
Foundations of Software Assurance

Paul E. Black
Software Quality Group
Software and Systems Division

16 June 2016

Outline

 Software Assurance Reference Dataset
(SARD)

 Bugs Framework (BF)

2

Software Assurance Reference Dataset
(SARD)

3

http://samate.nist.gov/SARD/

Software Assurance Reference Dataset
(SARD)

4

http://samate.nist.gov/SARD/

 Public repository for software
assurance test cases with known
vulnerabilities

 Over 140 000 cases in C,
C++, Java, PHP, C#, and Python

 Contributions from NSA/CAS,
IARPA, Fortify, TELECOM Nancy,
Defence R&D Canada, Klocwork,
MIT Lincoln Laboratory, Praxis,
Toyota, Secure Software, etc.

What is Static Analysis?

Java,
C,

C++,
…

binary

5

Weaknesses
&

Vulnerabilities

What is Static Analysis?

Java,
C,

C++,
…

binary

Static
Analyzer

 Examine source code or binary for weaknesses,
adherence to guidelines, etc.

6

Weaknesses
&

Vulnerabilities
SARD

Static
Analyzer

7

Known
Weaknesses

&
Vulnerabilities

programs with
known bugs

How to Test Static Analyzers?

?=

Characteristics of Test Cases

8

Production
Code

SARDprograms with
known bugs

Characteristics of Test Cases

Known Bugs 9

Production
Code

SARDprograms with
known bugs

Characteristics of Test Cases

Known Bugs

Statistically
Significant

Perfect
Test
Suite

10

Production
Code

SARDprograms with
known bugs

 Approximations
– Collect millions of tool

warnings for open
source software from
SATE.

– Manually analyze
hundreds of reported
bugs (CVEs) to
establish ground truth.

– Publish Juliet test
suite: hundreds of
thousands of synthetic
test cases with known
bugs.

Known Bugs

Production
Code

CVE

SATE

Juliet

Characteristics of Test Cases

11

Statistically
Significant

12

 Contributions also from Kratkiewicz, MIT
Lincoln Laboratory, Praxis, etc.

 NSA Juliet 1.2 - over 86 000 small,
synthetic test cases in C, C++, and Java,
covering 150 bug classes

 IARPA STONESOUP Phase 3 - 15 000
cases based on 12 web apps with injected
bugs from 25 classes

 1276 test cases from Toyota
 Test cases from Static Analysis Tool

Exposition (SATE)
 2000 PHP cases developed at TELECOM

Nancy

SARD Content

Other SARD Content
 Zitser, Lippmann, & Leek MIT cases

– 28 slices from BIND, Sendmail, WU-FTP, etc.
 Fortify benchmark 112 C and Java cases
 Klocwork benchmark 40 C cases
 25 cases from Defence R&D Canada
 Robert Seacord, “Secure Coding in C and C++” - 69 cases
 Comprehensive, Lightweight Application Security Process

(CLASP) - 25 cases
 329 cases from our static analyzer suite

Outline

 Software Assurance Reference Dataset
(SARD)

 Bugs Framework (BF)

14

http://samate.nist.gov/BF/

The Bugs Framework (BF) is
a precise descriptive language for bugs.

15

Precise Medical Language
• Medical professionals have terms to precisely name

muscles, bones, organs, conditions, diseases, etc.

16

Current Bug Descriptions Have Problems

 Common Weakness Enumeration (CWE)
– Definitions are imprecise and inconsistent.
– Coarse grained: bundling attributes, attacks, etc.
– Uneven coverage: some combinations not given all.

 Software Fault Patterns (SFP)
– Does not include upstream causes or consequences.
– Based solely on CWEs.

 Semantic Templates
– Does not distinguish many types of fault, weakness,

location, or consequence.
– Only cover two classes.

17

What is the Bugs Framework?

 It is a set of classes of bugs.
 Each bug class has

– Causes
– Attributes of a fault
– Consequences

 Causes and consequences are directed
graphs.

 BF uses precise terminology.

18

Bugs Framework Classes

 Injection (INJ), e.g.
– SQL injection
– OS injection

 Control of Interaction Frequency (CIF), e.g.
– Limit number of login attempts
– Only one vote per voter

 Information Exposure (IEX), e.g.
– Password leak

 Buffer Overflow (BOF)

19

Buffer Overflow: Attributes

21

Buffer Overflow: Attributes
• Access:

• Read, Write.

22

Buffer Overflow: Attributes

23

• Access:
• Read, Write.

• Boundary:
• Below (before, under, or lower), Above (after, over, or upper).

Buffer Overflow: Attributes

24

• Access:
• Read, Write.

• Boundary:
• Below (before, under, or lower), Above (after, over, or upper).

