LEDAkem/LEDApkc

Marco Baldi[▲], Alessandro Barenghi[■], Franco Chiaraluce[▲], Gerardo Pelosi[■], Paolo Santini[▲]

▲Università Politecnica delle Marche ■Politecnico di Milano

April 13, 2018

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

Outline

Two proposals

- LEDAkem (Low-dEnsity parity-check coDe-bAsed key encapsulation mechanism)
 IND-CPA key encapsulation mechanism, built on Niederreiter cryptosystem
- LEDApkc (Low-dEnsity parity-check coDe-bAsed public-key cryptosystem)
 - IND-CCA2 public-key cryptosystem, built on McEliece + Kobara-Imai Conversion

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Underlying hard problems

General binary code decoding problem

• Given a $k \times n$ random binary matrix **G** and a *n*-bit vector $\tilde{c} = c + e$, wt(e) < t, find c. Proven to be NP-Complete.

Syndrome decoding problem

• Given an $r \times n$ random binary matrix **H** and a *r*-bit vector *s*, find the (unique) *n* bit vector *e* s.t. $\mathbf{H}e^{T} = s, wt(e) < t$. Proven to be NP-Complete.

・ロト ・ 日本 ・ 日本 ・ 日本 ・ 日本 ・ のへの

Quasi-Cyclic Low-Density Parity-Check codes (QC-LDPC)

- Proposed in 2008 as a code family to instantiate McEliece/Niederreiter
- Low-Density Parity-Check: Secret code representation is a sparse matrix
 - + Small size for private keys
 - + Efficient representation/arithmetics during decoding
 - Parameter design must not allow to guess codewords
- Quasi-cyclic: **H** and **G** constituent blocks are circulant, hence fully defined by their first row

- + Smaller public keys
- $+ \;$ Reduction in arithmetic complexity in encoding/keygen

LEDAkem

Key Generation

- Generate a random $r \times n$ binary block circulant matrix $\mathbf{H} = [\mathbf{H}_0, \dots, \mathbf{H}_{n_0-1}]$ made of n_0 circulant blocks, each with column weight $d_v \ll n$, $n = n_0 p$, p prime
- **②** Generate a random, non-singular, $n \times n$ binary block circulant matrix **Q** made of $n_0 \times n_0$ circulant blocks, with total column weight $m \ll n$

- 3 Store private key: H, Q
- Compute $\mathbf{L} = \mathbf{H}\mathbf{Q} = [\mathbf{L}_0, \dots, \mathbf{L}_{n_0-1}]$

5 Store public key:
$$\mathbf{M} = (\mathbf{L}_{n_0-1})^{-1} [\mathbf{L}_0, \dots, \mathbf{L}_{n_0-2}]$$

Key Encapsulation

- Generate a random *n*-bit error vector **e** with weight t
- **2** Compute the ciphertext (syndrome) $\mathbf{s} = \mathbf{M} \mathbf{e}^{T}$
- **③** Derive the shared secret $\mathbf{x} = KDF(\mathbf{e})$

Key Decapsulation

- Obtain e as Q-DECODER(s, H, Q)
 - $\bullet~\mathrm{Q}\text{-}\mathrm{DECODER}$ exploits the fact that the parity matrix is built as HQ
- **2** Derive the shared secret $\mathbf{x} = KDF(\mathbf{e})$

LEDApkc

- Built as a McEliece cryptosystem based on QC-LDPC codes
- $\bullet\,$ Employs conversion by Kobara and Imai to achieve IND-CCA2 and allow using a systematic generator matrix ${\bf G}\,$
 - + Reduces the size of the public key
 - + Speeds up the encryption process overall (K-I conversion is less computationally expensive than encoding with a non-systematic ${\bf G})$
- Decoding done via efficient syndrome decoding taking into account the matrix Q (reuse decoder from LEDAkem)

+ Saves object code size/silicon area in implementations

Parameter sizing

Parameter design strategy

- Prevent message recovery attacks.
 - Choice of the number of errors t, code size n and rate $\frac{k}{n}$ such that ISD of the public code is not feasible.
- Prevent key recovery ("structural") attacks.
 - Density of **HQ** sufficiently high that retrieving a low-weight codeword of the dual code is not feasible.
- Provide a good DFR (hinder reaction attacks against LEDApkc).
 - *n* large enough to provide a satisfactory DFR ($\leq 10^{-8}$).
- Parameter design was done conservatively, targeting 2^{λ} , $\lambda \in \{128, 192, 256\}$, taking into account attackers provided with quantum computers.
- Ephemeral keys for LEDAkem, keys reusable up to $10^4 DFR^{-1}$ for LEDApkc.

