HILA5: KEM and Public Key Encryption
 Fiom Ring-LWE and Eri or'Coriecting Codes?

Key Encapsulation Mechanism (KEM) and Public Key Encryption?

Following the NIST call [NI16] and Peikert [Pe14], our scheme is formalized as an IND-CPA Key Encapsulation Mechanism (KEM), 飞onsisting of threeßlgorithms:?
(PK, SK) \leftarrow KeyGen().? \quad Generate a public key PK and a secret key SK.?
$(\mathrm{CT}, \mathrm{K}) \leftarrow \operatorname{Encaps}(\mathrm{PK})$.? Encapsulate a (random) key K in ciphertext CT.?
$K ? \leftarrow \operatorname{Decaps}(S K, C T)$? $?$ Decapsulate shared key K from CT with SK.
In this model, ?econciliation data is a part of ciphertext produced by Encaps(). The? three KEM algorithmsonstitute a naturalR single-roundtrip key exchange:?

Alice?	Bob?	
$(\mathrm{PK}, \mathrm{SK}) \leftarrow$ KeyGen()	$\stackrel{\mathrm{PK}}{\mathrm{CT}}$	$(\mathrm{CT}, \mathrm{K}) \leftarrow$ Encaps(PK)
$\mathrm{K} \leftarrow \operatorname{Decaps(SK,~CT)}$		

 correction) HILA5 Zanæ్ß so be used for?ublic key encryption?ia (AEAD) Key Wrap.?

Based on Ring-LWE (Learning with画rors in a Ring)?

Definition (${ }^{(n f o r m a l)}$

With all distributions and computations in ring? R, let s, e be elements randomly?
 value. Determining from $(g, g * s+e)$ in ring \mathcal{R} is the (Normal Form Search) Ring? Learning With匡rors ($\operatorname{RLWE}_{\mathcal{R}, \chi}$) problem.?

Typically χ is chosen so that each coefficient is a DiscreteWaussian or from some other "Bell-Shaped"\$listribution that is relatively tightly concentrated around zero.?
The hardness of the problem is a function of n, q, and χ. HILA5 ?

Green bars are the probability mass of binomial distribtion $\mathbb{P}(X=x)=2^{-32}\binom{32}{x+16)}$.? Blue line is the discrete Gaussiandistribution D_{σ} with deviation parameter $\bar{z}=\sqrt{8}$.?

$$
\rho_{\sigma}(x) \propto \exp \left(-\frac{x^{2}}{2 \sigma^{2}}\right) . \text { Very good approximation: } \rho_{\sigma}(x) \approx \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{x^{2}}{2 \sigma^{2}}} .
$$

Noisy Diffie-Hellman in a Ring?

Alice?		Bob?
$\begin{aligned} & \mathrm{a} \stackrel{\$}{\stackrel{\$}{*} \chi} \\ & \mathrm{e} \stackrel{\$}{\leftarrow} \chi \end{aligned}$	private水eys? noise?	$\begin{gathered} \mathrm{b} \stackrel{\$}{\leftarrow} \chi \\ \mathrm{e}^{\prime} \stackrel{\$}{\leftarrow} \chi \end{gathered}$
$\begin{gathered} A=g * a+e ? \\ x=B * a ? \end{gathered}$	$\begin{aligned} & \text { public[keys? } \\ & \stackrel{\text { shared secret? }}{\stackrel{\mathrm{B}}{\stackrel{\mathrm{~A}}{4}}} \end{aligned}$	$\begin{gathered} \mathrm{B}=\mathrm{g} * \mathrm{~b}+\mathrm{e}^{\prime} \\ \mathrm{y}=\mathrm{A} * \mathrm{~b} \text { ? } \end{gathered}$

Hereg is a uniform, public generator. By substitutingariables in A and B we get?

$$
\begin{aligned}
x=\left(g * b+e^{\prime}\right) * a & =\underline{g * a * b}+e^{\prime} * a ? \\
y=(g * a+e) * b & =\underline{g * a * b}+e * b .
\end{aligned}
$$

Because error terms are much smaller than the common termg*a*bwe have $\mathbf{x} \approx \mathrm{y}$.?

Reconciliation: Traditionally

In reconciliation, we wish the holders of \mathbf{x} and \mathbf{y} (Alice and Bob,?espectively) to?

Alice:

In Peikert's?econciliation [Pe14] Bob sends 1 "phase bit" c for each vector ${ }^{\text {Bl }}$ lement.? Since画 is odd and cannot be evenly divided in half, a fresh random bit $\left.{ }^{3}\right\}$ needed to? "smoothen" the divide. $\$$ New Hope's reconciliation of also needs randomumbers.?

HILA5's©Novel "SafeBits" Reconciliation ${ }^{3}$ nd Error Correction?

