# 1.5 sec CAK Authentication...

Is it possible?



### **Gallagher PIV Solution Architecture**





### **Gallagher CAK Transaction**





## **Choice of Crypto**



ECC 1.2 seconds

RSA 2.2 seconds



## The importance of good RF



Bad RF coupling 3.2 second transaction

Good RF coupling 2.2 second transaction



## What went wrong?

Select Get CAK Sign (FIPS140 check) Cert Nonce



Insufficient power in card to complete the fips140 start-up checks



## The importance of good RF

- Readers must supply sufficient energy
- Ideally the Antennas should be about the size of the card for good coupling and power transfer
- FICAM test requirements of 3cm is a fair test



How do we train the users to present the card at the optimum orientations when "prox" cards responded to a wave?



## The importance of good RF





#### **Optimizing Communication to the Card**

#### **Card Data Rate**

| Card Data Rate | Card Vendor 1 RSA 2048 (ms) |    | Card Vendor 2 RSA 2048 (ms) |    |
|----------------|-----------------------------|----|-----------------------------|----|
| 106 kbps       | 2387                        |    | 2860                        |    |
| 212 kbps       | 2320                        | 3% | 2797                        | 2% |
| 424 kbps       | 2270                        | 5% | 2760                        | 3% |

At the higher data rates there is a higher chance of failed reads

Conclusion: stick to the base rate



#### **Optimizing Communication to the Card**

#### **Extended ADPU's**

| CHUID read option               | Transaction Time (ms) | Improvement |
|---------------------------------|-----------------------|-------------|
| Standard command chaining       | 1336                  |             |
| Optimized Extended length APDUs | 1150                  | 14%         |

#### For this transaction close to 200ms improvement

Conclusion: Use Extended ADPU's wherever the card supports the capability



#### **Compress the Certificates?**

#### **Using NIST Test Cards**

Card 10: RSA2048 uncompressed Certificates

Card 11: RSA 2048 Gzip compressed Certificates

| Average of 5 reads (s) | Uncompressed | Compressed |
|------------------------|--------------|------------|
| T10 Reader             | 2.11         | 2.09       |
| T11 Reader             | 2.11         | 2.14       |
| T20 Reader             | 2.18         | 2.15       |

Conclusion: For these particular cards no significant improvement



#### **Controller to Reader Communications**

#### HBUS - Gallagher's RS485 protocol

Designed prior to PIV project to meet our other access control and sensor needs



- 1M bps traditional RS485 protocols run up to 38K4 bps some now using 115K2 bps
- Not Polled traditional multi-dropped RS485 2 wire protocols are polled e.g. if polling each device at 5 polls per second then average queueing delay is 100ms



#### Where does the time go?

|                                               | RSA2048 | ECC P256 |
|-----------------------------------------------|---------|----------|
| Card start-up                                 | 28%     | 35%      |
| Read CAK certificate                          | 15%     | 22%      |
| Dispatch CAK to Controller, receive challenge | 8%      | 9%       |
| Card challenge & response                     | 47%     | 24%      |
| Controller verify challenge & grant access    | 3%      | 10%      |

Note: these percentages were measured in 2012 and vary between card vendors.



## Is a 1.5 second ECC CAK transaction realistic?

Yes

But...