Proposed parameters for LEDAkem/LEDApkc

λ	n ₀	р	$\mathbf{d}_{\mathbf{v}}$	m	t	DFR	Size Kpub (B)	Size Kpri (B)	Size Kpri (at rest) (B)
	2	27,779	17	7	224	$pprox$ 8.3 \cdot 10 ⁻⁹	3,480	668	24
128	3	18,701	19	7	141	$\lesssim 10^{-9}$	4,688	844	24
	4	17,027	21	7	112	$\lesssim 10^{-9}$	6,408	1,036	24
192	2	57, 557	17	11	349	$\lesssim 10^{-9}$	7,200	972	32
	3	41 , 507	19	11	220	$\lesssim 10^{-9}$	10, 384	1,196	32
	4	35,027	17	13	175	$\lesssim 10^{-9}$	13, 152	1,364	32
256	2	99,053	19	13	474	$\lesssim 5.8{\cdot}10^{-8}$	12, 384	1,244	40
	3	72,019	19	15	301	$\lesssim 5.8{\cdot}10^{-8}$	18,016	1,548	40
	4	60,509	23	13	239	$\lesssim 5.8{\cdot}10^{-8}$	22,704	1,772	40

Efficient implementation

Circulant matrix representation/arithmetics

- Represent circulant blocks as elements of $\mathbb{F}_2[x]/\langle x^p+1
 angle$
 - Reduces both time and space complexity for arithmetics
 - Bit packed representation for dense polynomials, sparse for sparse ones
- $\bullet\,$ High sparsity of H and Q yields small (cache friendly) working set

Removed non-singularity check for **Q**

• $ord_2(p) = p - 1$, $Perm(wt(\mathbf{Q}))$ is odd and is non-singular

Possible further optimizations

- Sub-quadratic polynomial multiplication
- Good fit for x86-64/Aarch64 ISA extensions (e.g. CLMUL/vector units).

Running times for LEDAkem

Portable C99 implementation, on x86-64 nocona gcc target (no HW popcnt,pclmul*)

Category	<i>n</i> 0	KeyGen (ms)	Encrypt (ms)	Decrypt (ms)
1	2 3 4	$ \begin{vmatrix} 45.91 & (\pm 0.95) \\ 24.70 & (\pm 0.44) \\ 22.55 & (\pm 0.30) \end{vmatrix} $	$\begin{array}{c} 1.94 \; (\pm \; 0.09) \\ 2.13 \; (\pm \; 0.09) \\ 2.72 \; (\pm \; 0.12) \end{array}$	$\begin{array}{c} 21.69 \ (\pm \ 1.39) \\ 25.34 \ (\pm \ 2.00) \\ 27.24 \ (\pm \ 1.77) \end{array}$
2–3	2 3 4	$ \begin{vmatrix} 215.35 \ (\pm \ 3.42) \\ 118.93 \ (\pm \ 1.57) \\ 90.74 \ (\pm \ 1.12) \end{vmatrix} $	$\begin{array}{l} 8.61 \ (\pm \ 0.28) \\ 9.09 \ (\pm \ 0.23) \\ 9.83 \ (\pm \ 0.20) \end{array}$	$\begin{array}{c} 61.74 \ (\pm \ 4.95) \\ 54.12 \ (\pm \ 1.79) \\ 56.79 \ (\pm \ 2.21) \end{array}$
4–5	2 3 4	$ \begin{vmatrix} 651.58 & (\pm 5.81) \\ 354.45 & (\pm 5.72) \\ 257.84 & (\pm 2.97) \end{vmatrix} $	$\begin{array}{c} 24.18 \ (\pm \ 0.61) \\ 25.95 \ (\pm \ 0.91) \\ 27.44 \ (\pm \ 0.38) \end{array}$	$\begin{array}{c} 109.85 \ (\pm \ 6.75) \\ 112.36 \ (\pm \ 3.48) \\ 149.93 \ (\pm \ 4.65) \end{array}$

Thanks for the attention

Questions?

https://www.ledacrypt.org

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