As we don't need $n=1024$ bits, we can ${ }^{\text {Selelect }}$? ${ }^{2}$ Safe Bits" away from the decision? boundary in order to get unbiasedsecrets?ithout usinghdditional randomness.?

We designed error§orrection§odes围o push the failure $\$$ robability well under 2^{-128}.?

Error Correction Code XE5?

Nornhtolland $11=\mid 1=1$ 1) 집 [1.|An|! [1] -

$\leftarrow \underline{\text { Hey students! Pay attention in the coding theory?lasses!? }}$

I designed a linear block code, XE5, specifically for HILA5.?
SecurityRequirement: Fast, \{onstant-time ${ }^{\text {Znmplementatable.? }}$
 size of 496 bits (256 message bits +240 redundancy bits.)?

Always corrects 5 random bit团lips, more with high $\$$ probability.?

> I first described imilar?onstant-time?rror?orrection lechniques (for TRUNC8) in:?
M.-J. O. Saarinen. "Ring-LWE ciphertext compression and error§orrection: Tools for lightweight $\$ 0$ ost-quantum Zryptography". Proc. 3rd ACM International Workshop on IoT Privacy, Trust, and Security, IoTPTS '17, pp.?15-22. ACM, April 2017.?
https://eprint.iacr.org/2016/1058(Original四loaded November 15, 2016)?

Pindakaas:? ${ }^{\text {HILA5 }}$ is IND-CPA, not

[BBLP17] D. J. Bernstein, L. G. Bruinderink, T. Lange, and L. Panny:?? HILA5 pindakaas: On the CCA security of lattice-based encryption with error

There is a single point on p .17 of the HILA5 specification which $\begin{aligned} & \text { erroneously claims? }\end{aligned}$ IND-CCA security. With (too) much $\$$ peculation this was shown not to be correct in [BBLP17]. The original SAC 2017 ${ }^{\text {accademic paper never even mentions }{ }^{\text {IND }} \text { ND-CCA. }}$

"We emphasize that ourættack does not break the IND-CPA security of HILA5. If HILA5 were clearly\#abeled as aiming merely for IND-CPA security then our would merely be a cautionary notee, showing thelmportance of not reusing keys."?

Creating an IND-CCA目ariant vialisujisaki-Okamoto transform is straightforward.? I will $\$$ roposeuch?ariant, probably not very dissimilar to "HILA5FO" from[BBLP17].?

What Distinguishes HILA5 from the Rest ??

+ It's Very Fast and can do KEM and Public Key Encryption. Wnly ${ }^{\text {Bab bout 5\% slower }}$ than fastest New Hope $\mathbb{\text { ICPA) implementation (Matching Ring-LWE parameters.) }}$ I'll have to get better NTT code for the new version, $\$ n y$ current NTT code sucks!?
+ Less randomness?equired. Reconciliation ${ }^{2}$ nethod produces without randomizedsmoothing; much less randomness is thereforequired.?
+ HILA5 $\begin{aligned} & \text { decryption } \\ & \text { doesn't fail. त्HILA5 has a failure rate well under } 2^{-128}\end{aligned}$ Non-negligiblewecryption固ailure rate is needed in $\$$ ublic key encryption.?
+ Non-malleable. © Computation of the ${ }^{\text {Tinal }}$ shared $\$$ ecret in HILA5 KEM uses the full public key and ciphertext messages, thereby reinforcing ${ }^{\text {hon }}$-malleability and making a class of adaptive attacks?feasible.?
+ Shorternessages. ©iphertext messages are slightly smaller than New Hope's.?
+ Patent 7 ree. As the sender can "choose the message" (as in NewHope-Simple), Ding's Ring-LWE key exchange patents less likely to be applicable.?

HILA5 Spec Sheet:?Questions ??

Algorithm:Purpose:? Key Encapsulation and Public Key Encryption.?
Underlying problem:? Ring-LWE (New Hope: $\overbrace{h}=1024, \llbracket=12289, \rrbracket_{16}$)
Public key size:?
Private key size:?
Ciphertext size:?
Failure rate:?
Classical|\$ecurity:?
Quantum security:?
1824 Bytes (+32 Byte private key hash.)?
1792 Bytes (640 Bytes (Zompressed.)?
2012 Byte expansion (KEM) + payload + MAC.?
$<2^{-128}$, consistent with security level.?
2^{256} (Category 5? Equivalent to AES-256).?
2^{128} (Category 5? Equivalent to AES-256).?

Paper: M.-J. O. Saarinen: "HILA5: On Reliability, Reconciliation, and Error Correction for Ring-LWE Encryption." \$elected Areas in Cryptography? SAC 2017, LNCS 10719,? Springer, pp. ${ }^{\text {192-212, 2018. }}$ https://eprint.iacr.org/2017/424

Always get the latest code and specs at: https://github.com/mjosaarinen/hila5

