Evaluating the Security Implications of Innovation: Risk and Risk Reduction in the Internet of Everything

UMUC Faculty Presentation to FISSEA 2015 Valorie King, Richard White, Sam Chun

Is this the Internet of Everything?

Or, is this how you see the IoE?

INNOVATIONS

Quantized Self

- Body Sensors (Tattoos, Electro Myographics)
 - Gestures
 - Authentication
 - Threat Detection (CBRNE)
- Wearable Computers
 - Communications & Productivity
 - Health & Fitness
 - Augmented Reality (input / feedback)
- Implants & Medical Devices
 - Body Area Networks
 - Medication Delivery
 - Monitor / Augment internal systems
 - Prosthetics

Infrastructures & Technologies

- Smart Homes
- Smart Communities
- Autonomous Vehicles
- Intelligent Transportation Infrastructures
- Utilities Infrastructures & Advanced Metering
- Banking Sector & Digital Currencies

Enabling Technologies

- Graphene
- Neuromorphic Chips
- Brain-Computer Interfaces
- Physical Unclonable Functions (PUFs)
- Dielectric thin films
- Magneto-electric magnetic sensors
- Nano imprinting
- Nano machines

TECHNOLOGY REVIEWS

Technology Transfer

- Technology Identification & Maturation
 - Identifying promising technologies in R&D phases
 - helping technologies emerge from the R&D environment
- Technology Transfer Processes (Universities)
- Technology Transfer Initiatives (DHS, DOE)
- Influence of funding availability & sources, i.e. venture capital, government grants, etc.

Technology Development Life Cycle

Image Source: http://www.atp.nist.gov/eao/gcr02-841

Technology Identification & Evaluation Process

RISK IDENTIFICATION

Cybersecurity & Emerging Tech

- Incorporating emerging technologies into products and services
 - What security features are needed?
 - Can we predict how these features will fail?
 - Can we identify *potential or expected* cybersecurity:
 - Gaps
 - Risks
 - Vulnerabilities

Evaluation Methodologies

- Analysis of Alternatives
- Case Studies
- Delphi Technique (Expert Panels)
- Experiments
- Gap Analyses
- Meta-Analyses (Published Research)
- Pilot Studies & Implementations
- Product Assurance
- Risk Assessments

Analysis of Alternatives

Experiment-Based Evaluations

RISK REDUCTION

Two Key Questions

- How can this technology or emerging application of technology be used to improve or support the security of devices and services which comprise the Internet of Everything?
- How can this technology be used by attackers, criminals, terrorists, etc. to achieve their goals and objectives within the context of the Internet of Everything?

SUMMARY & CONCLUSIONS

Cybersecurity for the IoE: Built-in or Bolted-on?

Image Source: http://www.atp.nist.gov/eao/gcr02-841

Questions?

Contact Information

- Valorie King (Course Chair):
 - Valorie.King@faculty.umuc.edu
- Richard White (Course Chair):
 - <u>Richard.White@faculty.umuc.edu</u>
- Samuel Chun (Faculty Member):
 - <u>Samuel.Chun@faculty.umuc.edu</u>

