HILA5: KEM and Public Key Encryption From Ring-LWE and Error Correcting Codes?

Markku-Juhani C. Saarinen <mjos@mjos_fi>

F O. B(x 1339, CB1 0BZ, Cambridge, UK [–]el. US +1 (202) 559 06581

First NIST PQC Standardization W orkshop

Fort Lauderdale April 12, 2018

Key Encapsulation Mechanism (KEM) and Public Key Encryption?

Following the NIST call [NI16] and Peikert [Pe14], our scheme is formalized as an IND-CPA Key Encapsulation Mechanism (KEM), Consisting of three algorithms:

(PK, SK) ← KeyGen().² Generate a public key PK and a secret key SK.²
 (CT, K) ← Encaps(PK).² Encapsulate a (random) key K in ciphertext CT.²
 K² ← Decaps(SK, CT).² Decapsulate shared key K from CT with SK.

In this model, reconciliation data is a part of ciphertext produced by Encaps(). The three KEM algorithms reconstitute a natural R single-roundtrip key exchange:

Alice?		Bob?
(PK,SK) ← KeyGen()	PK,	
	,CT	$(CT,K) \leftarrow Encaps(PK)$
$K \leftarrow Decaps(SK, CT)$,	

Thanks to its low failure rate ($< 2^{-128^{\circ}}$ due to novel reconciliation methods and error correction) HILA5 tan also be used for public key encryption ia (AEAD) Key Wrap.

Based on Ring-LWE (Learning with Errors in a Ring)?

Let \mathcal{R} be a ring with relements $\mathbf{v} \in \mathbb{Z}_q^n$. We use <u>fast NTT arithmetic</u> In $\mathbb{Z}_q[x]/(x^{n^2}+1)$.

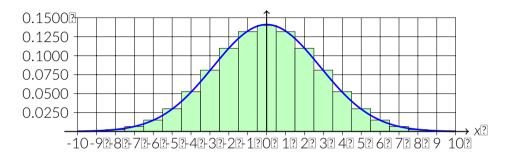
Definition [Informal)

With all distributions and computations in ring \mathcal{R} , let \mathbf{s} , \mathbf{e} be elements randomly? chosen from Bome from Distribution \mathcal{R} , and \mathbf{g} be a uniform Public? value. Determining from \mathbf{g} , $\mathbf{g} * \mathbf{s} + \mathbf{e}$) in ring \mathcal{R} is the (Normal Form Search) Ring? Learning With \mathbb{E} rrors (RLWE_{\mathcal{R},χ}) problem.?

Typically χ is chosen so that each coefficient is a Discrete Gaussian or from some other "Bell-Shaped" distribution that is relatively tightly concentrated around zero.

The hardness of the problem is a function of *n*, *q*, and χ . **HILA5** Uses **Very fast** and **well-studied** New Hope "parameters: h = 1024, $h = 3 * 2^{122} + 1 = 12289$, $\chi = \Psi_{16}$.

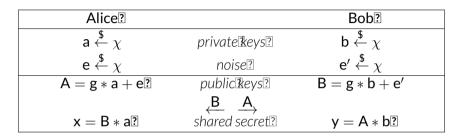
Discrete Caussian $\mathbb{D}_{\sqrt{8}}$ and Binomial bitcount \mathbb{D} is tribution $\Psi_{16\mathbb{Z}}$



Green bars are the probability mass of binomial distribution $\mathbb{P}(X = x) = 2^{-32} \binom{32}{x+16!}$. Blue line is the discrete Gaussian distribution \mathbb{D}_{σ} with deviation parameter $\mathbb{F} = \sqrt{8}$.

$$\rho_{\sigma}(x) \propto \exp(-\frac{x^2}{2\sigma^2})$$
. Very good approximation: $\rho_{\sigma}(x) \approx \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{x^2}{2\sigma^{2R}}}$

Noisy Diffie-Hellman in a Ring?



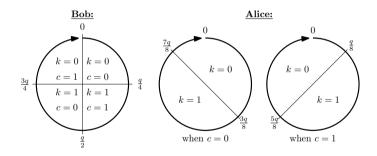
Here **g** is a uniform, public generator. By substituting **P**ariables in **A** and **B** we get?

$$\begin{aligned} x &= (g \ast b + e') \ast a = \underline{g \ast a \ast b} + e' \ast a \underline{?} \\ y &= (g \ast a + e) \ast b = \underline{g \ast a \ast b} + e \ast b. \end{aligned}$$

Because error terms are much smaller than the common term $\mathbf{\hat{g}} * \mathbf{a} * \mathbf{b}$ we have $\mathbf{x} \approx \mathbf{y}$.

Reconciliation: Traditionally Needs Random Numbers?

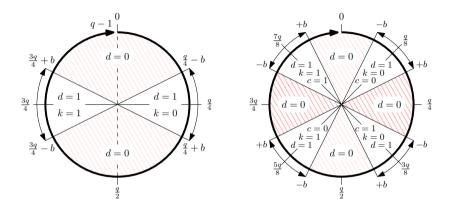
In reconciliation, we wish the holders of \mathbf{x} and \mathbf{y} (Alice and Bob, respectively) to? arrive at exactly the same \mathbf{x} are \mathbf{x} with \mathbf{x} inimal \mathbf{x} communication \mathbf{x} .