• Location:
• Heap, Stack, BSS (uninitialized data), Data (initialized), Code (text).

return to stringToId()

return to getInvocation()

return to getOneElement()

Buffer Overflow: Attributes

25

• Access:
• Read, Write.

• Boundary:
• Below (before, under, or lower), Above (after, over, or upper).

• Location:
• Heap, Stack, BSS (uninitialized data), Data (initialized), Code (text).

• Magnitude (how far outside):
• Small (just barely outside), Far (e.g. 4000).

Buffer Overflow: Attributes

26

N a t i o n a l I n s t i t u t e o f

• Access:
• Read, Write.

• Boundary:
• Below (before, under, or lower), Above (after, over, or upper).

• Location:
• Heap, Stack, BSS (uninitialized data), Data (initialized), Code (text).

• Magnitude (how far outside):
• Small (just barely outside), Far (e.g. 4000).

• Data Size (how much is outside):
• Little, Huge.

Buffer Overflow: Attributes
• Access:

• Read, Write.
• Boundary:

• Below (before, under, or lower), Above (after, over, or upper).
• Location:

• Heap, Stack, BSS (uninitialized data), Data (initialized), Code (text).
• Magnitude (how far outside):

• Small (just barely outside), Far (e.g. 4000).
• Data Size (how much is outside):

• Little, Huge.
• Reach (one-by-one or arbitrary):

• Continuous, Discrete.

27

B eo

Buffer Overflow: Causes

28

Access:
Read
Write

Boundary:
Below
Above

Location:
Heap
Stack

Magnitude:
Small
Far

Data Size:
Little
Huge

Reach:
Continuous
Discrete

No NULL
Termination

Wrong Index / Pointer
Out of Range

Data Exceeds Array

Array Too Small

Too Much Data

Incorrect
Conversion

Input Not
Checked Properly

Incorrect Calculation

Off By One

Integer
Underflow

Integer Overflow
Wrap-around

Integer
Coercion

Incorrect
Argument

Missing
Factor

Causes Attributes

Buffer Overflow: Consequences

29

Access:
Read
Write

Boundary:
Below
Above

Location:
Heap
Stack

Magnitude:
Small
Far

Data Size:
Little
Huge

Reach:
Continuous
Discrete

Resource Exhaustion

Information Exposure

Information Change/Loss

Arbitrary Code Execution

System Crash

Program Crash

Denial Of
Service

ConsequencesAttributes

Incorrect Results

Altered Control Flow

What is BF Good For?
 Precisely explain why techniques work in some cases and

not others.
 More clearly describe vulnerabilities (e.g. Heartbleed,

Shellshock, and Ghost).
 Help programmers write better code, because they

understand weaknesses more clearly.
 Accurately state the classes of bugs that software

assurance tools cover (and do not cover).

31

Example 1: BF Explains Techniques
 Canaries

– A canary is extra memory above and below an
array with unusual values, e.g., 0xDEADBEEF

– Useful with attributes
• Write Access
• Small Magnitude

 Address Space Layout Randomization
(ASLR)
– Allocate arrays randomly about memory
– Useful with attributes

• Heap Location
• Stack Location - limited

32

33

from
http://xkcd.com/1354/

Example 2: Heartbleed

Heartbleed buffer overflow is:
– caused by Data Exceeds Array, specifically Too Much Data
– because of Input not Checked Properly
– where there was a Read that was After the end, Far outside
– in a Continuous read of a Huge number of bytes
– from an array in the Heap
– that may be exploited for Information Exposure
– when enabled by Sensitive Information Uncleared Before

Release (CWE-226).

“The (1) TLS and (2) DTLS implementations … do not properly
handle Heartbeat Extension packets, which allows remote
attackers to obtain sensitive information from process memory
via crafted packets that trigger a buffer over-read, as
demonstrated by reading private keys, …” (CVE-2014-0160)

h a t \0 k e y = 1 4 8 3 5 0 3 8 I s a b e

34

Example 2: Heartbleed

Information
Exposure

35

Sensitive
Info Uncleared Before

Release

No NULL
Termination

Wrong Index / Pointer
Out of Range

Data Exceeds Array

Array Too Small

Too Much Data

Resource Exhaustion

Incorrect
Conversion

Information Change/Loss

Arbitrary Code Execution

System Crash

Program Crash

Denial Of
Service

Input Not
Checked Properly

Incorrect Calculation

Off By One

Integer
Underflow

Integer Overflow
Wrap-around

Integer
Coercion

Incorrect
Argument

Missing
Factor

Incorrect Results

Altered Control Flow

Access:
Read
Write

Boundary:
Below
Above

Location:
Heap
Stack

Magnitude:
Small
Far

Data Size:
Little
Huge

Reach:
Continuous
Discrete

Example 2: Heartbleed h a t \0 k e y = 1 4 8 3 5 0 3 8 I s a b e

