
HILA5:HILA5: KEMKEM andand PublicPublic KKeeyy EncryptionEncryption
FFrromom Ring-LRing-LWEWE andand ErrErroror CorrCorrectingecting CodesCodes 

Markku-JuhaniMarkku-Juhani OO.. SaarinenSaarinen 
<mjos@mjos.<mjos@mjos.fi>fi> 

PP..OO.. BoBoxx 1339,1339, CB1CB1 0BZ,0BZ, Cambridge,Cambridge, UKUK
TTel.el. USUS +1+1 (202)(202) 559559 06580658 

FirstFirst NISTNIST PQCPQC StandardizationStandardization WWorkshoporkshop 
FFortort Lauderdale,Lauderdale, AprilApril 12,12, 20182018 

1/11 

mailto:mjos@mjos.fi


Key Encapsulation Mechanism (KEM) and Public Key Encryption 
Following the NIST call [NI16] and Peikert [Pe14], our scheme is formalized as an
IND-CPA Key Encapsulation Mechanism (KEM), consisting of three algorithms: 
(PK, SK) ← KeyGen(). Generate a public key PK and a secret key SK. 
(CT, K) ← Encaps(PK). Encapsulate a (random) key K in ciphertext CT. 

K ← Decaps(SK, CT). Decapsulate shared key K fromCTwith SK.
In this model, reconciliation data is a part of ciphertext produced by Encaps(). The 
three KEM algorithms constitute a naturalR single-roundtrip key exchange: 

Alice Bob 
(PK, SK) ← KeyGen() 

K← Decaps(SK, CT) 

PK−−→CT←−− (CT, K) ← Encaps(PK) 

Thanks to its low failure rate (< 2−128 due to novel reconciliation methods and error
correction) HILA5 can also be used for public key encryption via (AEAD) KeyWrap. 

2/11 



Based on Ring-LWE (Learning with Errors in a Ring) 
LetR be a ring with elements v ∈ Zn. We use fast NTT arithmetic inZq[x]/(xn + 1).q

Defnition (Informal)
With all distributions and computations in ring R, let s, e be elements randomly 
chosen from some non-uniform distribution χ, and g be a uniformly random public 
value. Determining s from (g, g ∗ s + e) in ringR is the (Normal Form Search) Ring 
LearningWith Errors (RLWER,χ) problem. 

Typically χ is chosen so that each coeffcient is a Discrete Gaussian or from some other
“Bell-Shaped” distribution that is relatively tightly concentrated around zero. 
The hardness of the problem is a function of n, q, and χ. HILA5 uses very fast and
well-studied “New Hope” parameters: n = 1024, q = 3 ∗ 212 + 1 = 12289, χ = Ψ16. 

3/11 



Discrete Gaussian D√8 and Binomial “bitcount” Distribution Ψ16 

0.0250
0.0500
0.0750
0.1000
0.1250
0.1500 

-10-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 x 

�Green bars are the probability mass of binomial distribtion P(X = x) = 2−32 x+3216 . 
Blue line is the discrete Gaussian distribution Dσ with deviation parameter σ = 

√8. 

ρσ(x) ∝ exp(−2
x
σ

2
2 ). Very good approximation: ρσ(x) ≈ √12π 

e− 2
x
σ

2
2 . 

σ 

4 / 11 



Noisy Diffe-Hellman in a Ring 
Alice Bob 

Here g is a uniform, public generator. By substituting variables in A and B we get 
x = (g ∗ b + e0) ∗ a = g ∗ a ∗ b + e0 ∗ a 
y = (g ∗ a + e) ∗ b = g ∗ a ∗ b + e ∗ b. 

Because error terms are much smaller than the common term g ∗ a ∗ b we have x ≈ y. 

a $← χ 

e $← χ 

private keys 
noise 

b $← χ 

e0 $← χ
A = g ∗ a + e 

x = B ∗ a 
public keys 

B←− A−→
shared secret 

B = g ∗ b + e0 

y = A ∗ b 

5 / 11 



Reconciliation: Traditionally Needs Random Numbers 
In reconciliation, we wish the holders of x and y (Alice and Bob, respectively) to 
arrive at exactly the same shared secret k with minimal communication c. 

0

q
2

q
4

k = 0

c = 0

k = 1

c = 1

k = 0

c = 1

k = 1

c = 0

3q
4

Bob:

0

when c = 0

3q
8

7q
8

k = 1

k = 0

0

when c = 1

k = 1

k = 0

q
8

5q
8

Alice:

In Peikert’s reconciliation [Pe14] Bob sends 1 “phase bit” c for each vector element. 
Since q is odd and cannot be evenly divided in half, a fresh random bit is needed to 
“smoothen” the divide. New Hope’s reconciliation of also needs random numbers. 