In Peikert's Teconciliation [Pe14] Bob sends 1 "phase bit" c for each vector element.

Since[®] is odd and cannot be evenly divided in half, a <u>fresh random bit</u>[®] needed to[®] "smoothen" the divide. **New Hope's** reconciliation of also needs random[®] numbers.

HILA5's Novel "Safe Bits" Reconciliation and Error Correction?



As we don't need n = 1024 bits, we can $ext{Belect}$ **SafeBits** $away from the decision boundary in order to get unbiased <math>ext{Becrets}$ without $ext{Bising}$ additional randomness.

We designed **error** torrection to desite push the failure probability well under 2^{-128} .

Error Correction Code XE5?

The Theory of Error-Correcting Codes HARDER

$\leftarrow \text{Hey students! Pay attention in the coding theory \verb"Classes!" ??}$

I designed a linear block code, XE5, specifically for HILA5.

Security Requirement: Fast, Itonstant-time Implementatable.

After Parious Considerations **SafeBits**), ended up with a block size of 496 bits (256 message bits + 240 redundancy bits.)

Always corrects 5 random bit flips, more with high probability.

I first@lescribed@imilar@tonstant-time@rror@torrection@techniques (for TRUNC8) in:?

M.-J. O. Saarinen. **"Ring-LWE ciphertext compression and error torrection: Tools for lightweight post-quantum tryptography"**. Proc. 3rd ACM International Workshop on IoT Privacy, Trust, and Security, IoTPTS '17, pp. 25-22. ACM, April 2017.

https://eprint.iacr.org/2016/1058 (Original uploaded November 15, 2016)

Pindakaas: HILA5 is IND-CPA, not ND-CCA?

[BBLP17] D. J. Bernstein, L. G. Bruinderink, T. Lange, and L. Panny: HILA5 pindakaas: On the CCA security of lattice-based encryption with error correction." ACR ePrint 2017/1214. https://eprint.iacr.org/2017/1214.

There is a single point on p. 17 of the HILA5 specification which roneously claims? IND-CCA security. With (too) much B peculation this was shown not to be correct in [BBLP17]. The original SAC 2017 academic paper never even mentions IND-CCA.

Furthermore even [BBLP17] Itself Itearly States Ithat: 2

"We emphasize that our dittack does not break the IND-CPA security of HILA5. If HILA5 were clearly dabeled as aiming merely for IND-CPA security then our dittack would merely be a cautionary notee, showing the importance of not reusing keys."

Creating an IND-CCA® ariant via **Fujisaki–Okamoto transform** is straightforward. I will propose Buch Pariant, probably not very dissimilar to "HILA5FO" from BBLP17].

What Distinguishes HILA5 from the Rest ??

- + It's Very Fast and can do KEM and Public Key Encryption. Dnly about 5% slower than fastest New Hope (CPA) implementation (Matching Ring-LWE parameters.)
 I'll have to get better NTT code for the new version, my current NTT code sucks!
- + Less randomness Prequired. Reconciliation In ethod Produces Punbiased Becrets without randomized B moothing; much less randomness is therefore Prequired.
- + HILA5[®]decryption[®]doesn't fail.[®]HILA5 has a failure rate well under 2⁻¹²⁸. Non-negligible[®]decryption[®]ailure rate is needed in[®]public key encryption.[®]
- + Non-malleable. Computation of the final shared Becret in HILA5 KEM uses the full public key and ciphertext messages, thereby reinforcing from malleability and making a class of adaptive attacks Infeasible.
- + Shorter messages. Tiphertext messages are slightly smaller than New Hope's.
- + **Patent Tree.** As the sender can "choose the message" (as in NEWHOPE-SIMPLE), Ding's Ring-LWE key exchange patents less likely to be applicable.

HILA5 Spec Sheet: Questions ??

Algorithm Purpose: ? Key Encapsulation and Public Key Encryption. Underlying problem: Ring-LWE (New Hope: h = 1024. h = 12289. Ψ_{16}) Public key size: 1824 Bytes (+32 Byte private key hash.)? Private key size:? 1792 Bytes (640 Bytes@ompressed.)? 2012 Byte expansion (KEM) + payload + MAC.? Ciphertext size: $< 2^{-128}$, consistent with security level.? Failure rate? 2²⁵⁶ (Category 5 Equivalent to AES-256). Classical Becurity:? 2¹²⁸ (Category 5^[2] Equivalent to AES-256).^[2] Ouantum security:?

Paper: M.-J. O. Saarinen: "HILA5: On Reliability, Reconciliation, and Error Correction for Ring-LWE Encryption." Selected Areas in Cryptography SAC 2017, LNCS 10719, Springer, pp. 292-212, 2018. https://eprint.iacr.org/2017/424

Always get the latest code and specs at: https://github.com/mjosaarinen/hila5