
LEDAkem/LEDApkc

Marco BaldiN, Alessandro Barenghi�, Franco ChiaraluceN, Gerardo Pelosi�, Paolo
SantiniN

NUniversità Politecnica delle Marche �Politecnico di Milano

April 13, 2018



Outline

Two proposals

LEDAkem (Low-dEnsity parity-check coDe-bAsed key encapsulation mechanism)

IND-CPA key encapsulation mechanism, built on Niederreiter cryptosystem

LEDApkc (Low-dEnsity parity-check coDe-bAsed public-key cryptosystem)

IND-CCA2 public-key cryptosystem, built on McEliece + Kobara-Imai Conversion



Underlying hard problems

General binary code decoding problem

Given a k × n random binary matrix G and a n-bit vector c̃ = c + e,wt(e) < t,
find c . Proven to be NP-Complete.

Syndrome decoding problem

Given an r × n random binary matrix H and a r -bit vector s, find the (unique) n
bit vector e s.t. HeT = s,wt(e) < t. Proven to be NP-Complete.



Quasi-Cyclic Low-Density Parity-Check codes (QC-LDPC)

Proposed in 2008 as a code family to instantiate McEliece/Niederreiter

Low-Density Parity-Check: Secret code representation is a sparse matrix

+ Small size for private keys
+ Efficient representation/arithmetics during decoding
– Parameter design must not allow to guess codewords

Quasi-cyclic: H and G constituent blocks are circulant, hence fully defined by
their first row

+ Smaller public keys
+ Reduction in arithmetic complexity in encoding/keygen



LEDAkem

Key Generation

1 Generate a random r × n binary block circulant matrix H = [H0, . . . ,Hn0−1] made
of n0 circulant blocks, each with column weight dv � n, n = n0p, p prime

2 Generate a random, non-singular, n × n binary block circulant matrix Q made of
n0 × n0 circulant blocks, with total column weight m� n

3 Store private key: H,Q

4 Compute L = HQ = [L0, . . . ,Ln0−1]

5 Store public key: M = (Ln0−1)−1[L0, . . . ,Ln0−2]



LEDAkem

Key Encapsulation

1 Generate a random n-bit error vector e with weight t

2 Compute the ciphertext (syndrome) s = MeT

3 Derive the shared secret x = KDF(e)

Key Decapsulation

1 Obtain e as Q-Decoder(s,H,Q)

Q-Decoder exploits the fact that the parity matrix is built as HQ

2 Derive the shared secret x = KDF(e)



LEDApkc

Built as a McEliece cryptosystem based on QC-LDPC codes

Employs conversion by Kobara and Imai to achieve IND-CCA2 and allow using a
systematic generator matrix G

+ Reduces the size of the public key
+ Speeds up the encryption process overall (K-I conversion is less computationally

expensive than encoding with a non-systematic G)

Decoding done via efficient syndrome decoding taking into account the matrix Q
(reuse decoder from LEDAkem)

+ Saves object code size/silicon area in implementations



Parameter sizing

Parameter design strategy

Prevent message recovery attacks.

Choice of the number of errors t, code size n and rate k
n such that ISD of the public

code is not feasible.

Prevent key recovery (“structural”) attacks.

Density of HQ sufficiently high that retrieving a low-weight codeword of the dual
code is not feasible.

Provide a good DFR (hinder reaction attacks against LEDApkc).

n large enough to provide a satisfactory DFR (≤ 10−8).

Parameter design was done conservatively, targeting 2λ, λ ∈ {128, 192, 256},
taking into account attackers provided with quantum computers.

Ephemeral keys for LEDAkem, keys reusable up to 104DFR−1 for LEDApkc.



Proposed parameters for LEDAkem/LEDApkc

λ n0 p dv m t DFR
Size Size Size
Kpub Kpri Kpri (at rest)

(B) (B) (B)

128
2 27, 779 17 7 224 ≈8.3·10−9 3, 480 668 24
3 18, 701 19 7 141 . 10−9 4, 688 844 24
4 17, 027 21 7 112 . 10−9 6, 408 1, 036 24

192
2 57, 557 17 11 349 . 10−9 7, 200 972 32
3 41, 507 19 11 220 . 10−9 10, 384 1, 196 32
4 35, 027 17 13 175 . 10−9 13, 152 1, 364 32

256
2 99, 053 19 13 474 . 5.8·10−8 12, 384 1, 244 40
3 72, 019 19 15 301 . 5.8·10−8 18, 016 1, 548 40
4 60, 509 23 13 239 . 5.8·10−8 22, 704 1, 772 40



Efficient implementation

Circulant matrix representation/arithmetics

Represent circulant blocks as elements of F2[x ]/〈xp + 1〉
Reduces both time and space complexity for arithmetics
Bit packed representation for dense polynomials, sparse for sparse ones

High sparsity of H and Q yields small (cache friendly) working set

Removed non-singularity check for Q

ord2(p) = p − 1, Perm(wt(Q)) is odd and < p ⇒ Q is non-singular

Possible further optimizations

Sub-quadratic polynomial multiplication

Good fit for x86-64/Aarch64 ISA extensions (e.g. CLMUL/vector units).



Running times for LEDAkem

Portable C99 implementation, on x86-64 nocona gcc target (no HW popcnt,pclmul*)

Category n0
KeyGen Encrypt Decrypt

(ms) (ms) (ms)

1
2 45.91 (± 0.95) 1.94 (± 0.09) 21.69 (± 1.39)
3 24.70 (± 0.44) 2.13 (± 0.09) 25.34 (± 2.00)
4 22.55 (± 0.30) 2.72 (± 0.12) 27.24 (± 1.77)

2–3
2 215.35 (± 3.42) 8.61 (± 0.28) 61.74 (± 4.95)
3 118.93 (± 1.57) 9.09 (± 0.23) 54.12 (± 1.79)
4 90.74 (± 1.12) 9.83 (± 0.20) 56.79 (± 2.21)

4–5
2 651.58 (± 5.81) 24.18 (± 0.61) 109.85 (± 6.75)
3 354.45 (± 5.72) 25.95 (± 0.91) 112.36 (± 3.48)
4 257.84 (± 2.97) 27.44 (± 0.38) 149.93 (± 4.65)



Thanks for the attention

Questions?
https://www.ledacrypt.org

https://www.ledacrypt.org