6/11 



HILA5’s Novel “Safe Bits” Reconciliation and Error Correction 
0

q
2

q − 1
0

q
4

3q
4

q
2

d = 1

d = 1d = 1

d = 1
k = 0

k = 0k = 1

k = 1
c = 0

c = 0 c = 1

c = 1

q
8

3q
8

5q
8

7q
8

−b

−b

−b

−b

+b

+b

+b

+b
d = 0

d = 0 d = 0

d = 0

d = 0d = 0
d = 1

k = 1 k = 0

d = 1 q
4

3q
4

q
4 − b

q
4 + b

3q
4 + b

3q
4 − b

As we don’t need n = 1024 bits, we can select “Safe Bits” away from the decision 
boundary in order to get unbiased secrets without using additional randomness. 
We designed error correction codes to push the failure probability well under 2−128. 

7/11 



Error Correction Code XE5 
← Hey students! Pay attention in the coding theory classes! 
I designed a linear block code, XE5, specifcally for HILA5. 
Security Requirement: Fast, constant-time implementatable. 
After various considerations (SafeBits), ended up with a block
size of 496 bits (256message bits + 240 redundancy bits.) 
Always corrects 5 random bit fips, more with high probability. 

I frst described similar constant-time error correction techniques (for TRUNC8) in: 
M.-J. O. Saarinen. “Ring-LWE ciphertext compression and error correction: Tools for
lightweight post-quantum cryptography”. Proc. 3rd ACM InternationalWorkshop on
IoT Privacy, Trust, and Security, IoTPTS ’17, pp. 15-22. ACM, April 2017. 
https://eprint.iacr.org/2016/1058 (Original uploaded November 15, 2016) 

8/11 

https://eprint.iacr.org/2016/1058


Pindakaas: HILA5 is IND-CPA, not IND-CCA 
[BBLP17] D. J. Bernstein, L. G. Bruinderink, T. Lange, and L. Panny: “HILA5
pindakaas: On the CCA security of lattice-based encryption with error
correction.” IACR ePrint 2017/1214. https://eprint.iacr.org/2017/1214. 

There is a single point on p. 17 of the HILA5 specifcation which erroneously claims 
IND-CCA security. With (too) much speculation this was shown not to be correct in
[BBLP17]. The original SAC 2017 academic paper never evenmentions IND-CCA.
Furthermore even [BBLP17] itself clearly states that: 

“We emphasize that our attack does not break the IND-CPA security of HILA5. If
HILA5 were clearly labeled as aiming merely for IND-CPA security then our attack
would merely be a cautionary notee, showing the importance of not reusing keys.” 

Creating an IND-CCA variant via Fujisaki–Okamoto transform is straightforward. 
I will propose such variant, probably not very dissimilar to “HILA5FO” from [BBLP17]. 

9/11 

https://eprint.iacr.org/2017/1214
http:IND-CPAsecurityofHILA5.If


What Distinguishes HILA5 from the Rest ? 
+ It’s Very Fast and can do KEM and Public Key Encryption. Only about 5% slower

than fastest NewHope (CPA) implementation (Matching Ring-LWE parameters.)
I’ll have to get better NTT code for the new version, my current NTT code sucks! 

+ Less randomness required. Reconciliation method produces unbiased secrets
without randomized smoothing; much less randomness is therefore required. 

+ HILA5 decryption doesn’t fail. HILA5 has a failure rate well under 2−128.
Non-negligible decryption failure rate is needed in public key encryption. 

+ Non-malleable. Computation of the fnal shared secret in HILA5 KEMuses the
full public key and ciphertext messages, thereby reinforcing non-malleability and
making a class of adaptive attacks infeasible. 

+ Shorter messages. Ciphertext messages are slightly smaller than NewHope’s. 
+ Patent free. As the sender can “choose themessage” (as in NEWHOPE-SIMPLE),

Ding’s Ring-LWE key exchange patents less likely to be applicable. 
10 / 11 



HILA5 Spec Sheet: Questions ? 
Algorithm Purpose: Key Encapsulation and Public Key Encryption. 
Underlying problem: Ring-LWE (NewHope: n = 1024, q = 12289, Ψ16)Public key size: 1824 Bytes (+32 Byte private key hash.) 
Private key size: 1792 Bytes (640 Bytes compressed.) 
Ciphertext size: 2012 Byte expansion (KEM) + payload +MAC. 
Failure rate: < 2−128, consistent with security level. 
Classical security: 2256 (Category 5 – Equivalent to AES-256). 
Quantum security: 2128 (Category 5 – Equivalent to AES-256). 

Paper: M.-J. O. Saarinen: “HILA5: On Reliability, Reconciliation, and Error Correction
for Ring-LWE Encryption.” Selected Areas in Cryptography – SAC 2017, LNCS 10719, 
Springer, pp. 192-212, 2018. https://eprint.iacr.org/2017/424 

Always get the latest code and specs at: https://github.com/mjosaarinen/hila5 
11 / 11 

https://eprint.iacr.org/2017/424
https://github.com/mjosaarinen/hila5

