i\}$
- 2. Recover sh_i from $(sh_i + \langle w_i, s \rangle + r)$
- 3. Reconstruct σ from $\{sh_i\}$

Adversary knows:

- $(w_i, sh_i + \langle w_i, s \rangle + r, sr_i)$ for $i \in S$, where |S| < t
- $f_i(w_i, sh_i + \langle w_i, s \rangle + r, sr_i)$ for $i \notin S$
- Possibly *s* and *r*

Approach:

- 1. For the $i \notin S$, replace $(sh_i + \langle w_i, s \rangle)$ with random $u_i \in \mathbb{F}$
- 2. Show that adversary cannot tell this was done (by a hybrid argument)
- 3. By secrecy of *t*-out-of-*n* sharing, adversary's view is independent of secret σ

Claim: For any $i \notin S$, even given s and r,

 $f_i(\boldsymbol{w_i}, sh_i + \langle \boldsymbol{w_i}, \boldsymbol{s} \rangle + r, \boldsymbol{sr_i}) \approx f_i(\boldsymbol{w_i}, u_i + r, \boldsymbol{sr_i})$

Leftover Hash Lemma [ILL89]:

 $\langle w_i, s \rangle$ is almost uniformly random given s and leakage $g(w_i)$, if $|g(w_i)| \ll |w_i|$

Claim: For any $i \notin S$, even given s and r,

 $f_i(\boldsymbol{w_i}, sh_i + \langle \boldsymbol{w_i}, \boldsymbol{s} \rangle + r, \boldsymbol{sr_i}) \approx f_i(\boldsymbol{w_i}, u_i + r, \boldsymbol{sr_i})$

Leftover Hash Lemma [ILL89]:

 $\langle w_i, s \rangle$ is almost uniformly random given s and leakage $g(w_i)$, if $|g(w_i)| \ll |w_i|$

should be independent of s

Claim: For any $i \notin S$, even given s and r,

$$f_i(\boldsymbol{w_i}, sh_i + \langle \boldsymbol{w_i}, \boldsymbol{s} \rangle + r, \boldsymbol{sr_i}) \approx f_i(\boldsymbol{w_i}, u_i + r, \boldsymbol{sr_i})$$

independent of \boldsymbol{s} and r because 2-out-of-n share

Leftover Hash Lemma [ILL89]:

 $\langle w_i, s \rangle$ is almost uniformly random given s and leakage $g(w_i)$, if $|g(w_i)| \ll |w_i|$

should be independent of s

Claim: For any $i \notin S$, even given s and r,

Leftover Hash Lemma [ILL89]:

 $\langle w_i, s \rangle$ is almost uniformly random given s and leakage $g(w_i)$, if $|g(w_i)| \ll |w_i|$

should be independent of s

Claim: For any $i \notin S$, even given s and r,

Leftover Hash Lemma [ILL89]:

 $\langle w_i, s \rangle$ is almost uniformly random given s and leakage $g(w_i)$, if $|g(w_i)| \ll |w_i|$

should be independent of *s*

determines $|w_i|$ and |s| given bound on leakage

What we get

For local leakage resilient threshold secret sharing of:

- secrets in F,
- among *n* parties $(n \leq |\mathbb{F}|)$,
- against μ bits of leakage per share,
- with adversarial advantage at most ϵ ,

$$|\mathbf{w}_i| = |\mathbf{s}| = m \approx 1 + \frac{\mu}{\log|\mathbb{F}|} + \frac{3\log(4n/\epsilon)}{\log|\mathbb{F}|}$$

Share size: (2m + 2) field elements

Share size overhead

Share sizes for secrets in a field \mathbb{F} , with $|\mathbb{F}| \approx 2^{128}$, and $\epsilon = 1/2^{80}$

n = 2

Leakage	Share size (bits)	Overhead
1 bit	1024	8
100 bits	1280	10
10%	1280	10
30%	2560	20
45%	10240	80
49%	50688	396

Leakage	Share size (bits)	Overhead
1 bit	1280	10
100 bits	1280	10
10%	1536	12
30%	2816	22
45%	10496	82
49%	52480	410

Computational overhead

Computational overhead in sharing time over Shamir secret sharing, for various leakage rates*

(n,t)	Shamir	0.1%	10%	30%	45%	49%
(2, 2)	$4.16~\mu { m s}$	7.08	9.78	19.6	83.5	406
(100, 2)	$41.4 \ \mu s$	23.6	26.1	74.1	292	1319
(100, 50)	$1.13 \mathrm{\ ms}$	1.72	1.75	2.83	9.78	46.1
(100, 100)	$2.27 \mathrm{\ ms}$	1.36	1.44	2.13	5.01	21.2

* as observed on a machine with 4-core 2.9 GHz CPU and 16 GB of RAM

Improvements

- Generalisation to secret sharing for any monotone access structure
- Leakage rate up to 1, and constant-factor improvement in rate using better extractors than inner product

In full version:

- Rate-preserving transformation to non-malleable secret sharing
- Leakage-tolerant MPC for general interactions patterns

Concurrent work

Stronger leakage-resilient and non-malleable secret-sharing schemes for general access structures, Aggarwal et al

- general leakage-resilience transformation, with O(1/n) rate loss, constant leakage rate,
- non-malleable secret sharing against concurrent tampering,
- leakage-resilient threshold signatures

Leakage-resilient secret sharing, Kumar et al

- secret sharing schemes resilient against adaptive leakage,
- non-malleable secret sharing against tampering with leakage

Thank You!