HTL

Employee Password

Usability Survey

Yee-Yin Choong

Visualization and Usability Group Information Access Division Information Technology Laboratory National Institute of Standards and Technology

September 10, 2015

Employee Password Management

- Online Survey
- Anonymous
- Questions on password management and computer security
- Demographics
- US Government Workers
- 4,573 Department of Commerce (DOC) employees

Demographics

- Gender

Education

Demographics

- Age (years)

- Service Length (years)

Demographics

- Job Level

- Computer Experience

Findings - Outline

- Password Usage
- Attitudes toward Password Policy
- Password Management Lifecycle
- Generation
- Maintenance
- Authentication

Password Usage

- Average 9 work-related passwords
- 5 frequently used
- 4 occasionally used
- Time spent on creating passwords

Password Types	Estimated Longest Time Total ${ }^{1}$ (Mean)	Worst Scenario - time spent annually ${ }^{2}$ (with longest time)	
		Hours/employee/year If on a 90 -day cycle	Hours/employee/year If on a 60-day cycle
Frequent passwords	98.5 min	6.6 h	9.9 h
Occasional passwords	86.6 min	5.8 h	8.7 h
	Total	12.4 h	18.6 h

[^0]
Password creation takes long, why?

- The program kept rejecting my password because it was not within the guildlines [sic] even though I thought I was following them.
- That 25 minutes was actual time trying to get a system to accept a password. I was so desparate [sic] I actually started asking colleagues for suggestions! .
- Longer if I manage to lock myself out in doing so, or can't remember what I just changed it to and have to get it reset all over.
- sometimes it's taken me 20min to change a password to one that meets the requirements and isn't too far off from my other ones (so I can remember it!)
- Longest time is 2 days. The password expired and a default password was set. I could not change away from the default due to a lock out feature requiring that the password not be changed more than once in two days.
- There have been several times where it took so long to create a complex enough password that I forgot the password when logging in the next time and had to have it reset.

Attitudes toward Password Policy

- Too long
- Too complex
- Changed too often
- not at the same time!

What did they say?

- The combination of length/complexity, number of different passwords, plus frequent changes makes passwords insecure, because they must be written down.
- How do you think people remember extremely complex passwords which also require to be changed every 3 months ? \#Wr1T31TdOwN .. yes that's 12 chars :)
- I understand that for ""security" " reasons it is good to change a password - but seriously are we all expected to magically remember 12 different passwords, most of which are 10 charecters [sic] long, and can't look like a word (I agree with the reason for the complexity - it just hard on the user).
- I make a list of the password requirements for all accounts and make one that fits all of them.
- Security has become so complex, it's interfering with being able to do a job efficiently.
- It is hard enough to come up with a 12 or so string of unique characters every three months, let alone remember 10 individual ones.
- Security has become so complex, it's interfering with being able to do a job efficiently.

Organizational Password Policy

- Protect data integrity and system security
- Control employees' access
- Dictate employees' password management
- Password composition requirements
- Password expiration
- Reuse and history
- Storage requirements

Employee Attitudes

- Attitudes (Fishbein \& Ajzen, 1975)
"Learned, relatively enduring dispositions to respond in consistently favorable or unfavorable ways to certain people, groups, ideas, or situations."
- Positive employee attitudes
- combat negative reactions to organization-wide changes or policy viewed as unfavorable

Divergent Views

Employee Password Management Lifecycle

Password Generation Considerations

* All comparisons are statistically significant ($p<0.05$).

Password Generation Strategies

* All comparisons are statistically significant ($p<0.05$).

Password Maintenance

* All comparisons are statistically significant ($p<0.05$).

ITL

Password Tracking - paper in plain view

Attitudes toward Password Policy

Authentication Experience

Thoughts on Compromised Passwords

* Comparisons (None, Major, Accounts dependent) are statistically significant ($p<0.05$).

What Did 4,500+ People Tell Us?

- Staff overwhelmed - pushing human cognition limits
- different password requirements (length, complexity, expiration)
- multiple passwords - frustration level significantly related to number of passwords
- Statistically significant relationships
- Attitudes toward organizational security policies
- Security behaviors and experiences
- Positive attitudes
- Compliant and strong passwords more important
- Write-down passwords less often
- Less frustration with login problems
- Better understanding of password security

Promising Solution?

- Smart Cards for identification and authentication
- Security, multi-factors
- Something you have - a Smart card
- Something you know - a PIN
- Usability
- Single sign-on
- PINs easier to remember and to enter

The case of CAC (Common Access Card)

- CAC
- Standard identification for Department of Defense (DoD) personnel
- Physical access
- Logical access
- Online Survey
- Anonymous
- Questions on CAC usage and password management

NG

Single Sign-on Coverage

371

Attitudes toward Password Policy

Authentication Problems - Forgetting

\square CAC - Forget PIN ■ PWD - Forget Password

- Statistical significance ($p<0.05$)
- More frustration with Forgetting Password

User Satisfaction with CAC

CAC benefits >> Passwords

- Fewer passwords to maintain, less forgetting
- Better attitudes
- Less frustration with authentication problems
- Time-saving
- High Satisfaction

Moving Forward

- Smartcards (e.g., PIVs, CACs) for authentication
- More research on
- Direction of causality: Attitudes \& Behaviors
- Promote positive attitudes
- Work and personal password management
- Better organizational security policies

Choong, Y. Y., Theofanos, M., \& Liu, H.-K. (2014). United States Federal Employees' Password Management Behaviors - A Department of Commerce Case Study, NISTIR 7991

Choong, Y. Y. (2014). A cognitive-behavioral framework of user password management lifecycle. In Human Aspects of Information Security, Privacy, and Trust (pp. 127-137). Springer International Publishing.

Choong, Y. Y., \& Theofanos, M. (2015). What 4,500+ people can tell you-employees' attitudes toward organizational password policy do matter. In Human Aspects of Information Security, Privacy, and Trust (pp. 299-310). Springer International Publishing.

Yee-Yin Choong

National Institute of Standards and Technology
Gaithersburg, MD, USA
Yee-yin.choong@nist.gov

[^0]: ${ }^{1}$ Estimated Longest Time Total = (number of password counts) \times (estimated longest time for a password)
 ${ }^{2}$ The calculation is based on the password changing cycle of 90 days (i.e. 4 times a year), and 60 days (i.e. 6 times a year).

